
A Design and Implementation Framework of Congestion 
Control Algorithm Module in the Network Simulator 3 

(NS-3)

Girish Paliwal1, Swapnesh Taterh2 and N.S. Yadav3

1,2Amity University Rajasthan, Jaipur. Email: 1gpaliwal@jpr.amity.edu, 2staterh@jpr.amity.edu
3JECRC university Jaipur. Email: narensingyadav@yahoo.com

Abstract: The wireless sensor networking is very widely used in recent time because of its mobility. The traffic is increasing 
very fast so that traffic controlling protocols are required for both directions. The incoming and outgoing packets are 
controlling for reducing the congestion of mobile access point. One of the most important components of the Traffic 
Control is the congestion prevention and congestion control algorithms. If congestion occurs than the congestion control 
algorithms resolved it to smooth transmission of data. The congestion control algorithms role is to control the flow of packets 
transmitted by the Sanders it also resolves the congestion by dropping some packets and next packet to pass through the 
network interface. The Linux congestion Control algorithms are also performs scheduling of packets, congestion prevention, 
and congestion control. In this paper, we present the design and implementation congestion control algorithms as an 
additional module in ns-3 as well as existing module modification. We present the design and implementation algorithm 
framework of the class introduced to model a congestion control.

Keywords: NS-3, Network simulation, Congestion Control framework, Congestion control algorithms, TCP, wireless 
sensor network.

ISSN: 0973-5704International Journal of Computing and Applications 
Volume 13, Number 2, (July-December 2018), pp 371-379 

© Serials Publications, New Delhi (India)

into a queuing discipline (queue disc) in ns 3 number 
of the queue handling algorithm is implemented, which 
determines how the packet will be handled [2].

Today the majority of the researcher’s field area 
is a simulation of different kind of protocols and 
finding out the better protocol those provide the 
better facility in the networking for the specific criteria 
the simulator play an important role in analyzing the 
number of metrics is and their values. ns3 can provide 
a number of congestion control algorithms those 
are already implemented and tested by numerous 
researchers weather at a different kind of networks 
scenario. moreover, simulation allows to easily 
reproducing measurements. This permits researchers 
to easily evolute and Debug protocols. Which type 
of technologies and algorithms are implemented, 
to compare them against other approaches. Finally, 
make a decision to apply an enhancement into existing 
protocols.

Introduction1.	

Most of the devices in this world working on the Wi-
Fi or wireless Technology because of it’s wire free, 
not have limited geography reason, freely mobility 
accessing etc. but it also having some limitations one of 
the major limitations the wireless router devices having 
a Limited number of devices connectivity because of 
it’s not having congestion control algorithm and its 
hardware limitation

The Traffic Control infrastructure of the Linux 
kernel enables to perform a number of actions on 
both outgoing packets before they are handed to 
the network devices for transmission, and incoming 
packets, before they are processed by the network 
layer protocols for the congestion control[1]. We focus 
on the transmission path taken by packets. Once the 
output interface and the next hop for an outgoing 
packet have been selected, the packet is en-queued 



372 Girish Paliwal, Swapnesh Taterh and N.S. Yadav

above a given threshold. When the net device is able 
to receive packets again, the driver congestion control 
can start its transmission again. Additionally, the net 
device congestion control mechanism can wake a 
queue disc, i.e., request it to de-queue a packet, when 
its transmission queue is empty or its occupancy is 
below a given threshold. Currently, as it is lacking an 
equivalent of the Linux Traffic congestion Control 
infrastructure. No of congestion control mechanism 
is implemented and packets are only stored in the 
net device transmission queues. Consequently, cubic, 
Reno, Westwood congestion control algorithms can 
only manages the packets stored in the net device 
queues, which is not what happens in Linux. This 
paper presents the work done to introduce the ns3 
equivalent of the Linux congestion Control algorithm 
infrastructure into ns-3. We believe that our work will 
allow researchers to carry out more realistic simulations 
and to evaluate congestion control algorithms more 
precisely. The remaining of this paper is organized as 
follows. In section 2 we provide an overview of the 
Linux congestion Control and of the current status of 
ns-3. Section 3 describes the model and design of the 
proposed congestion Control module for ns-3. Section 
4 presents the congestion Control helper and some 
usage examples. Section 5 describes the experiments 
we performed with the new architecture and the results 
we obtained. In section 6 we conclude our work [2].

