
IJCTA 
Vol.8, No.1, Jan-June 2015, Pp.264-276 
© International Sciences Press, India 
 

 

Security Constrained Optimal Power 
Flow Using Benders Cut Principle 
D. Kishore Kumar1 and Mr. G. Sasikumar2 
1M Tech (Power Electronics), VNR VJIET, Hyderabad        
2Associate Professor, EEE Dept, VNR VJIET, Hyderabad  
Email:-kishorwithk@gmail.com; sasikumar_g@vnrvjiet.in;  
 

ABSTRACT 

This paper presents an efficient approach to find Security Constrained Optimal Power Flow (SCOPF) 
determining the dispatch schedule of power generators with minimum cost. Satisfying system 
constraints, transmission constraints along with mandates to ensure optimal power flow has led to 
SCOPF. Revenue paid for electricity will be reduced considerably while the generation cost is reduced. 
Power world simulator employs linear programming method for finding optimal power flow. The 
proposed method has been tested and examined on ieee-14 bus system using Benders cut principle. 
Results shows this method is advantageous than other conventional methods for solving OPF with 
security constraints for the same case. 

Keywords— Optimal Power Flow, Security Constrained Optimal Power Flow (SCOPF), Benders cut 
principle. 

 

 1.  INTRODUCTION 

In power systems, operation and planning needs operators to make decisions 
with respect to different objectives. Several tools have been developed to assist 
operators in this aspect. Optimal Power Flow (OPF) is one of them which help the 
operators in running the system optimally under specific constraints. Operating power 
systems at minimum cost without maintaining the security is no longer the sufficient 
criterion for dispatching electric power and therefore suitable control measures should 
be made. This has led to Security Constraint Optimal Power Flow. 

  As the power industry moves into a more competitive environment, use of 
Optimal Power Flow will become increasingly more important in maximizing the 
capability of the existing transmission system asset. A typical OPF solution adjusting 
the appropriate control variables, so that a specific objective in operating a power 
system network is optimized (maximizing or minimizing) with respect to the power 
system constraints, dictated by the electrical network and with security constraints is 
solved in this paper. Security constrained optimal power flow takes into account 
outages of certain transmission lines or equipment. A SCOPF solution is secure for all 
credible contingencies or can be made secure by corrective means. Due to the 
computational complexity of the problem, more work has been devoted to obtaining 
faster solutions requiring less storage. Several classical methods have been used in 
solving OPF for decades and here one of it, linear programming is used to find the 
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optimal solution for this problem as it is the fast method among the classical methods 
for solving SCOPF. Generator / Transformer / Line / Load / Static or Synchronous 
compensator failure / Apparatus failure is termed as Security Constrained Optimal 
Power flow (SCOPF). 

      The recent Blackouts lead to the importance of the system which is capable to 
withstand any contingencies, or to have system which can work on the specified limits 
when a contingency occurs, without effecting the overall operation of the system. 
SCOPF problem is the perfect incorporation of the contradictory doctrines of maximum 
economy, safer operation and augmented security. 

 

2.  PROBLEM FORMULATION 

The optimal power flow is constrained optimization problem requiring the 
minimization of :  
   F = (x,u) 

Subject to constraints 
Gi (x, u) = 0, i=0, 1, 2, 3….m (equality constraints) 
Hi(x, u) ≤ 0, i=0, 1, 2, 3….m (inequality constraints) 
umin ≤ u ≤ umax           
xmin ≤ x ≤ xmax 

 
Here  f (x,u) is the scalar objective function, 

G (x,u) represents nonlinear equality constraints (power flow equations), 
H (x,u) is the nonlinear inequality constraints. 
u and x represents set of controllable and dependent variables 

respectively. 
      The vector x contains dependent variables consisting of bus voltage magnitudes 
and phase angles, as well as the Mvar output of Generators designated for bus voltage 
control and fixed parameters such as the reference bus angle, non- controlled Generator 
MW and Mvar outputs, non-controlled MW and Mvar loads, fixed bus voltages, line 
parameters, etc. 

