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Abstract: The essential problem in signal analysis is to find a numerically stable algorithm
for reconstruction of a signal from its atomic decomposition [4]. This leads to the notion
of frames [6, 10] which is a main ingredient in the analysis and synthesis of signals. In this
paper, we have obtained the frame bounds for wavelet packet frames which are more
general than that of wavelet frames.
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1. INTRODUCTION AND PRELIMINARIES

Introduced by Duffin and Schaeffer [9] in the context of non-harmonic Fourier series, the
theory of frames has been developed for Gabor and Wavelet transforms by many authors,
see especially the papers by Daubechies [6], Heil and Walnut [10], Christensen [1], Sun
and Zhou [13] and Shang and Zhou [12].

A system of elements {fn}n � � in a Hilbert space H is called a frame for H if there exists
two +ve numbers A and B such that for any f � H,

22 2
, n

n

A Bf ff f
��

� �� .

The numbers A and B are called frame bounds. If A = B, the frame is said to be tight.
The frame is called exact if it ceases to be a frame whenever any single element is deleted
from the frame.

The continuous wavelet transformation of a L2-function f with respect to the wavelet �,
which satisfies admissibility condition, is defined as:

(T wavf ) (a, b) = | a |
–1/2 ( )

t b
f t

a

�

��

�� �
� �
� �� , a, b � �; a � 0.

The term wavelet denotes a family of functions of the form � �� �1/2
,

| | t b
aa b

a� � , obtained
from a single function � by the operation of dilation and translation.
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Wavelet Packets: We have the following sequence of functions due to Wickerhauser
[14]. For l = 0, 1, 2, ...,

�2l (x) = 
�
�
�

2
k

ak �l (2x – k) and �2l + 1(x) = 
�
�
�

2
k

bk �l (2x – k), (i)

where a = {ak} is the filter such that �n � � an – 2k an – 2l = �kl, �n � � an = 2  and bk = (–1)k a1–k.
For l = 0 in (i), we get

�0(x) = �0(2x) + �0(2x – 1), �1(x) = �0(2x) – �0(2x – 1),

where �0 is a scaling function and may be taken as a characteristic function. If we increase
l, we get the following

�2(x) = �1(2x) + �1(2x – 1), �3(x) = �1(2x) – �1(2x – 1)

�4(x) = �1(4x) + �1(4x – 1) + �1(4x – 2) + �1(4x – 3)

and so on.

Here �l’s have a fixed scale but different frequencies. They are Walsh functions in [0, 1].
The functions �l(t – k), for integers k, l with l � 0, form an orthonormal basis of L2(�).

Theorem 1.1: For every partition P of the non negative integers into the sets of the
form Ilj = {2 jl, ..., 2 j(l + 1) – 1}, the collection of functions �l; j, k = 2 j/2�l (2

jx – k), Ilj � P,
k � �, is an orthonormal basis of L2(�).

We have used the inner product of functions f, g � L2(�) as ��f, g� = 
�

��� f (x) g
—

(
—
x)
—

dx ,

the Fourier transform of f � L2(�) as f^(�) = 
�

��� e–i�xf (x) dx and the relationship between

functions and their Fourier transform as 2����f, g� = � f
^, ĝ�. For f � L1(�) � L2(�), the

Fourier transform f^ of f is in L2(�) and satisfies the Parseval identity || f^ ||
2
2 = 2��|| f ||

2
2.

For a function � � L2(�), we define the following operators as follows:

Translation: Ta ��(x) = ��(x – a), x � �, a > 0.

Modulation: Ea ��(x) = e2�iax ��(x), x � �, a > 0.

Dilation: Da ��(x) = | a |
–1/2�(x/a), for all x � �, a > 0.

Definition 1.2: A Sobolev space of order s > 0, denoted by Hs(�), is a subspace of
L2(�), given by

H s(�) = { f � L2(�): | f^(�) |(1 + | � |
2)s/2 � L2(�)}.
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Lemma 1.3: Suppose that the scaling function � satisfies

2ˆsup ( 2 )
k

k
��

�� �
� ��� � � �� , (1)

for some � > 0, and

�

��
� � � ��� �ˆsup (1 | |) ( )

�
. (2)

Then there exists a constant c such that, for all f � L2(�),

2 2
, 2

,

, l jk
l j k

f c f
�

�� � . (3)

Proof: Kindly see [3].

2. MAIN RESULTS

Theorem 2.1: Suppose that,

A =
2

| | [1, 2] 0

ˆ ˆ ˆ(2 ) (2 ) (2 )inf 0j j j
l l l

r l j m l j
r r r m

� � � �

� �� � �� �� �
� � � � �

B =
2

0| | [1, 2]

ˆ ˆ ˆ(2 ) (2 ) (2 )sup j j j
l l l

l j m l jr

r r r m
� � ��

� �� � � �� �� �
� � � � � .