Related Work2.	

In this section, we first summarize the background of 
the NS3 network simulator implemented number of 
TCP congestion control algorithms and the extension 
of Window scaling and timestamps. the present is a 
survey of related work in this section.

Using the RFC 793 that was define a TCP window 
header field of 16 bit that suggests the largest represent 
able window is 65535 bytes, this limitation can be a 
problem over chain house with a high bandwidth delay 
product because it limits the exploitable bandwidth 
in such links.NFC 1323 introduced the window skin 
extension it expands the definition of the TCP window 
to 32 bit using a scaling factor to make this 32-bit value 
in the 16-bit window field this is connector is carried 

The ns3 network simulators tool used by the 
researchers all around the World to simulate different 
variety of the communication Technologies and 
network topologies, different kind of protocols and 
algorithm it also can be used in real time connected 
to the system does that provide a wide range of 
opportunity for the researchers to find out the actual 
problem behind the specific gap.

Till now ns3 has suffered TCP performance 
when we use to simulate a wireless network with 
large bandwidth delay product channel this is due to 
the absence of the TCP options and particular the 
window scaling timestamp options which one born 
in 1992 to improve TCP performance over such path. 
Another problem with the ns3 infrastructure is very 
less used for TCP congestion control algorithms to till 
date. The ns3 Simulator includes the implementation 
of different kind of congestion control algorithms as 
TCP new Reno and TCP Westwood, another handheld 
network simulator ns2 provide tested implementation 
of additional TCP variants, unfortunately, these were 
never put it into the ns3.because of less number of 
volunteer developer are freely share their code with 
ns3 developer team[3].

This paper related to the implementation 
Framework that presents in the implementation 
of Window scaling and timestamp option into the 
ns3. The TCP congestion control algorithm various 
properties of the protocol have been analyzed and 
reported by the researchers to validate. The ns3 having 
Congestion control implementation over different 
propagation delay throughput and error rates are 
changed [4] .

The senders Sands the packets at a specific 
transmission rate. If senders speed transmission is 
higher than the bottleneck bandwidth path than 
en-queue the packets. When a queue is requested 
to de-queue a packet depends on the implemented 
congestion control mechanisms. Basically, en-queuing 
a packet into a queue triggers a number of consecutive 
requests of de-queuing a packet. This process can 
be halted by the net device driver. The net device 
driver congestion control mechanism usually stops its 
transmission queue when it is full or its occupancy is 



373A Design and Implementation Framework of Congestion Control Algorithm Module in the Network...

out around in new TCP option Windows scale that is 
only set in sync segment[2].

The window scaling factor is 6 in each direction when 
the connection is opened another extension control is 
the timestamp option it is defined in mechanism that 
allows every segment including retransmission to 
Gill Limited at very low computational cost this way 
round trip time RTT measurement and retransmission 
Timeout RTO calculation can be really accurate 
feature of an essential for optimum TCP performance. 
Timestamp also have other uses as like protection from 
wrap around of sequence numbers. Many researchers 
have also improved the original congestion control 
algorithms of TCP those are implemented in the ns3. 
The key Idea behind any TCP congestion control 
algorithm to calculate RTT of a connection and the 
same instantaneous transmission rate of a reference 
TCP connection with the lower RTT, it is shown that 
this target can be achieved by modifying the time is 
here in order from that throughput to be independent 
of the RTT. This can be obtained through the use of 
an equation p equals to RTT / RTO retransmission 
time out [4].

