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Abstract. Starting with a short map f0 : I → R
3 on the unit interval

I, we construct random isometric map fn : I → R
3 (with respect to some

fixed Riemannian metrics) for each positive integer n, such that the difference
(fn − f0) goes to zero in the C0 norm. The construction of fn uses the Nash

twist. We show that the distribution of n3/2(fn − f0) converges (weakly) to
a Gaussian noise measure.

1. Introduction

The problem of associating a measure to the solution space of a differential
equation has been mentioned by Gromov in an interview with M. Berger [1]. Our
point of interest lies in the space of isometric immersions of a Riemannian manifold
(M, g) into a Euclidean space Rq with the canonical metric h. In 1954, Nash proved
that if a manifoldM with a Riemannian metric g can be embdedded in a Euclidean
space Rq, q > n+1, then one can construct a large class of isometric C1 embeddings
([9]). If the initial embedding f0 :M → R

q is strictly short, that is if g − f∗h is a
Riemannian metric on M then the isometric embeddings can be made to lie in an
arbitraryC0 neighbourhood of the initial embedding. In the following year, Kuiper
showed that the bound can be improved to q ≥ n + 1 ([6]). The Nash process is
an iterative process; each stage of the iteration consists of several small steps each
of which involves a choice of a rapidly oscillating function defining a perturbation,
called a Nash twist. Starting with the short map f0, one constructs a sequence
{fn} of short immersions, where fn is obtained from fn−1 possibly through infinite
steps each involving a Nash twist. Successive Nash twists performed on fn results
in a correction to the induced metric f∗

nh. These corrections do not yield an
isometric immersion at any stage but each fn still remains strictly short; however,
fn+1 is better than fn in the sense that the induced metric f∗

n+1h is closer to g
than that in the previous stage. The Nash twist is a controlled perturbation - the
C1 distance between any two consecutive maps fn and fn+1 remains bounded by
the distance between g and the induced metric f∗

nh; furthermore fn can be made
to lie in an arbitrary C0 neighbourhood of f0. As a result the sequence converges
to a g-isometric C1 immersion.
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Nash-Kuiper theory was later generalised by Gromov into the theory of convex
integration ([3]). Camillo De Lellis and László Székelyhidi, Jr., have briefly men-
tioned about the probabilistic approach to convex integration ([7]) by pointing to
the fact that Convex integration can be seen as a control problem: at each step of
the iteration, one has to choose an admissible perturbation, consisting essentially
of a (plane-)wave direction and a frequency.

In the present article we shall consider the domain space of the maps to be 1-
dimensional. In dimension 1, the solution to the C1-isometric embedding problem
does not require an infinite Nash process. Isometric maps f : I → R

3 with respect
to the standard Riemannian metrics can be obtained simply by integrating a curve
in the 2-sphere and this reduces the Nash process to a single stage. However, Nash
twists play an important role in controlling the C0-distance between the initial and
the perturbed map. In order to keep the solutions sufficiently close to the original
embedding, Nash introduced a periodic function of high frequency (or rapidly
oscillating function) under the integration process. We may remark here that in
higher dimension, each step in the Nash process can be reduced to a parametric
version of the 1-dimensional Nash process described above. The C0-closeness will
then translate into C⊥-closeness (refer to [3, page 170]). However, the problem
in dimension greater than 1 is considerably more difficult and we plan to take it
up in future.

It is indeed the case that as the frequency in the Nash twist goes to infinity the
distance between the initial short map and the resulting isometric immersion goes
to zero in the C0-norm. This motivates us to study the distribution of f − f0 with
respect to an appropriate measure on the space of isometric immersions f : I → R

3.
We naturally incorporate a randomness in the Nash twist which translates into a

Gaussian noise measure for the difference function f−f0. For each positive integer
n, we construct random functions fn such that the difference (fn(.) − f0(.)) goes
to zero (in C0 norm). We scale it up and examine the distribution. We show
that the distribution of n3/2(fn − f0) converges (weakly) to a Gaussian noise
measure. Thus the random solutions fn(.) can be thought of as distributed like
f0 + n−3/2(Gaussian noise) for large n. In Theorem 2.1 we state this rigorously,

identifying the weak limit of n3/2
∫ t

0
(fn − f0)(s) ds as a Gaussian process. Section

3 is devoted to the proof which requires essentially weak convergence of random
walks. In the last section, we compare the above process with a class of extensively
studied Gaussian processes.