Then { D2j Tk �l (x)j, k � �, l = 1, 2, ..., k} is a wavelet packet frame for L2(�) with bounds A, B.

Proof: For a function f � L2(�), we have

2

2
,

, j k l
l j k

f D T��  =
2

2
,

ˆˆ, j k l
l j k

f D E� �
�

� �

=
2

2 2
,

ˆˆ, j j lk
l j k

f E D ��
�

� �

= ��
�

� � ��
2

2 2
,

ˆˆ ( ) ( )j j lk
l j k

f r E D r dr
�

�

=
�� � �

�
� � � ��

2
2 2ˆˆ2 ( ) (2 )

jj j ik r
l

l j k
f r r e dr

�
�

=
��

�

� ��� � �
2

2

0

ˆˆ ( 2 ) (2 )2 2
j

j jj j
l

ml j

f r m r m dr
�

�
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=
2

0
ˆ ˆˆ ˆ( 2 ) (2 ) ( 2 ) (2 )

j
j j j j

l l
l j h m

f r h r h f r m r m dr� �

�
� � � �� � � ��

=
2

0
ˆ ˆˆ ˆ( 2 ) (2 ) ( 2 ) (2 )

j
j j j j

l l
l j h m

f r h r h f r m r m dr� �

�
� � � �� � � ��

=
� �

�
� �� � ��� ˆ ˆˆ ˆ( ) (2 ) ( 2 ) (2 )j j j

l l
l j m

f r r f r m r m dr
�

� �

=
� �

�
� �� � � �� ˆ ˆˆ ˆ( ) ( 2 ) (2 ) (2 )j j j

l l
l j m

f r f r m r r m dr
�

� �

=
�

� ���
22 ˆˆ (2 )( ) j

l
l j

drrf r
�
�

+ � �

� �
� �� � � ��

0

ˆ ˆˆ ˆ( ) ( 2 ) (2 ) (2 )j j j
l l

m l j

f r f r m r r m dr
�

� � .

= (*).

Applying the Cauchy-Schwarz inequality twice, we have

(*) �
�

� ���
22 ˆˆ (2 )( ) j

l
l j

drrf r
�
�

+ � �� �

� �
�� � � ��

1/ 2

0

ˆ ˆˆ (2 ) (2 )( ) j j
l l

m l j
r r mf r

�
� �

� �1/2
ˆ ˆˆ (2 ) (2 )( 2 ) j jj

l l
drr r mf r m � �� ��

�
�

� ���
22 ˆˆ (2 )( ) j

l
l j

drrf r
�
�

+ � �� �

� �
�� � � ��

1/22

0

ˆ ˆˆ (2 ) (2 )( ) j j
l l

m l j
drr r mf r

�
� �

� �� �� ����
1/22 ˆ ˆˆ (2 ) (2 )( 2 ) j jj

l l
drr r mf r m � �

�
�

� ���� ���
22 ˆˆ ( ) ( )(2 )( ) j

l
l j

dr a arf r
�
� .

The terms (a�) and (a��) are actually identical (use the change of variable r � r + 2 jm in
(a��)), so by changing the summation index j � – j, m � – m, we have
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(*) �
�

� ���
22 ˆˆ (2 )( ) j

l
l j

drrf r
�
�

+
� �

�� � � ��
2

0

ˆ ˆˆ (2 ) (2 )( ) j j
l l

m l j

drr r mf r
�

� �

�
� � �

� �� �� �
� �
� � � � ���

22

0

ˆ ˆ ˆˆ (2 ) (2 ) (2 )( )
j j j

l l l
l j m l j

r r r m drf r
� �
� � � .

Thus,

2 2

2
,

, j k l
l j k

f D T B f��� .

A similar conclusion shows

(*) �
� � �

� �� �� �
� �
� � � � ���

22

0

ˆ ˆ ˆˆ (2 ) (2 ) (2 )( )
j j j

l l l
l j m l j

r r r m drf r
� �
� � � .

Thus result follows.

Theorem 2.2: Assume that the sequence (�n)n is given by � � �� 1

0( )
n

n
x n  �n ��(2x – n)

is finite and satisfies the condition

2 2n k n l lk
n

� �� � � �� , (4)

and assume that for some � > 0, we have

� � 1/42ˆ 1( ) c
� �

� �� � , (5)

where �^ denotes the Fourier transform of the mother wavelet �. Finally, assume that the
scaling function � � H s(�) for some positive number s. Then there exist two positive
constants c1(s) and c2(s) such that

22 22
,1 22 2

,

,( ), ( ) ( )l jk
l j k

ff L c s c sf f
�

� � � �� � . (6)

Proof: To prove the upper bound of (6), it suffices to check that if � � H s(�) for
some s > 0, then conditions (1) and (2) of Lemma 1.3 are satisfied. To get (1) we first prove
that there exists 0 < � < 1 such that

2 2ˆ ( ) d
� �

� � ��� �� . (7)
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Since

2 2ˆ ( ) d
� �

�� ��  = � � � �
�� ��� � � ��� � � �� ��

1 2 ( 1)22 ˆ 11 ( )
ss d ,

and by using Hölder’s inequality, one gets

2 2ˆ ( ) d
� �

�� ��  � � � � �
122 2 ( 1) /ˆ1 1( )

s s
d d

�� ��� �� � � �� � � �� �� � � �� �� �

� � �2 ( 1)/
1

s
c d

��� �� �� ��� �� .