Currently, network simulator ns-3 includes 
limitations for TCP functionalities. TCP or not 
supported and missed model for widely used 
congestion control algorithms. Therefore simulation 
can be an earthquake for today is standard and unable 
to represent what happened inside into the dense 
network of Gigabit Ethernet or high-speed satellite 
network channels. His paper present how can we 
implement ns3 TCP infrastructure for congestion 
control algorithm through the addition as well as 
various models of TCP congestion control algorithms 
those already implemented into the ns3. These are 
widely used an algorithm such as TCP cubic, TCP 
hybla, TCP Westwood TCP Reno TCP new Reno bic 
etc. [4] Design and implementation of ns3 algorithms 
and technologies have been developed over the years. 
Respect to the TCP and UDP researchers works. The 
most important thing is about to implementation and 
validation of the TCP CP congestion control protocols. 
The researchers provide different TCP performance 
and comparison with the existing TCP congestion 

control algorithm in ns3 like as Tahoe, Reno, and TCP 
new Reno. There is numerous parameters that affect 
the various networks correct characteristics such as 
error control rates bottleneck bandwidth propagation 
delay throughput are used as a performance metrics 
for the protocols. Ns3 also provides the direct code 
execution platform to check your congestion control 
algorithm in the real world implementation. The 
resources required design new congestion control 
algorithm and check it with existing congestion control 
algorithms and find out the result of the efficiency 
of the new algorithm corresponding to the existing 
algorithm that’s why a new researcher required 
implementing and performing a comparative analysis 
after implementation of the new protocol. In this 
paper, we provide a model to implement congestion 
control algorithm [4]. Congestion control algorithm 
framework researchers also improve the original 
congestion control algorithm of TCP those are already 
implemented by various resources it is one possibility 
to make a good congestion control algorithm. It is 
required to know how can new researchers I will to 
implement the new code for improving the existing 
congestion control algorithm. When employing high 
speed congestion one possibility is to use TCP the 
main Idea behind using the specific congestion control 
algorithm to obtain along RTT connection to the 
same instantaneous transmission rate of a particular 
TCP connection with lower RTT. researchers using 
the analytical steps to show The Bourne that can be 
achieved by modifying the specific congestion control 
algorithm in order to get the better throughput and 
the network is less congested or congestion free. 
Many researchers used to calculate the slow start 
threshold and the congestion window to improve the 
congestion control protocol how to avoid congestion 
[4]. The design and the implementation of high speed 
and high capacity congestion control algorithm is a 
major task for the researchers. Most of the researchers 
used to control the congestion and the congestion 
window when the congestion window is growing 
faster than a specific Point the condition window 
gradually reduced due to slow down the transmission 
speed. Where some researchers are used to control the 



374 Girish Paliwal, Swapnesh Taterh and N.S. Yadav

congestion on the basis of AIMD additive increase and 
multiplicative decrease algorithm to control the round 
trip time. The round trip time is a time that consumer 
a packet to receive acknowledgment after sending. To 
implementing a high-speed TCP congestion control 
algorithm is required to periodically calculate cwnd 
and RTT. According to the cwnd and RTT, the data 
transmission speed is control by the sender after the 
occurrence of congestion [4].

Most of the cases that are seen by the researcher 
the condition occur in a network when the different 
routers having different transmission speed. in that 
case, the channel work according to the minimum 
transmission speed if any one of the channels transmits 
data with the high speed then the bottleneck link show 
as a congested path. The congestion control problem 
is handled with a starting point of the current window 
value as cwnd minimum and the maximum of the cwnd 
value represent as a target or as an event that indicates 
the buffer is full it is required to handle transmission 
rate or slow down the transmission to transmit the 
packets without any congestion. This is indicating 
the transmission of data without any loss or no loss 
data transmission this approach known as congestion 
free transmission. But it is very difficult to achieve 
the congestion free transmission because there are 
numerous factors those affect the channel transmission 
speed and data transmission rate due to these reasons 
it is not practically possible to achieve congestion free 
transmission. But many researchers develop a different 
kind of congestion control algorithm that provides the 
maximum throughput of the network for a specific 
network structure of network topology. It is also having 
some research gap that required increasing the channel 
speed channel bandwidth to get maximum throughput 
that indicating the transmission of the packet are 
very less drop and achieve the maximum number of 
acknowledgments. This kind of data transmission is 
possible with the effective and efficient congestion 
control algorithm that is sure the sender the data 
delivered guaranteed without failure [4].

