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Abstract: In the deregulated electricity market environment as generation, transmission and distribution are separate entities;

reactive power flow in transmission lines is a question of great importance. Due to inductive load characteristic, reactive

power is inherently flowing in transmission line. Hence under restructured electricity market environment this reactive power

allocation is necessary. Hence in this work Newton Raphson (N-R) load flow based scheme is used to obtained reactive

power flows. After getting reactive power flows average participation factor method is used to allocate these reactive flows

to loads. Further using MV Ar-cost method reactive power cost is allocated to the loads. The developed method is tested

on 6 bus system, IEEE 14 bus system and 21 bus system Southern Ethiopian region electric power networks.

Keywords: Reactive power pricing; average participation factor; marginal participation method.

1. INTRODUCTION

Major objective for the Thermal power generation is
to minimize fuel consumption by allocating optimal
power generation from each unit subject to equality
and inequality constraints. In most of cases fuel cost
consists of active power cost only however reactive
power is very essential for secure and reliable operation
of power systems. However, reactive power production
by a generator will reduce its capability to produce
active power. Hence, provision of reactive power by
generator will result in reduction of its active power
production, so the reactive power pricing is equally
important with real power pricing [1].

Nevertheless, it would suffice to say at this point
that reactive power is a key ancillary service that is
intimately linked to maintaining acceptable voltage
level - an important measure of quality of supply.
Production and transmission of reactive power is linked
closely with that of real power (MW). Reactive power
supply may come from generators but also from other

sources such as capacitor banks and other devices, with
investment decisions on the latter often being in the
purview of a transmission system operator. Depending
upon the source, provision of reactive power can
be “slow” or “fast”. Reactive power can serve two
purposes: Maintaining voltages in an acceptable band
under normal operation, and arresting the collapse
of voltage under extreme system conditions. Voltage
stability is one of the key security criteria that a power
system has to observe in real time and to ensure the
generation/load growth of the system is matched with
adequate investment to secure longer term supply of
reactive power. In practice, real power and reactive
power have generally been handled separately by
most power system operators. Typically, real power
dispatch is carried out using a linear programming
model associated with an Economic Load Dispatch
(ELD) calculation that maximizes social welfare, while
guaranteeing that system security constraints are met
[21]. Reactive power, on the other hand, is dispatched
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based on power flow studies (N-R load flow) and
operational experience.

Almost all bulk electric power is generated,
transmitted and consumed in alternating current (AC)
networks. Elements of AC systems supply (or produce)
and consume (or absorb or lose) two kinds of power;
real power and reactive. Real power accomplishes
useful work (e.g, runs motors and light lamps).
Reactive power supports the voltages that must be
controlled for system reliability and induction motor
[2]. Conventional reactive power pricing methods
are based on power factor. These methods are not
suitable for the restructured power systems. Because
in these systems the costs of each reactive power
support services must be paid separately. In addition,
current tariffs only consider local costs and calculate
the reactive power consumption respect variables
which cannot judge the full customers usage (3, 4, 5].
Development of reactive power pricing service causes
to nodal pricing theory definition [6-8]. More research
work based on the nodal pricing has been presented in
[9]. This method is sensitive to operating conditions
and system constraints. Also, its computing time is
considerable and due to nonlinearly its convergence
is not acceptable. The proportional sharing techniques
[5, 6] provide an efficient computational method for
loss allocation, starting from the output of a solved
load flow. But this concept is neither provable nor
disprovable. Among the circuit-based loss allocation
methods [7, 8], Z-bus matrix and modified Y-bus
matrix methods are popular. These methods are based
on a solved power flow, and all its computations are
based on the admittance matrix. In the paper by vishaka
et. al., [9], transmission charge allocation based on
relative electrical distance (RED) concept is presented.
Most of the above referred methods [3-9] consider
that the transmission loss charges are an integral
part of transmission usage charge and so its separate
computation is unnecessary. Hogan [11], [12], [13],
[14] extended the spot price theory of the MIT school
to an AC power system and affirms the basic idea of
charging reactive power spot prices derived from an
OPF model. He particularly emphasizes the fact that
reactive power consumption is critical for high voltage
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lines that tend to be voltage limited. This phenomenon,
he argues, is a particular form of congestion and
reactive power spot prices are a good way of charging
customers contributing towards it. This definition of
the reactive spot price was a natural extension of the
real power spot price theory proposed by Schweppe et.
al., [16] for a power system (DC approximation model).
Baughman et. al., [15] show that this pricing approach
captures the spatial and chronological variation of
the reactive power prices across the (electrical) nodes
and across different loading conditions over the day.
They also argue that this pricing scheme is a remedy
to the inefficient power factor penalty scheme - an
improvement that was envisaged by Berg et. al., [10].
Read et. al., [17] went a step further and evaluated the
reactive power and voltage prices at the PQ and PV
buses.

