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Abstract: The Unified Power Flow Controller (UPFC) combines the properties of shunt and series compensations 
and effectively alters power system parameters in a way that increases power transfer capability and stabilizes 
system. The selection of the state feedback gains for the UPFC controllers is most commonly designed from the 
optimal controllers. But parameters of optimal controllers are usually tuned based on the trial-and-error approaches 
and they are incapable to obtain a good dynamic performance under a wide range of operating conditions. To solve 
this problem, switching strategy method is proposed for two optimal Linear Quadratic Regulator (LQR) controllers 
to show the improved dynamic performances compared to individual LQR and other optimization techniques. A 
Single-Machine Infinite Bus (SMIB) power system installed with a UPFC is considered as case study.
Keywords: UPFC, LQR, SMIB, Power System and Phillips Heffron Model.

1.	 INTRODUCTION
Recent years have witnessed an enormous growth of interest in dynamic systems that are characterised by 
a mixture of both continuous and discrete dynamics (Douglas et. al., 2010). Such systems are commonly 
found in engineering practice and are referred to as hybrid or switching systems. The widespread application 
of such systems is motivated by ever increasing performance requirements, and by the fact that high 
performance control systems can be realised by switching between relatively simple LTI systems.

The advantage of switching between different feedback structures is to combine the useful properties 
of each structure and to introduce new properties that are not present in any of the structures used. The 
switching surface is actually composed of two subspaces which intersect on the null space of the switching 
matrix. Analysis of each of the these surfaces shows that sliding might be present on one of them. However, 
if both state feedbacks are designed using optimal quadratic regulators with different weights in the control 
effort, sliding motion has not been detected in any of the experiments performed.

The main problems in linear switched systems are stability and poor transient responses, caused by 
switching between different controllers. Hence, improving the switched systems responses is of prime 
concern. A switched system consists of linear time invariant (LTI) subsystems and a regulated switching 
law. (Zhi Hong Huang et. al., 2007; Cheng Xiang and Hai Lin et. al.,2007) derived a necessary and sufficient 
condition for stability of arbitrarily switched second order LTI systems with marginally stable subsystem. 
It turns out that the condition for the marginally stable case is similar with the one for asymptotically stable 
except boundary conditions are included. In (Keith R Santarelli et. al.,2008) the authors made a comparison 
of a switching controller to two LTI controllers for a class of LTI Plants.

In (Aravena et. al., 2006; Devarakonda et. al., 2006) proposed a performance based switching algorithm 
for LTI systems, based on Lyapunov stability criteria. In (Keith R Santarelli et. al., 2011) has proposed 
a stabilization switching algorithm for LTI systems, where state trajectory is driven to (n-1) dimensional 
stable hyperplane.
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The unified power ow controller (UPFC) is regarded as one of the most versatile devices in the FACTS-
device family (H. Shayeghi et. al., 2009; H. A. Shayanfar et. al., 2009) which has the ability to control of 
the power flow in the transmission line, improve the transient stability, mitigate system oscillation and 
provide voltage support. It performs this through the control of the in-phase voltage, quadrate voltage and 
shunts compensation due to its mains control strategy (Al. Awami et. al., 2007) & ( Tambey N et. al., 2003). 
The application of the UPFC to the modern power system can therefore lead to the more flexible, secure 
and economic operation (Vilathgamuwa et. al., 2000; Zhu X et. al., 2000). When the UPFC is applied to 
the interconnected power systems, it can also provide significant damping effect on line power oscillation 
through its supplementary control.