In this section describe the model of the traffic 
congestion control module its design having the 
several challenges that we encountered during the 

implementation we are following steps to designing and 
implementation of the congestion control algorithm.

Model Descriptions3.	

In order to support and features are described in the 
network simulator 3. We introduce each and everything 
that required to design and implementation of a new 
congestion control algorithm. The main consequence is 
that it required flow control between the nodes. Each 
node and the network transmitting packets having 
its own capacity to transmissions of data and router 
routing the received packet to the destination before 
routing the packet to the destination it is required to 
check the destination of the packet. In this process, 
the router takes sometimes to process the destination 
address during this time the router receives the 
continue data packets and maintain a queue. This queue 
having the limitations like a number of packets holds 
without congestion. For each load, it is necessary to 
keep a status of the packets that can be passing to the 
next load during the transmission. If the node stops 
the passing of packets when the resource becomes 
available in this condition known as congestion and 
required to resolve the condition as soon as possible. 
A packet received by the TCP layer of transmission 
can we pass to a queue to perform scheduling and 
polishing [2].

TCP Models in ns34.	

Under this heading, we discuss the TCP models 
available in ns3. First of all, we learn the TCP when 
we implement a congestion control algorithm because 
TCP is the integration of the congestion control 
algorithm

4.1.	TCP Support by ns3

The ns3 support different TCP implementations as well 
as the congestion control algorithm implementation. 
It is inherited from the common header class src/
network directory. So the user can show about 
implementation with minimum changes into the driven 
classes. We describe the two important base classes as 
the following[5].



375A Design and Implementation Framework of Congestion Control Algorithm Module in the Network...

TCP socket class: In this class TCP socket hosting 
attributes is described. These attributes can be reused 
across different implementations, for example, attribute 
initial and can be used for any of the implementation 
that drives from class TCP socket.
TCP socket factory class: This class describe the 
protocol instance to create TCP socket of the right 
type this is working at the layer 4 of the network.

In network simulator (ns3) TCP model supports 
a hold bi-directional TCP with connection setup and 
close logic. Different congestion control algorithms 
are also supported by ns3 as TCP new Reno is the 
default, TCP Westwood, TCP Hybla, High speed, BIC 
and scalable. When finally release congestion control 
yet another high-speed TCP vs. HTTP and low extra 
delete background transport also support the model. 
It also supports selective acknowledgment, multipath 
TCP is not yet supported in the ns3 release.

Models are used many kinds of the TCP. It is set as 
the application layer. You’re telling the ns3 application 
which kind of socket factory is used. Using the helper 
function we can define and create a TCP receiver. 
similarly, we configure on of application traffic to use 
TCP. To configuring TCP that have specific type ID 
of an abstract base class known as TCP socket factory 
how does the script of ns3 wants the native ns3 TCP 
versus some another one whether Internet steaks are 
added to the load default TCP implementation that is 
aggregated to the load is ns3 TCP this is overwritten 
by new TCP.

Configure the behavior of the TCP. The number 
of parameters is exported through the ns3 attribute 
system these are documented in the class TCP 
socket. For example, the maximum segment size table 
attribute to set the default socket type before any 
Internet that related object are created when we put 
the statement[5].

4.2.	TCP Socket Interaction Interface with 
Application Layer

There is an analysis on the public interface of the TCP 
socket. How it can be used interact with the socket at 
the shell. The analyses of the callback function by the 
socket. This is also carried out for the sake of clarity. 

We will use the terminology sender and receiver to 
clearly divide the functionality. TCP is two rolls can 
be applied at a time the load does not lose general it 
because of the following definition can be applied to 
the both of sockets in case of full duplex mode TCP 
state machine is as following that is commonly used.

4.3.	TCP State Machine

The TCP transition state machine in Figure 1 shows 
the TCP transition States. This figure was taken from 
the ns3 nsnam.org official website that shows the 
TCP transition States. How the TCP can work if the 
acknowledgment is not received then wait for the 
acknowledgment and synchronize with the sender and 
receive acknowledgments. The description of each 
TCP transition state is described in the Table 1.