In this work, authors allocate the reactive power
generation cost to the loads. It is because the main
reason behind the reactive power flow is the inductive
loading due to various types of induction motors. For
that purpose average participation factor method is
used. After allocation of reactive flows, reactive pricing
is done by using MV A-cost method.

2. DEVELOPED METHODOLOGY

A. Model for Reactive Power Flow Allocation
Let consider a simple diagraph G showed in Figure 1.

1 - 3

Figure I: Graph G

The Kirchhoff matrix of above diagraph is given by
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1 0 -1 0
12 0 -1
RO=y 4 2 4
0 -1 -1 2

Hence from the above example for a simple
digraph G of # vertices, an 7 by » matrix called the
Kirchhoff matrix K(G) or K = [£;] is defined as
[19],

—x fori# j

Ko {d (v;) fori=j )

This matrix is basis of the developed methodology.

In the first step a power flow matrix is constructed

from the N-R load flow. This matrix gives a complete

overview of reactive power flows in the system. It

is formed between nodes of the system. Diagonal

elements give net reactive flows at nodes and off

diagonal elements give the actual reactive flows and

counter flows in the system. The developed matrix is
defined as follows:

—1pfy;  fori# jandrp ;>0
RPE; =3 7f; for7# jandp; >0 2
Py fori=j

From the above matrix and using equation (1) the
modified reactive Kirchhoff matrix is constructed as
follows: Denoting the modified reactive Kirchhoff
matrix of power network as K, = (&), ,, expression
for the elements of modified Kirchhoff matrix is given

by (3):

—1pfy;  fori# jandzp ;>0
/éy- =q1py; fori=j 3)
0 otherwise

Letln=1 ... erepresents the total number of lines in
the system, G, =1 ... gis total number of generators and
D =1 ... dis the total number of loads in the system.

For calculating the loads shares in reactive power
flows procedure is as followed [18, 19, 20].

The diagonal load matrix P ; = diag(Py 4, Py, ...,
P; ) and RPM = PLL(K;)T, where RPM is defined as
reactive power flow matrix.
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For calculating the load shares of reactive power
to line flows, the procedure is as follows. Reactive
power allocated to load situated at bus 7 share the line
§— bis given by,

TPi—s-b = Lisffaop
4)
where, 7, is the elements of reactive power flow matrix
RPF. »f _ , is the reactive power flow in s — 4 line.
s—1b p
1mp;_, ._,1s the reactive power flow allocated to the load

situated at load bus 7

B. Cost Recovery Model

After allocation of reactive power flows MVAr cost
method is used for the allocation of reactive power
cost to the different loads.

This recovery model provides cost recovery with
respect to rated reactive power capacity of transmission
line. If the cost of the line is denoted as TC, _, (in
Rs/hr) then reactive power cost allocated to users is
given by:

For load L,, transmission reactive power cost

. L
allocation is given by #v¢.” ,

il =it ore 5)
s—b

L,

Total transmission reactive power cost TRC »

allocated to load L,
Ly _ L
TRC ™ = Xf _ e,y ©6)

where, 79, _, ;_, is the reactive power flow in s — b line
allocated to load situated at bus /. TC,_ ,is transmission
cost of line and #f,_ , is the reactive power flow in the
line s — &.

By using above to equation reactive power flow

cost is allocated to loads.

3. RESULTS AND DISCUSSION

The developed method is applied to the 6 bus system
presented in [4], IEEE 14 bus, and 21-bus Southern
Region Ethiopian power system to demonstrate the
feasibility and effectiveness of the methodology. It
is assume that cost of the line is proportional to the
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impedance of the line. A computer program coded in
MATLAB is developed.

A. 6 Bus System

A 6 bus system, which consists of three loads and
three generators including slack bus, is used to show
the feasibility of the developed method. The single line
diagram of the system is shown in appendix. Table 1
shows the reactive power flows in normal condition.