 

A. Objective function 

      In the solution of SCOPF, the main objective is to     minimize total operating 
costs of the system with maintaining the system security. In OPF, when the load is light, 
the cheapest generators are always the ones chosen to run first. As the load increases, 
more and more expensive generators will then be brought in. 

      Thus, the operating cost plays a very important role in the solution of OPF. The 
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amount of fuel or input to a generator is usually expressed in Btu/hr (British Thermal 
units per hour) and its output in MW (Mega Watts). Figure 1 shows a typical input-
output curve of a generator (slack bus generator) also commonly known as the heat-rate 
curve. 

 

                          
Fig 1: Typical Input-output Curve of a            Fig 2: Typical incremental cost curve 

         Generator            
 

  It specifies the relationship between how much heat must be input to the 
generator and its resulting MW output. In all practical cases, the cost of generator i can 
be represented as 
                                                               Ci = (ai+biPi +ci Pi2) * fuel cost 
 

Where Pi is the real power output of generator i, and ai, bi, ci are the cost coefficients. 

 

B. Control Variables 

      The control variables in an optimal power flow problem are the quantities 
whose value can be adjusted directly to help minimize the objective function and satisfy 
the constraints. The control variables can be given as: 

1. Real power and reactive power generation.  

2. Phase-shifter angles  

3. Net interchange  

4. Load MW and Mvar (load shedding)  

5. DC transmission line flows  

6. Control voltage settings  

7. LTC transformer tap settings  
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C. Dependent Variables 

      These variables are the optimal power flow variables that are not controlled. 
These include all type of variables that are free, within limits, to assume value to solve 
the problem. The main dependent variables are complex bus voltage angles and 
magnitude. 

 
D. Constraints 

      Constraints are the operating limits to the problem. In a conventional power 
flow, equipment limits are normally supplied by the user for monitoring purposes, such 
as printing out of any violations of circuit flow limits. Only the power flow algorithm 
enforces a small set of limits, such as, tap limits and generator Mvar limits. In contrast, 
an OPF enforces all equipment limits input by the user. This may easily lead to problem 
infeasibility if the limits are too restrictive or inconsistent. Careless input of limits 
should therefore be avoided. 

   A commercially available OPF normally offers a facility to relax limits in case of 
unfeasibility. Once a solution is obtained for the relaxed problem, the OPF will provide 
means to investigate how the original limits had caused convergence difficulties. Such a 
mechanism may provide valuable information concerning the power system being 
modelled. For instance, a region which requires relaxation of voltage limits may have 
implications of requiring new reactive compensation sources. 

 Some OPF programs require users to give them guidance as to which limits can 
be relaxed and in what sequence. This flexibility in fact places much burden on the 
users who need to appreciate how an OPF algorithm performs before the preferred 
strategy for constraint relaxation can be formalized as input to the program. 

 

E.    Equality constraint 

      The equality constraints of the OPF reflect the physics of the power system as 
well as the desired voltage set points throughout the system. The physics of the power 
system are enforced through the power flow equations which require that the net 
injection of real and reactive power at each bus sum to zero. This can be achieved by 
active and reactive power analysis. 

              P i = P Load + P Loss 

              Q i = Q Load + Q Loss 

Where             P i & Q i are the active and reactive power outputs 

              P Load & Q Load is the active and reactive load power  

              P Loss & Q Loss is the active and reactive power loss 

The power flow equations of the network can be given as: 



268 
 

 

             G (V, δ) =0 

Where             Pi (V, δ) –Pi net  

              G (V, δ) = {Qi (V, δ) – Qi net} 

              Pm (V, δ)-Pm net  

              Pi & Qi are the calculated real and reactive power at PQ bus. 

 

F.    Inequality Constraints  

      In a power system components and devices have operating limits & these limits 
are created for security constraints. Thus the required objective function can be 
minimized by maintaining the network components within the security limits. 