Figure 1:	T CP transition state diagram

Table 1 
Description of each TCP transition states

S. 
No. TCP States Description of States

1 CLOSED The socket is finished.
2 LISTEN Listening for a connection.
3 SYN_SENT Send or sent a request for connection 

and wait for acknowledgment
4 SYN_RCVD It is three-way handshaking 

received connection request send 
acknowledgment and wait for final 
acknowledgment



376 Girish Paliwal, Swapnesh Taterh and N.S. Yadav

S. 
No. TCP States Description of States

5 ESTABLISHED Establish a connection between 
sender and receiver

6 CLOSE_WAIT Shutdown from far distance and 
wait for finish writing to close

7 LAST_ACK After remote shut down the data in 
our before that have to finish sending

8 FIN_WAIT_1 After remote shutdown waiting is 
the complete transmission of buffer 
data.

9 FIN_WAIT_2 All data sent and wait for remote 
shutdown

10 CLOSING When both sides shut down and 
having data for sending

11 TIME_WAIT It is required because the other 
and may not have gotten our last 
acknowledgment then we transmit 
the data packet

12 LAST_STATE It is used only in debugging the 
messages

4.4.	Public Interface for Senders and Receivers
The public interface of the TCP is related to senders 
and receivers. The senders, as well as the receiver, 
are communicating to each other on the basis of 
TCP transition states. The TCP transition states are 
implemented are handled by some specific public 
interfaces those are implemented at sender and receiver 
side in ns3[5]. In this scope the table to describe the 
public accessible interfaces of the TCP base class.

Table 2 
Senders and receivers public interface function and 

their description

S. 
No.

Public 
Receivers 
Interface 

Description
Public 
Senders 
interface 

Description

1 Bind() To bind the socket 
with an address

Connect() Try to connect 
with remote 
end point

2 Bind 
To Net 
Device()

Bind the socket 
with specified Net 
Device

Get Tx 
Available()

Return total 
amount of data 
stored in the 
TCP Tx buffer

3 Listen() Listen from 
endpoint to 
incoming 
connection

Send() Send the data 
for the TCP Tx 
buffer

S. 
No.

Public 
Receivers 
Interface 

Description
Public 
Senders 
interface 

Description

4 Shutdown 
Send()

Terminate 
connection signal

Close() Terminate 
connection, by 
sending a FIN 
msg

5 Get Rx 
Available()

Return total 
amount of data 
Recv or Recv 
From Socket.

Send To() Same as Send()

6 Recv() Collect data from 
TCP socket

7 Recv 
From()

Collect data from 
TCP socket with 
source address

4.5.	Public Callbacks of TCP

These callbacks are called by the TCP socket to notify 
the application of interesting events. The given Table 3 
shows public callbacks and their description as per 
the ns3.

Table 3 
Public callbacks of TCP and their descriptions

S. 
No.

Public 
Callbacks Description of Callbacks

1 Set 
Connect 
Callback

Notify Connection Succeeded first 
argument of callback, It is called in the 
SYN_SENT TCP state, before moving 
to the ESTABLISHED state.

2 Set 
Connect 
Callback

Notify Connection Failed second 
argument of callback, It is called after the 
SYN retransmission count goes to zero.

3 Set Close 
Callbacks

Notify Normal Close first argument of 
callback, A normal close is invoked.

4 Set Close 
Callbacks

Notify Error Close second argument of 
callback, Invoked when we send an RST 
segment (for whatever reason

5 Set Accept 
Callback

Notify Connection Request first argument 
of callback, Invoked in the LISTEN state 
of TCP when we receive an SYN. 

6 Set Accept 
Callback

Notify New Connection Created second 
argument of callback, Invoked when 
from SYN_RCVD the socket passes to 
ESTABLISHED state.

7 Set Data 
Sent 
Callback

Notify Data Sent, Invoke the Socket 
notifies the application that some bytes 
have been transmitted on the IP level. 



377A Design and Implementation Framework of Congestion Control Algorithm Module in the Network...