Design of control strategies using FACTS devices such as UPFC for optimal power flow with improved 
performance is a major research concern of power system control community. (H. F. Wang et. al., 2000) 
has presented a modified linearised Phillips-Heron model of a power system installed with UPFC and 
addressed basic issues pertaining to design of UPFC based power oscillation damping controller along 
with selection of input parameters of UPFC to be modulated in order to achieve desired damping. Wang 
has not presented a systematic approach for designing the damping controllers. Further, no effort seems to 
have been made to identify the most suitable UPFC control inputs, in order to arrive at a robust damping 
controller for optimal performance of all the state variables. However, in recent times, researchers are 
working on the selection of UPFC control parameter for the design of UPFC damping controller by applying 
different control techniques like Phase Compensation, Fuzzy Logic, optimal control techniques like Linear 
Quadratic Regulator (LQR), H-infinity, particle swarm optimization etc (N. Tambey et. al., 2003; M. L . 
Kothari et. al., 2003), (Amin Safari et. al., 2009), (R K Pandey et. al., 2010), (M. Shaoba et. al., 2010) & 
(H. Shayeghi et. al., 2009). Some of the examples are described here. In (N. Tambey et. al., 2003) authors 
have shown the control inputs and to provide robust performance when compared to the other damping 
controllers by applying a phase compensation control technique with respect to state space variable speed. 
In (Amin Safari et. al., 2009) have presented iterative particle swarm optimization (IPSO) based UPFC 
controller to achieve improved robust performance and to provide superior damping in comparison with the 
conventional particle swarm optimization (CPSO) for the control inputs and in (R K Pandey et. al., 2010) 
has presented multi machine system, where some of the states having larger settling time with conventional 
LQR are well regulated with multistage LQR.

The Objective of this paper is to introduce switching concepts for the linearised SMIB Phillips-Heffron 
model of power system installled with UPFC. Detailed investigations have been carried out considering 
the four alternatives UPFC based damping controllers namely modulating index of series inverter (mE), 
modulating index of shunt inverter (mB), phase angle of series inverter (dE) and phase angle of the shunt 
inverter (dB) in the following three stages:

1.	 Firstly, for the state space (phillips heffron) model, optimal controllers are designed from the LQR 
theory by simply choosing weighting matrices ( without tuning based on trial and error approaches) as 
Q = I & R = 1 (K1) and Q = I & R = 0.01 (K2).

2.	 Secondly, switching strategy is developed to switch between two LQR controllers from the above 
mentioned controller gains as K1 (master controller) and K2 (alternate controller).

3.	 Finally, all the developed state space models with feedback controllers are simulated using MATLAB/ 
SIMULINK @ platform. Results of individual controllers K1, K2 and switching between K1 & K2 are 
compared. To validate the robustness of the proposed technique the results are compared with other 
optimization techniques and performance index J is tabulated.
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This paper is organised as follows: Section 2 introduces linearised Phillips-Heffron model for the 
Power system installed with UPFC. The switching model for PhilipsHeffron plant with UPFC along with 
the proposed switching rules in detail in Section 3. Results and analysis of research is given in Section 4 to 
verify the results proposed in this paper. Discussions and Conclusion follows in the next preceeding sections.

2.	 MODELLING THE POWER SYSTEM WITH UPFC DAMPING CONTROLLERS
The Single Machine Infinite Bus (SMIB) power system installed with a UPFC as shown in Figure 2 is 
considered in this study (A. K. Baliarsingh et. al., 2010). The UPFC is installed in one of the two parallel 
transmission lines. This arrangement, comprising two parallel transmission lines, permits the control of 
real and reactive power ow through a line. The static excitation system, model type IEEESTIA, has been 
considered. The UPFC is assumed to be based, on pulse width modulation (PWM) converters. The nominal 
loading condition and system parameters are given in Appendix.

Figure 1: Linearised dynamic model of the SMIB power system with UPFC

The Heffron-Phillips model as shown in Figure 1, of a synchronous machine has successfully been used 
for investigating the low frequency oscillations and designing power system stabilizers. The parameters of 
the model are usually calculated using the synchronous generator parameters and some system variables 
at steady-state conditions. A generating unit is a multivariable system and is well defined in a state space 
structure. The subspace state space (4SID) identification method is very suitable for the identification of such 
a system. This method is used to identify the parameters. Since the synchronous generators are nonlinear, 
the parameters of the identified PhillipsHeffron model would depend on the operating conditions.

H.F. Wang has presented the following state space model for the modified SMIB linearised phillips 
heffron power system (H. F.Wang et. al., 2000) & (M. Shoba et. al., 2010).

	 x t( )  = Ax(t) + Bu(t)	 (1)

A linear dynamic model is obtained by linearising the nonlinear model round an operating condition.