             Pgi min ≤ Pgi ≤ Pgi max  

             Qgi min ≤ Qgi ≤ Qgi max 

             ΣPgi -PD- PLoss = 0 

Where             Pgi is the amount of generation in MW at generator i 

Qgi is the amount of generation in Mvar at generator i 

The inequality constraints on voltage magnitude V of each PQ bus        

              Vi min ≤ Vi ≤ Vi max 

Where             Vi min & Vi max are the minimum and maximum values of voltages at 
bus i 

The inequality constraints on phase angle δ of voltages at all buses i  

             δi min ≤δi ≤δi max 

Where             δi min & δi max are the minimum and maximum values of phase angle at 
bus i. 

 

3.  SECURITY CONSTRAINED OPF 

Security-constrained OPF (SCOPF) problems are a special class of OPF problems. 
It iterates between a base case OPF problem and a set of predefined contingency system 
states. To ensure the security of system, a so-called “N-1 criteria” is applied, i.e. there 
should be no violations after the outage of any single element in the system. This leads 
to the implementation of preventive mode of SCOPF. Figure 3 below compares the 
optimal power flow (OPF) with the security constrained optimal power flow (SCOPF).  

      Notice that there are c contingencies to be addressed in the SCOPF, and that 
there are a complete new set of constraints for each of these c contingencies. Observe:  

I. Each set of contingency-related equality constraints is exactly like the original set 
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of equality constraints.  

II. Each set of contingency-related inequality constraints is exactly like the original 
set of inequality except it corresponds to the system with an element removed 
and, for branch flow constraints and for voltage magnitudes, the limits will be 
different.  

 
Fig 3: Comparison of OPF and SCOPF 

 

      Also notice that the constraints are a function of xk, the voltage magnitudes and 
angles under the pre-contingency (k=0) and contingency conditions (k>1, 2,…, c), and 
u0, the controls which were set under the pre-contingency conditions (k=0).  

      The solution strategy first solves the OPF (master problem) and then takes 
contingency 1 and re-solves the OPF, then contingency 2 and resolves the OPF, and so 
on (these are the sub problems). For any contingency-OPFs which require a redispatch, 
relative to the k=0 OPF, an appropriate constraint is generated, at the end of the cycle, 
these constraints are gathered and applied to the k=0 OPF. Then the k=0 OPF is 
resolved, and the cycle starts again. Experience has it that such an approach usually 
requires only 2-3 cycles. 

 
Fig 4: Decomposition solution strategy 
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4.  BENDERS CUT PRINCIPLE 

   J.F. Benders introduced the Benders decomposition (BD) algorithm for solving 
large-scale, mixed-integer linear programming problems (MILP), which partition the 
problem into a programming problem (which may be linear or non-linear, and 
continuous or integer) and a linear programming problem. The procedure followed in 
this paper includes the steps illustrated in the flowchart of Figure 5. 

Problems for which Benders cut principle can be applied are those that have the 
following structure: 

                            Min    z = c(x) + d (y)                               … (4.1) 

                            s.t.      A(x) ≥ b 

                                       E(x) + F(y) ≥ h 

In Benders decomposition, the second part problem is required to be a linear 
programming problem, which is convex and dual theory can be applied to. 

      Although in all the objective function and constraints can be completely 
nonlinear functions, a so called “P property” is preferred for better performance, which 
means that the decision variables are partitioned explicitly in the objective function and 
constraints. 

 
Outline of the Methodology 

     We repeat problem (4.1) here again and put it into the BD form, which means 
that all the objective and constraints are linear. For simple explanation, the coupler is 
put into explicitly linear form. This form is called the standard form in this dissertation. 

                      Min z = c(x) + d(y) 

                    s.t.        A(x)                   ≥     b                  … (4.2) 

                                      E · x + F(y)          ≥     h                   … (4.3) 

This problem can be decomposed into three sub problems: master problem, feasibility 
sub problem, and optimality sub problem. 