Hence, if 0 < � < 1/(1 + 1/2s), then (7) holds. To get (1) it suffices to use the following
inequalities which can be found in [3].

2ˆ ( 2 )
k

k
��

�
� � � ��  � � ��� �����

2ˆ ( )
d

d
d

�
1ˆ

ˆ(2 ) ( )
d

d
d

���� � �� �
��

�

1/22
1/22 2ˆ

ˆ ( )
d

d d
d

� �� �� � �� �� �� �� �� ��� �
� � . (8)

Since (�n)n is a finite, it follows that the associated scaling function � is compactly
supported. Moreover, � � H s(�) for some s > 0 implies that � � L2(�). It becomes clear
that the first factor of the last inequality is proportional to the L2-norm of x��(x) which is
finite, and the second factor is finite whenever 0 < � < 1/(1 + 1/(2s)). To prove (2), we
consider a point � such that | � | � [2n – 1�, 2n�], n � 1. Then the techniques used to get (8)
give us

2ˆ ( )� �  � 1

1/ 22

2 2
ˆ ( )n n dc � � � � ��

� �� �� �� �� �� . (9)

Since,

1

2

2 2
ˆ ( )n n d� � � � ��

�� ��  = � �1

2
2

2
2 2

11 ˆ ( ) 1/22
n n

s

s d� � � � ��

� �� �� � �� �� �� �� �� � � �� � � �� � � �
� ,
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therefore,

1

2

2 2
ˆ ( )n n d� � � � ��

�� ��  �
2

1
1

1
( ) 2

2

s
nc s

�
�� �� �� �

� �

�
2

1
1( )
2 2

s

c s
�

� ��
�� �

� �

� � � 2

2 ( ) 1
s

c s
�

� � .

Consequently, there exists a constant c3(s) depending only on s such that

ˆ ( )� �  � � �3( ) 1 ,
s

c s R
�

� ���� .

Collecting everything together, one concludes that for any arbitrary real number �
satisfying

1
,0 min
1 1/(2 )

s
s

� �
� � � � ��� �

,

the scaling function � satisfies condition (1) and (2). Consequently, the upper bound of (6)
is proven. To prove the lower bound of (6), we first mention that under condition (4) and
(6), the wavelet expansion of an L2 function f converges in the L2-sense, that is,

�f � L2(�), f (x) = , ,
,

, ( )l jk l jk
l j k

f x
�

� � , (10)

where the equality holds in the L2-sense. For the proof of this result we refer to [5]. From
(4) and (10), one concludes that, for all f � L2(�),

|| f ||
2
2 =

2

,,lim
N

l jk
N j N k l

f
��� � � �

� � �

�
2

,
,

, l jk
l j k

f
�

� �

�
1/ 22

,2 2
,

,( ) || || l jk
l j k

fc s f
�

� �
� �� �
� � .

Hence,

|| f ||
2
2 

2

1

( )c s
 �

2

,
,

, l jk
l j k

f
�

� � ,

which proves the lower bound of (6) and concludes the proof of the theorem.
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Theorem 2.3: Let {�l; j, k = 2j/2 �l (2
jx – k)}j, k � �, l = 1, 2, ..., k, is a wavelet packet frame of

L2(�) with frame bounds A and B, i.e.,

A || f ||
2 �

2 2
; ,

,

, l j k
l j k

f B f
�

�� � .

Then �^  satisfies

A �
�

��� �
2

ˆ a.e.,(2 j
l

l j

B
�
� ,

for the same constants A and B.

Proof: Since �l; j, k = 2j/2 �l (2
jx – k), j, k � �, l = 1, 2, ..., k and for any f � L2(�), we have

��f, �l; j, k� =
/22 ( ) (2 )j j

lf x x k dx
�

��
��

= /21 ˆˆ2 (2 ) ( )
2

j j ik
lf e d

� �
��

� � �
� � .