S. 
No.

Public 
Callbacks Description of Callbacks

8 Set Send 
Callback

Notify-send, Invoked if there is some 
space in the tx buffer when entering the 
ESTABLISHED state 

9 Set Recv 
Callback

Notify Data Recv, Called when in the 
receiver buffer there are in-order bytes

Process to Implementing 5.	
New Congestion Control 
Algorithms

In the First step to designing and writing a new 
congestion control algorithm from the scratch. New 
algorithm has a completely different process from 
changing of the existing TCP congestion control 
algorithm. It is starting of changing into TCP socket 
base class and TCP Congestion Ops.all the operation 
that you want to introduce into new congestion 
control algorithm are contained by the class TCP 
Congestion Ops. It is the similar implementation 
of TCP Congestion Ops of the Linux. It has the 
following congestion control operations are defined 
as follows[6]:

virtual std::string Get Name () const;
virtual uint32_t Get Ss Thresh (Ptr < const Tcp Socket 

State> tcb, uint32_t bytes In Flight);
virtual void Increase Window (Ptr < Tcp Socket State > 

tcb, uint32_t segments Acked);
virtual void Pkts Acked (Ptr < Tcp Socket State> tcb, 

uint32_t segments Acked, const Time& rtt);
virtual Ptr < Tcp Congestion Ops > Fork ();
In the TCP Congestion Ops most interesting 

method is to write or develop the Get Ss Thresh() 
and Increase Window(). These two functions are most 
important for congestion control in further the TCP 
socket base class decides the time to increase decrease 
congestion control window. Most of the information 
is provided to transmission control block. Here is also 
specify the method should be increased cwnd and SS 
thresh based on the number of segment acknowledged. 
When the TCP congestion control slow start then called 
the function Get Ss Thresh(). The congestion control 
algorithm is called when any packet is lost or it is about 

to lost. The packet acknowledgment (PktsAcked) is 
used when the congestion control algorithm having the 
information of RTT (round trip time) and it is required 
the time of ACK received periodically.

Next step of implementation required for checking 
the behavior of congestion control algorithm. It is 
required to check the behavior of the congestion 
control algorithm using the following tests. Those 
tests are already implemented and required to check 
your congestion control algorithm need some 
modification[7].

Figure 2:	 Framework for congestion control algorithm 
implementation and enhancement

	 ∑	 Check behavior of slow start using tcp-slow-
start-test

	 ∑	 Check Unit test on the timestamp option by 
the tcp-timestamp

	 ∑	 Check Unit test on the window scaling option 
by the tcp-wscaling

	 ∑	 Check Unit test persist behavior for zero 
window conditions using tcp-zero-window-
test

“Several tests have dependencies outside of the 
internet module, so they are located in a system test 
directory called src/test/ns3tcp”.

	 ∑	 Check ns3 TCP congestion control algorithm 
works against liblinux2.6.26 using ns3-tcp-
cwnd

	 ∑	 Check ns-3 TCP interoperates with liblinux2.6.26 
by the ns3-tcp-interoperability



378 Girish Paliwal, Swapnesh Taterh and N.S. Yadav

	 ∑	 Check the behavior of ns-3 TCP upon packet 
losses by the ns3-tcp-loss

	 ∑	 Check that ns-3 TCP Nagles algorithm works 
correctly and that it can be disabled using ns3-
tcp-no-delay

	 ∑	 Check that ns-3 TCP successfully transfers an 
application data write of various sizes using 
ns3-tcp-socket

	 ∑	 Check the operation of the TCP state machine 
for several cases using ns3-tcp-state

Integration of components 6.	
into existing congestion 
control algorithm of ns3

First of all, we need to find out which variable 
integrated or Incorporated into existing congestion 
control algorithm in ns3. The ns3 having the number 
of congestion control algorithms you must find 
out suitable congestion control algorithm in which 
requirement of integration of the variable. By default, 
the packet Meta data is disabled in ns3 for the reasons 
performance. This approach work to increase the 
performance of ns3.we can easily explain the work 
packet metadata being enabled in ns3. The contents 
of the packet are stored in bytes buffer content the 
serialized version of the packets header footer as well as 
packets. Ns3 the content of buffer would be matched 
with a real world network packet data. I get meta data 
and what’s the problem that providing information 
about the content of the byte buffer[8].