 

•  Master Problem 

Decide on a feasible x∗ considering only constraint (4.2) via what is referred to as the 
master Problem: 

                       Min   z = c(x) + α (x) 

                                 s.t.   A(x) ≥ b 

where α(x) is a piecewise function of the optimality subproblem optimal value as 
a function of the master problem decision variable x. z is a lower bound of the whole 
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problem and will be updated iteratively by the optimality subproblem. 

•  Feasibility Subproblem 

In order to check whether (4.3) is satisfied based on x∗ given in the master problem, a 
slack vector is introduced and the corresponding subproblem is formulated as: 

                                 Min       ν = 1T · s 

                    s.t.     F(y) + s       ≥ h − E · x∗                                 ... (4.4) 

 

Here, 1T is the vector of ones, and ν > 0 means that violations occur in the 
subproblem. In order to eliminate the violations, the feasibility cut (4.5) is added to the 
master problem: 

                               ν + λ E (x∗ − x)      ≤ 0                                 … (4.5) 

 

      where λ is the Lagrangian multiplier vector for inequality constraints (4.4). This 
problem is called feasibility check subproblem or feasibility problem in short. 

 

•  Optimality Subproblem 

     Decide on a feasible y∗ considering constraint (4.3) given x∗ from the master 
problem. 

                           ω = Min      d(y) 

                     s.t.        F(y)     ≥ h − E · x∗                                     … (4.6) 

where ω is the value of α(x) at x∗. 
If the solution is not optimal, the optimality cut (4.7) is added to the master problem: 

                     ω + π E (x∗ − x) ≤ α                                                … (4.7) 

 

where π is the Lagrangian multiplier vector of inequality constraints (4.6). 

The algorithm to solve SCOPF by Benders cut principle is shown below. 

Benders Decomposition algorithm 

1. Solve the regular OPF to get (x10,u10) : 

Min f (u0, x0) s.t. {h0(x0, u0) = 0, g0(x0, u0) ≤ 0} 

2. For k = 1, 2, … 

a) For c=1,2,…C: 

                     Solve a problem of form (22) to get the optimal 
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                     value  ,where uk0 is in place of �. 

•  If   0, then add the cut into the master problem 

•  If  = 0 for all c  C, terminate the algorithm. 

b) Solve the master problem to get (x0k+1, u0k+1). 

This subproblem is called the optimality check subproblem or optimality 
problem because it is used to check the optimality of the master problem according to 
the Benders Rule. In the algorithm, we first solve the master problem to obtain a lower 
bound of the objective value. 

   We then fix all the first-stage decisions and solve each scenario subproblem to 
get an upper bound. If the lower bound and the upper bound are within a tolerance, 
then the algorithm stops. 

 

 
Fig 5: Benders process 
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4.  RESULTS 

An IEEE 14-bus power system is considered for SCOPF Simulation. Figure 6 
shows a 14 bus IEEE system solved for SCOPF. It can be noted that line from bus 1 to 
bus 2 and line from bus 1 to bus 5 are loaded to 155 % and 76 % respectively. This is a 
threat to security of the power system as it could reduce the reliability of the 
transmission system. 

 
Fig 6: Load flow analysis of a 14 bus system without considering network constraints 

(conventional OPF). 

 

        Thus to ensure security of the system by reducing  the burden on the 
transmission line for the same system, security constrained optimal power flow is 
solved by using Benders cut principle  and the simulation is shown in figure 7. 
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Fig 7: Load flow analysis of a 14 bus system by considering network constraints 

(Benders cut principle). 

       

        The final comparison has been made between the three cases. The three cases are 
normal optimal power flow, conventional security constrained optimal power flow and 
security constrained optimal power flow by Benders cut principle. 

Table I: Comparison of both loss and Generation cost of three methods. 