	 Dd  =	w0Dw		  (2)
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Figure 2: Single-machine infinite-bus power system with UPFC

	 Dw  =	(-DPe - Dw)/M		  (3)
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	 DE′q =	k4∆d + k′3q + kqe∆mE + kqdeDdE + Kqb∆mB + kqdbDdB	 (7)

where, the state variables are the rotor angle deviation (Dd), speed deviation (Dw), q-axis component 
deviation (DE′q), field voltage deviation (DEfd) and input variables are modulating index and phase angle of 
shunt inverter (mE, dE) and modulating index and phase angle of series inverter (mB, dB). A and B represent 
the state and control input matrices given by
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All the relevant k-constants and variables along with their values used in the experiment are described 
in the appendix section at the end of paper.
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3.	 PROPOSED SWITCHING STRATEGY
In this section, mathematical modeling of Philips-heffron system with UPFC device as a switched linear 
systems and the proposed switching algorithm will be explained.

A.	 Switched Linear Systems
Switching between a number of control structures automatically results in control systems that are no longer 
constrained by the limitations of linear design. It is therefore not surprising that switching based control 
strategies can result in algorithms that offer significant performance improvements over traditional linear 
control.

A switched-linear system model (refer Figure 3) for the current problem is as follows:

	 x t( )  = As(t)x(t)	 (8)

Figure 3: General implementation of switched linear systems

The switching signal s(t) indicates

	 x t( )  =	A1 = (A - BK1)x(t)	 (9)

	 =	A2 = (A - BK2)x(t)

The switching strategy s(t) shown in Figure 3 (i.e. the rule of when to switch to which system parameters) 
determines the behavior and performance of the overall system. Typically, switched-linear system results 
when an open-loop plant parameter A is controlled by switching between two or more controllers in a state-
variable feedback. The controller gain vectors shown in Figure 3 can be obtained by any of the standard 
control theory tools. Since controller gains K1 and K2 presented in this research are derived from, LQR by 
tuning the weighting matrices. For, the sake of completeness LQR control method are explained briefly.

B.	 Linear Quadratic Regulator Algorithm
Optimal control theory, an extension of the calculus of variations, is a mathematical optimization method 
for deriving control policies. The method is largely due to the work of Lev Pontryagin and his collaborators 
in the Soviet Union and Richard Bellman in the United States. Optimal control deals with the problem 
of finding a control law for a given system such that a certain optimality criterion is achieved. A control 
problem includes a cost functional that is a function of state and control variables. An optimal control is a 
set of differential equations describing the paths of the control variables that minimize the cost functional. 
The optimal control can be derived using Pontryagin’s maximum principle (a necessary condition), or by 
solving the Hamilton-Jacobi-Bellman equation (a sufficient condition).

A special case of optimal control problem which is of particular importance arises when the objective 
function is a quadratic function of x and u, and the dynamic equations are linear. The resulting feedback 
law in this case is known as the linear quadratic regulator (LQR). Consider a linear system characterized by 
Eqn. (1) where (A, B) is stabilizable. Then the cost index that determines the matrix K of the LQR vector 
is (Yathisha L et. al., 2013; S Patil Kulkarni et. al., 2013)
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	 J(X, U, Q, R) = (X QX U RU) Q 0, R 0T T+ ≥ ≥
•

Ú dt,
0

	 (10)

where Q and R are the positive-definite Hermitian or real symmetric matrix. Note that the second term on 
the right side account for the expenditure of the energy on the control efforts. The matrix Q and R determine 
the relative importance of the error and the expenditure of this energy. From the above equations we get

	 J =	 (X QX X K RKX)T T T+
•

Ú dt
0

	 (11)

	 J =	 X (QX K RK)XT T+
•

Ú dt
0

	 (12)

where (A, Q½) is detectable and (A - BK) is stable. The linear quadratic regulation problem is to find a 
control U = -Kx law such that and J is minimized, the solution is given by

	 K = -R-1BTP	 (13)

and hence the control law is,

	 u(t) = -Kx(t) = -R-1BTPx(t)	 (14)

In which P must satisfy reduced Riccati equation:

	 PA + ATP - PBR−1 + BTP + Q = 0	 (15)

The selection of Q and R is weakly connected to the performance specifications, and a certain amount of 
trial and error is required with an interactive computer simulation before a satisfactory design results. The 
LQR function allows you to choose two parameters, R and Q, which will balance the relative importance of 
the input and state in the cost function that you are trying to optimize. Essentially, the LQR method allows 
for the control of all outputs. In this case, it is pretty easy to do. The controller can be tuned by changing 
the nonzero elements in the Q matrix to get a desirable response the Matlab function lqr can be used to 
derive optimal control gains for a continuous controller.