The implementation is not dependent on packet 
metadata that provided some knowledge of expected 
header structure within the packet being enqueued. In 
ns3 there is a number of queue management system 
only use as one output queue within a net device. All 
traffic coming into the queue has gone through the IP 
layer then you know where that queue resides. Packets 
and to the network either come from the application 
layer on the road that contains the queue or comes 
from another device went up to IP to be rooted[9].

Therefore the first order will be the link layer 
harder for the link layer protocol used by the net device 
follow by the IP header, however, the byte offset of the 

IP header depends on which link layer protocol is used. 
To handle this we have added an additional attribute 
in ns3. Ns3 also allow the user to specify the strategy 
used by the other to find out the IP header. You can 
apply the changes that we have made the diagram of 
classes to show in the figure 2. To enable a TCP socket 
the user set the required attribute in the TCP socket 
base it’s true. As mentioned earlier you must be done 
for both and points of the TCP connection before 
used the protocol. The logic has been added to the 
connection setup phase [10].

Figure 3:	H ierarchical structure of congestion control 
algorithms

Conclusion7.	

In this research paper, we try to elaborate how can you 
implement a new congestion control algorithm as well 
as enhance an existing congestion control algorithm. I 
would like to conclude my research related work on ns3 
what is the framework of congestion control algorithm 
implementation. The conclusion of this work I find out 
a way to implement new congestion control algorithm 
inheriting socket base class or TCP congestion ops. 



379A Design and Implementation Framework of Congestion Control Algorithm Module in the Network...

Underwriting and controlling the variable values 
that we include in our proposed congestion control 
algorithm. Further, we need to allies after simulation 
of the existing work as well as proposed work within 
a scenario. If you want to develop a new congestion 
control algorithm then you must follow the framework 
of congestion control algorithm. If you want to 
enhance the existing congestion control algorithm then 
you also follow this framework.

References
G.K. Walia, O.P. Gupta, and S. Kumar, “Oriental [1]	
Journal of Congestion Avoidance in Packet Networks 
Using Network Simulator-3 (NS-3),” 2016.

P. Imputato, S. Avallone, N. Federico, and V. Claudio, [2]	
“Design and Implementation of the Traffic Control 
Module in ns-3,” pp. 1–8, 2016.

P.S. Katkar, “Comparative Study of Network [3]	
Simulator : NS2 and NS3,” Vol. 6, No. 3, pp. 608–612, 
2016.

M. Casoni, C. A. Grazia, M. Klapez, and N. Patriciello, [4]	
“Implementation and validation of TCP options and 

congestion control algorithms for ns-3,” in Proceedings 
of the 2015 Workshop on ns-3, 2015, pp. 112–119.

“NS3-TCP.” [Online]. Available: https://www.[5]	
nsnam.org/doxygen/group__tcp.html. [Accessed: 
04-Jul-2017].

“TCP-CongestionOps.” [Online]. Available: https://[6]	
www.nsnam.org/doxygen/group__congestion_ops.
html. [Accessed: 04-Jul-2017].

B. Levasseur, M. Claypool, and R. Kinicki, “A TCP [7]	
CUBIC implementation in ns-3,” in Proceedings of the 
2014 Workshop on ns-3, 2014, p. 3.

S. Gangadhar, T. A. N. Nguyen, G. Umapathi, and [8]	
J.P.G. Sterbenz, “TCP Westwood (+) protocol 
implementation in ns-3,” in Proceedings of the 6th 
International ICST Conference on Simulation Tools and 
Techniques, 2013, pp. 167–175.

K. Nagori, M. Balachandran, A. Deepak, M.P. [9]	
Tahiliani, and B. R. Chandavarkar, “Common TCP 
Evaluation Suite for ns-3 : Design , Implementation 
and Open Issues,” pp. 9–16, 2017.

B.P. Swenson and G.F. Riley, “Implementing Explicit [10]	
Congestion Notification in ns-3.”