 Loss (MW) Generation Cost (Rs/hr) 

Normal OPF 13.39238 3581.02 

Conventional SCOPF 1.995991 1544.7511 

SCOPF by Benders cut principle 1.864838 1542.9069 
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Table 2 shows the difference in percentage of line loading for the 14-bus system 
while solving OPF and SCOPF. While solving the base case OPF the total cost for the 
system to generate a power of 259 MW is 3581.02 Rs/h when SCOPF solved for the 
same case by using conventional method the total generation cost for generating power 
of 259 MW is reduced to 1544.7511 Rs/h and finally when SCOPF is solved by using 
Benders cut principle the total generation cost for generating the power of 259 MW is 
reduced to 1543.9069. 

 

Table II: Comparison of line loadings between conventional OPF and SCOPF by 
Benders cut principle 

From 
bus 

To 
bus 

Line loading (% MVA) 
(conventional OPF) 

Line loading (% MVA) 
(SCOPF by Benders cut principle) 

1 2 155 52 
1 5 76 23 
2 3 73 7 
2 4 56 19 
2 5 41 16 
3 4 24 12 
4 5 63 17 
4 7 30 7 
4 9 16 7 
5 6 45 25 
6 11 8 8 
6 12 8 8 
6 13 19 19 
7 8 18 43 
7 9 29 38 
9 10 7 8 
9 14 10 10 
10 11 4 4 
12 13 2 2 
13 14 6 6 

     

   From the results it is observed that the cost of generation obtained by SCOPF of 
Benders cut principle is lower than that obtained by conventional method. The 
comparison of costs for the three cases are shown in table 1. 
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5.  CONCLUSION 

       In this work, an attempt is made to find optimum power solution for IEEE-14 bus 
system. Different objectives are considered to solve the problem and to minimize the 
cost of operation. The proposed method is used to consider different cases by varying 
generation schedule and the cost of operation is compared. A comparison has made 
between conventional SCOPF and SCOPF by Benders cut principle. Larger power 
systems can be considered in order to obtain more realistic results. The SCOPF problem 
solved using power world simulator by using Benders cut principle has ability to 
display the SCOPF results on system one-line diagram. By solving security constraint 
OPF the stability and reliability of the system is maintained. 

 

REFERENCES 

[1]  J. Wood and B. F. Wollenberg, Power Generation Operation and Control. New 
York, NY, USA: Wiley, 1996. 

[2]  O. Alsac and B. Stott, “Optimal load flow with steady state security,” IEEE Trans. 
Power App. Syst., vol. PAS-93, no. 3, pp. 745–751, Mar. 1974.. 

[3]  Hadisadat “Power system analysis” tata mc grawhill edition 2002   pp 257 to 289.  

[4]  A. M. Geoffrion, “Generalized benders decomposition,” J. Optim. Theory Appl., 
vol. 10, no. 4, pp. 237–260, 1972. 

[5]  Y. Li and J. D. McCalley, “Decomposed SCOPF for improving efficiency,” IEEE 
Trans. Power Syst., vol. 24, no. 1, pp. 494–495, Feb. 2009. 

[6]  F. Capitanescu and L. Wehenkel, “A new iterative approach to the corrective 
security-constrained optimal power flow problem,” IEEE Trans. Power Syst., vol. 
23, no. 4, pp. 1533–1541, Nov. 2008. 

[7]  J.F. Benders, Partitioning procedures for solving mixed-variables programming 
problems, Numer. Math. 4 (1962) 238–252. 

[8]  J.A Momoh, R.J.  Koessler and M. S. Bond, “Challenges   to Optimal Power Flow” 
IEEE Transactions on Power Systems, Vol. 12, No. 1, February 1997. 

[9]  K.S.Pandya, S.K.Joshi “A Survey of Optimal Power Flow Methods” Journal of 
Theoretical and Applied Information Technology in 2005-2008. 

[10]  Naghrath and Kothari “Modern power system analysis”Tata mc- graw hill, vol.2, 
pp (0 to 80) 2006. 

[11]  Stevenson and William “power system analysis” tata mc graw hill, vol 2 pp 329 to 
376. 

 

 