Now, by setting

T = 2�, (11)

we have,

2

; ,
,

, l j k
l j k

f
�

� �  =
� �
��

� �
� � �

�
� � � �

2

2

2 ˆˆ(2 ) ( )
4

j
j ik

l
l j k

f e d
� �

�

=
� �

�� �

� �� � � �� �� � �
�� � � �

2
22

2 0

2 1 ˆˆ (2 ( )) ( )
4

T

j
T j ik

l
hl j k

T f hT hT e d
T �� �

�

=
2

0

ˆˆ(2 ( )) ( )2
T jj

l
hl j

f hT hT d
��

� � �� ��� � � . (12)

Now, by the definition of wavelet packet frame and equation (12), we have

2ˆA f  �
2

2

0

ˆˆ(2 ( )) ( ) ˆ2
T jj

l
hl j

f hT hT d B f
��

� � �� ���� � � . (13)

If for any M > 0, M � �, and �0 � (–�, �), we have

0 2

0 2

2
2 2

2

ˆˆ(2 ( )) ( ) ˆ2
j T

j T

M jj
l

hl j M

f hT hT d B f
�

�

� �

� � �� �

� � �� ���� � � .
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Now, consider � � 0 0

1
[ , ]2

ˆ , 0f � � � �� � � . Then for sufficiently small �, the above
inequality becomes

0

0

22 ( )

2 ( )

2 ˆ ( )
2

j

j

jM

l
l j M

d B
�

�

� �

� �
� �

� ��� � � ,

and thus, by taking � � 0 and M � �, we have

� �
��� �

2ˆ a.e.,(2 )
M

j
l

l j M

B� (14)

On the other hand, for any �0, � > 0, a positive integer M may be chosen so that

�

�

�
� ��� 1

0

2

2 /3
ˆ ( )M l� . (15)

Also, for

00 min ,
3 2

T�� �� � � �
� �

,

the function � � 0 0

1
[ , ]2

f̂ � � � �� �  satisfies

f
^
(2 j(� + hT)) = 0,

for all h � � with | h | � � �2
1j T

�  and all 0 02 22 ,2j jT T� �� ��� � � � �� � . Hence, for this f
^
, we have

0 2

0 2

2
2

2

ˆˆ(2 ( )) ( )2
j T

j T

M
jj

l
hl j

f hT hT d
�

�

� � �

� � �� ��

� � � � ��� � �

� 0 2
0 0

0 2

22
[ , ]

2

2 ˆ (2 ( ))( ) 1
2 2

j T

j T

jM
j

l jhl j

hThT
T

�

�

� � �
� � � �

� � �� ��

� � � �� � �� � �� �� � � �� �
�� � �

� 0

0

2 ( ) 2 2

2 ( )

2ˆ ˆ( ) ( )
2

j

j

M j

l l
l j

C d
�

�

� � �

� �
� ��

� � ��� �� �
� �

� � � . (16)

Since 0

3
�� , the intervals,

[2–j(�0 – �), 2–j(�0 + �)], j � �

are mutually disjoint, and hence by equation (15), we have

�

�� �

� � � �

� �
� ��

� �� �� �� � � �0

1 0
0 3

2 22 ( )

2 ( ) 2
ˆ ˆ( ) ( )

j

j M

M

l l
l j

d
�

�
� � ,
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Now by equation (16), we have

2

0

ˆˆ(2 ( )) ( )2
T jj

l
hl j

f hT hT d
��

� � �� ��� � �

�
2

0
1

ˆˆ(2 ( )) ( )2
M T jj

l
hl j M

f hT hT d
�� � �

� � � � ��� � �

+ 0

0

2ˆ (2 )
2

M
j

l
l j

C
C d

�� � �
� � �

� ��
� ��� �� . (17)

Therefore, by the definition of wavelet packet frame and equation (17), we have

R =
2

0
1

ˆˆ(2 ( )) ( )2
T jj

l
hl j M

f hT hT d
�

�� � �

� � � � ��� � �

� 0

0

2( )

( )
ˆ (2 )

2

M
j

l
l j

C
A C d

�� � �
� � �

� ��
� � ��� �� . (18)

On the other hand, for all sufficient small � > 0, it is clear that

R = 0

0

22 ( )

2 ( )
1

ˆˆ2 (2 ( ) ( )
j

j

j j
l

l j M

df
�

�

� � �

� �
� � �

�� �� � �

= 0

0

2

1

1 ˆ (2 )
2

j
l

l j M

d
�� � �

� �
� � �

��� �� ,

where, � � 0 0

1
[ , ]2

f̂ � � � �� � . Hence, in view of the boundedness property in equation (14),
we may take � � 0 in equation (18) to arrive at

��
� �

�
� � � � ��

� � �� �� � � �
2 2

0 0
1

ˆ ˆ(2 ) (2 )
M

j j
l l

l j M l j

A C C� � (19)

for almost all �0 > 0. Since � > 0 is arbitrary, so from equations (14) and (19), we get

2ˆ (2 )j
l

l j

A�

�
��� � (20)

for almost all �0 > 0. Hence, by equations (14) and (20), we get the desired result.
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