C.	 Optimal Switching Strategy
The proposed research concentrates on developing a switching criterion, which would improve the 
output performance of the system over the performance obtained by using standard state feedback. Most 
conventional control strategies attempt to provide a trade off between the control cost and the performance 
of the controlled variables. For example, the Linear Quadratic Regulator ( LQR ) attains this trade off by 
minimizing a quadratic cost given by Eqn. (16),

	 J = ( U Y )|| || || ||2 2

0

+
•

Ú dt 	 (16)

However, it does not necessarily give a good performance. It gives a performance that is acceptable 
to some extent. In order to obtain optimal performance of the controlled variable, the index given by Eqn. 
(17), should be minimized.

	 J = ( Y|| || )2
0

dt
•

Ú 	 (17)
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Since the problem of minimization of the above cost, Eqn. (17), does not have an optimal solution, we 
do not make any such attempt here. We try to find a control strategy that would give lesser value of the 
performance index (J) measured using Eqn. (17), compared to the equivalent cost obtained when using 
state feedback control strategy.

	 a x t x t xt t( , ) , ( )= - >p fe eA AT
T( ) T1 1

0 0 	 (18)

The above Eqn. (18) (L Aravena et. al., 2006; Lalitha Devarakonda et. al., 2006) shows that if the 
alternate feedback is applied for τ seconds, the performance of the system is improved. From the above 
theorem it was difficult to establish a time of switching. One alternative is to maximize the function a, 
which might be difficult to implement. Here we can note that since T(0) = T0, the function α(ξ, t) is zero 
for τ = 0. Hence if the derivative of α at t > 0 is positive, then we can say that there will be a time interval 
of length τ > 0 where the function α will be positive.

Theorem: For the switched linear system Eqn. (8), If s(t) = 1 and if for initial state ζ, the following 
condition holds,

	 d t
dt t

a z z t t( , ) , ( )1

1 0
0 0 2

1

0
=

= - < + + >A A C C2
T T 	 (19)

then for small values of t1, the function a will be positive & the alternate control is beneficial.

Proof:

	 α(ζ, t1) =	 < - >z t t, ( ( ) )e t et tA A2
T
1 2 1

1 0

	 α(ζ, t1) =	z t t zT A A2
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dt t
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2
T T T
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T TA A A A0 2 0 0 2 0+ - +[ ] 	 (20)
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2
T T

2
T[A A [A A0 0 2 0 0 2+ + - + +] ] 	 (21)

	 =	z z z t zT T
2
TA[ ]- -Q 0 	 (22)

	 d t
dt t

a z( , )1
1 01 =

 =	 - < + + >z t t, ( )A A C C2
T T
0 0 2 0 	 (23)

Above result can be used to design the following switching algorithm.

D.	 Switching Algorithm Design
Design of a performance based switching control law is equivalent to finding a matrix S and vectors K1 
and K2 such that (L Aravena et. al., 2006; Lalitha Devarakonda et. al., 2006) & (Yathisha L et. al., 2015; 
S Patil Kulkarni et. al., 2015)



904 Yathisha L and S Patil Kulkarni

1.	 Intialize, master controller as A1 = A − BK1 & alternate controller as A2 = A - BK2.

2.	 Determine P by solving the Lyapunov equation,

	 A1
TP + PA1 = -CTC

3.	 Define the switching matrix,

	 S = -(A2
TP + PA2 + CTC)

4.	 The switching function is S(x) = < x, Sx > if, S(x) > 0, Use alternate control else, master control

E.	 Stability of the Switching Strategy
In this subsection asymptotic stability of the proposed optimal switching control is explained.

If the systems with both A1 and A2 is observable and sliding does not exist, the feedback control system 
using the switching strategy defined in section 3. D is asymptotically stable.