Table 1
Reactive power flows

Line Normal Reactive Flow
1-2 14.2
1-4 22.7
1-5 14.9
2-3 7.5
2-4 49.6
2-5 18.5
2-6 15.3
3-5 26.9
3-6 64.5
4-5 2.3
5-6 6.3

Table 2 shows the allocated reactive power flows to
loads with help of average participation factor method.

Table 2
Reactive Power Allocated to Loads
Line Flow Load 4 Load 5 Load 6
1-2 0.142 0.0846 0.0771 0.0169
1-4 0.227 0.1353 0.1232 0.0270
1-5 0.149 0.0888 0.0809 0.0178
2-3 0.075 0.0212 0.0130 0.0213
2-4 0.496 0.1403 0.0860 0.1412
2-5 0.185 0.0523 0.0321 0.0527
2-6 0.153 0.0433 0.0265 0.0435
3-5 0.269 0.0000 0.0793 0.1862
3-6 0.645 0.0000 0.1902 0.4465
4-5 0.023 0.0198 0.0012 0.0000
5-6 0.063 0.0000 0.0612 0.0015

Table 3 presents the comparative analysis among
average participation factor method and marginal
participation factor method.
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Table 3
Comparison of average participation factor method
with marginal participation factor method

Average Marginal

ILine Participation Factor Participation Factor

Load4 1.oad5 1.oad6 1oad4 1oad5 1oad 6
1-2  0.0846 0.0771 0.0169 0.0083 0.0163 0.0312
1-4  0.1353 0.1232 0.0270 0.0158 0.0141 0.0053
1-5 0.0888 0.0809 0.0178 0.0026 -0.0009 -0.0022
2-3 0.0212 0.0130 0.0213 -0.0506 -0.1223 -0.1956
2-4  0.1403 0.0860 0.1412 -0.0317 -0.0463 -0.0679
2-5 0.0523 0.0321 0.0527 -0.0394 -0.0381 -0.0694
2-6 0.0433 0.0265 0.0435 -0.0364 -0.0512 -0.0379
3-5  0.0000 0.0793 0.1862 -0.0513 -0.0772 -0.1305
3-6 0.0000 0.1902 0.4465 -0.0503 -0.0871 -0.0984
4-5 0.0198 0.0012 0.0000 -0.0178 -0.1447 -0.1296
5-6  0.0000 0.0612 0.0015 -0.0134 -0.0444 0.0280

Table 4 shows the allocated reactive power flow
cost to demands.

Table 4
Reactive Power Cost Allocated to Loads
Line  Cost (Birr/br)  Load 4 Load 5 Load 6
1-2 223.61 133.2212  121.4108 26.61274
1-4 206.16 122.8786 111.8895 24.52123
1-5 310.49 185.0437 168.5815 37.09209
2-3 254.95 72.06587 44.19133  72.4058
2-4 111.80 31.62407 19.38468 31.82694
2-5 316.23 89.39908 54.87018 90.08282
2-6 211.90 59.96908 36.70163  60.24608
3-5 286.36 0 84.41765 198.2165
3-6 101.98 0 30.07224  70.59546
4-5 447.21 384.9895  23.3327 0
5-6 316.23 0 307.1949  7.529286
Total 1079.191  1002.047 619.1289

B. IEEE 14 Bus System

The developed method is also applied on modified IEEE
14 bus system [20]. In modified IEEE 14 bus system
there are two generators and remaining twelve loads.

Table 5 shows the allocated reactive power flows to
loads with help of average participation factor method.

Table 6 shows the allocated reactive power flow
cost to demands.
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C. 21 Bus System Ethiopia Southern Region

Southern region of Ethiopia consist of total 21 buses.
This system has three generator buses and remaining 18
load buses. Table 7 shows the allocated reactive power
flows to loads with help of average participation factor
method. Table 8 shows the allocated reactive power
flow cost to demands at normal power flow condition.

4. CONCLUSION

In this work reactive power pricing is done with the
help of average participation factor method. Further
for getting reactive power flows Newton- Raphson
load flow is used. After getting reactive power flows
by using average participation factor method these
flows are allocated to loads because the main reason
behind the reactive power flow is the inductive loading
at the load end. Hence by using MV Ar-cost method
the cost of this reactive power flowing is allocated to
loads. For showing the feasibility of the developed
method sample 6 bus, IEEE 14 bus and practical 21
bus southern region Ethiopia is used.
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