Proof: Firstly, we assume that the switching occurs ideally; i.e., when S(X) ≤ 0 the master feedback, is in 
place and when S(X) > 0 the alternative feedback K2 is used without any delays. Recall that

	 S(X) = - p X, (A2
TT0 + T0A2 + CTC)X f	 (24)

Let,

	 AC = γA2 + (1 - g)A1	 (25)

for γ = 0, 1. When S(X) > 0 we use alternate feedback, hence g = 1 When S(X) < 0, we use master feedback 
and hence γ = 0. In the absence of sliding, X  = ACX at any instant of time. Consider the positive definite 
function

	 V(X) = p X, T0X f	 (26)

For Lyapunov stability consider

	 V  =	
d

dt
p fX T X, 0

	 =	p X, (AC
TT0 + T0AC)X f

	 =	p X, AC
TT0X f + p X, T0ACX f

	 =	- gS(X) - (1 - g) p X, CTCX f	 (27)
If the system is observable, it is well known that the function -(X,CTCX) is non positive and cannot 

be zero over any time interval. When S < 0, g = 0, the term γS(X) vanishes from Eqn. (27). When S > 0, 
γ = 1, and V  is negative. It is clear we can find a single lyapunov function V(X) such that V  is negative 
for any X ∈ Rn. Hence, it states that the system is asymptotically stable, provided there is no sliding.

4.	 SIMULATION RESULTS
The experimental set-up to test the proposed algorithm consists of linearised Phillps-Heffron model installed 
with UPFC described by A and B matrices below. The master and alternate controllers of K1 and K2 for 
all the four input matrices B are obtained by using LQR technique respectively by choosing the wighing 
matrices as (Q = I; R = 1) for K1 and (Q = I; R = 0.01) for K2. The matrix C is vector with zeros along with 
1 in any one position depending on the state variables.

The proposed optimal switching strategy S between two vectors of K1 and K2 for the four alternatives 
UPFC based damping controllers mE, dE, mB and dB of control matrix B are also given below.
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In order to investigate the performance of the proposed switching controller and the system behavior 
under nominal loading condition the performance index is tabulated with the present individual controllers 
as well as the existing optimization techniques.

In the present study, the performance index J, is expressed as:

	 J =	 | |M p

t

dt
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0
Ú 		  (28)
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	 R =	[1] (Master control) & R = [0.01] (Alternate control)
The master and alternate controllers along with the switching matrices for modulating index and phase 

angle of series & shunt inverters are:

A.	 Modulating Index of Series Inverter
	 K1 =	[1.1660    −48.5192    0.6684    0.9781]

	 K2 =	[8.3838    −445.7982    11.3497    9.9743]

	 S =	

0 0008 0 0460 0 0011 0 0005
0 0460 2 5498 0 0597 0 0289
0 0011

. . . .
. . . .
.

-
- - -

--
- -

È

Î

Í
Í
Í
Í

˘

˚
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. . .
. . . .

B.	 Phase Angle of Series Inverter
	 K1 =	[−2.9311    −101.3626    5.9240    −0.6932]

	 K2 =	[-2.7049    −257.2307    −2.1846    −9.5648]

	 S =	

0 0000 0 0079 0 0004 0 0004
0 0079 1 4343 0 0539 0 0406
0 000
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C.	 Modulating Index of Shunt Inverter
	 K1 =	[2.1271    −149.8195    3.8598    0.9110]

	 K2 =	[8.6342    −665.4444    27.2748    9.8972]

	 S =	

0 0002 0 0252 0 0008 0 0002
0 0252 2 4708 0 0820 0 0215
0 0008
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. . .
. . . .

D.	 Phase Angle of Shunt Inverter
	 K1 =	[−1.8283    −289.4468    3.1935    −0.5944]

	 K2 =	[−0.3962    −603.5448    6.7290    −9.4647]

	 S =	

0 0005 0 0005 0 0004 0 0000
0 0005 1 6167 0 0020 0 0001
0 0004

. . . .
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The digital simulation results of all the four UPFC control inputs modulating index and phase angle 
of series & shunt inverters for the locally available state variable rotor speed deviation are shown below.

Figure 4: Speed Deviation response for mE

Figure 5: Speed Deviation response for dE
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Figure 6. Speed Deviation response for mB

Figure 7. Speed Deviation response for dB

Table 1 
Comparison of performance index J with individual controllers of LQR

J M= Ú | |p
t

dt
s 2

0
mE dE mB dB

K1 2.025 × 1.0e - 05 4.05 × 1.0e - 05 2.352 × 1.0e - 05 3.6 × 1.0e - 06
K2 2.2 × 1.0e - 07 7.2 × 1.0e - 07 4.8 × 1.0e - 07 1.6 × 1.0e - 07

Switch K1 & K2 1.6 × 1.0e - 07 1.8 × 1.0e - 07 1.08 × 1.0e - 06 1.1 × 1.0e - 07

Table 2 
Comparison of performance index J with Oter optimization techniques

J M= Ú | |p
t

dt
s 2

0
mE dE mB dB

Switching Approach 1.6 × 1.0e - 07 1.8 × 1.0e - 07 1.08 × 1.0e - 06 1.1 × 1.0e - 07
RCGA 8.67 × 1.0e - 06 6.86 × 1.0e - 06 4.32 × 1.0e - 06 5.04 × 1.0e - 06
PSO 9.8 × 1.0e - 04 1.805 × 1.0e - 03
IPSO 4.32 × 1.0e - 04 1.44 × 1.0e - 03
q PSO 1.2375 × 1.0e - 03
ANN 2.5 × 1.0e - 06 1.9687 × 1.0e - 06 1.715 × 1.0e - 06 1.4062 × 1.0e - 06
ICA 1.6 × 1.0e - 05 1.2 × 1.0e - 05
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5.	 DISCUSSIONS
The dynamic response curves for the state space variable speed deviation (∆w), after the fault at 1 sec, for 
all the four control inputs of UPFC mE, dE, mB, and dB are plotted as shown in the Fig’s 4-7 with the legend 
K1, K2 and Switch K1 and K2 for the proposed state feedback optimal switching control.

From Fig’s 4-7 concludes that the proposed state feedback optimal switching control between two LQR 
(K1 & K2) controllers provides improvements in performance compared to system response with individual 
controllers K1 and K2 with respect to peak overshoots and settling time.

To validate effectiveness of the proposed optimal switching strategy the performance index 

J = | |M p
t

dts 2
0Ú  is compared with individual controllers of LQR in Table 1 and other optimization techniques 

in Table 2. From Tables 1 & 2, it concludes that the proposed switching approach is a robust controller 
compared to individual controllers of LQR and other optimization techniques like Real coded genetic 
algorithm (RCGA), Particle swarm optimization (PSO), Iterative PSO (IPSO), θ-PSO, Artificial neural 
network (ANN) & Imperlist competative algorithm.

6.	 CONCLUSION
The optimal switching strategy has been successfully applied to the design of state feedback UPFC based 
damping controllers. The design problem of the robustly selecting state feedback controller parameters is 
converted into an optimization problem which is solved by a Linear Quadratic Regulator (LQR) technique 
with the time do-main based objective function. The two LQR controllers are designed by choosing wiehting 
matrices as Q = I & R = 1 for master controller and Q = I & R = 0.01 to alternate controller. Only the local 
and available state variable Dω is considered for the proposed work. The effectiveness of the proposed 
UPFC controllers (mE, dE, mB, and dB) for improving transient stability performance of a power system are 
demonstrated by a weakly connected example power system subjected to step change. The linear time domain 
plots results show that the proposed optimal switching control provides improvements in performance of 
the system compared to individual controllers of LQR.

The system performance characteristics in terms of J = | |M p
t

dts 2
0Ú  is tabulated and concludes that 

the proposed optimal switching strategy provides robust performance compared to individual controllers 
of LQR and other optimization techniques for all the control inputs of UPFC modulating index of series 
inverter (mE), modulating index of shunt inverter (mB), phase angle of series inverter (dE) and phase angle 
of the shunt inverter (dB).
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Appendix A. K-Constants and Variable Values
Synchronous Machine:

H = 4.0, D = 0.0, T′do = 5.044.
Excitation System:

kA = 100, TA = 0.01
k constants for the nominal operating conitions:

k1 = 0.5661, k2 = 0.1712, k3 = 2.4583
k4 = 0.4198, k5 = −0.1513, k6 = 0.3516
kpe = 0.3795, kqe = 1.1628, kve = −0.4591
kpb = 0.1864, kqb = 0.2855, kvb = -0.1096
kpde = 1.1936, kqde = −0.0380, kvde = 0.0311
kpdb = 0.0529, kqdb = −0.0423, kvdb = 0.0189