2. Notation and Main Result

Let M be a smooth manifold with a Riemannian metric g. The isometric
immersions f :M → R

q are solutions to the following system of partial differential
equations:

〈

∂f

∂ui
,
∂f

∂uj

〉

= gij , i, j = 1, 2, . . . , n,

where u1, u2, . . . un is a local coordinate system on M , gij , i, j = 1, 2, . . . , n, are
the matrix coefficients of g and the 〈 , 〉 denotes the inner product on R

q.
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To motivate the concept of randomness and measure we consider the following
simple case where the domain space M is the unit interval [0, 1] and hence an
arbitrary metric on M is of the form g dt2, where g : [0, 1] → R+ is a smooth
positive function on [0, 1]. The shortness condition on a smooth regular curve
f0 : [0, 1] → R

3 then translates into the pointwise inequality 0 < ||∂uf0|| <
√
g

on [0, 1]. Given such an f0 we want to find a function fn : [0, 1] → R
3 such that

||∂ufn|| =
√
g (which means that fn is isometric) and the C0-distance between fn

and f0 decreases with n.
The following considerations illustrate the Nash twist in dimension 1. Suppose

that (X,Y, Z) is the Frenet-Serret frame along f0 (assuming that such a frame
exists at all points u ∈ [0, 1]), where X is the unit tangent along the curve. Then
(Y, Z) span a plane field J along f0 perpendicular to X . Consider the curve
Y (u) cos 2πs + Z(u) sin 2πs, 0 ≤ s ≤ 1, on J(u) for each fixed u ∈ [0, 1]. Then
with r2 = g − ||∂uf0||2 the function

∂uf0 + r(u)(Y (u) cos 2πs+ Z(u) sin 2πs)

has the required euclidean norm
√
g and over s ∈ [0, 1] integrates to ∂uf0 (the

convex integration condition). Now, a Nash twist of f0 is given by

fn(t) = f0(0) +

∫ t

0

{

∂uf0(u) + r(u)(Y (u) cos 2πnu+ Z(u) sin 2πnu)
}

du,

where n connects with the frequency of the periodic functions, namely cos 2πnu
and sin 2πnu, mentioned in the previous section. Clearly, fn is a solution of
the isometry equation since (Y (u), Z(u)) is an orthonormal basis of J(u). We

want to show that the function (or the difference curve)
∫ t

0 r(u)(Y (u) cos 2πnu +
Z(u) sin 2πnu)du is uniformly small over [0, 1]. We do this for the two integrals
separately with some notational abuse.

Applying integration by parts we get

∫ 1

0

r(u) cos 2πnudu =
1

2πn
r(u) sin 2πnt− 1

2πn

∫ t

0

r′(u) sin 2πnu du

which in absolute value is bounded by 1
2nπ as r is a smooth function on the interval

[0, 1]. The same estimates also apply to
∫ t

0 r(u) sin 2πnudu and thus we conclude
uniform closeness of fn and f0.

This difference curve can also be considered for a random path by changing
the function Hn(u) = nu over random choices. The Hn in the above example
can be obtained by integrating the constant function hn = n over [0, 1]. Instead
we take hn = ±n on each subinterval (k/n, (k + 1)/n] independently with equal
probability. These choices are actually explicitly mentioned by Gromov except for
the probability part. Then integration of the resulting function will give a random
function Hn(ω, u) which is the graph of a simple random walk. To see this calcu-
lation we consider a sequence of independent and identically distributed random
variables Xk which take the values ±1 with equal probability on a probability
space (Ω,F , P ), where Ω can be taken as the infinite product space {−1,+1}N
and consider the function hn(ω, x) = nXk, (k − 1)/n ≤ x < k/n. Therefore, each
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subinterval of length 1/n contributes ±1 and hence

Hn(ω, u) =

∫ u

0

hn(ω, x)dx = Sk ± n(u− (k/n)), k/n ≤ u < (k + 1)/n,

where Sk = X1 + · · · +Xk. The random sum Sn(ω, t) can be interpreted as the
random walk obtained by linearly joining Sk, 1 ≤ k ≤ n.

The components of the random difference curve

fn(t)− f0(t) =

∫ t

0

r(u)[Y (u) cos 2πHn(ω, u) + Z(u) sin 2πHn(ω, u)]du,

go to zero in C0-norm in the same way as in the nonrandom case discussed above.
From the probabilistic point of view it becomes natural to study the limiting
distribution of {fn(t)−f0(t), 0 ≤ t ≤ 1}, possibly after rescaling. Here we consider

the integrated process {
∫ t

0 (fn(s) − f0(s))ds, 0 ≤ t ≤ 1}, and show that after
appropriate scaling it converges weakly to a Gaussian process. The integrated
process may be viewed as the signed area of the graph of the original process.

In our case the graph of
∫ t

0
e2πiHn(ω,u)du (omitting r(u), Y (u), Z(u) for simplic-

ity now) looks similar (in a probabilistic sense of considering all possible paths)
over equal intervals and is independent over disjoint intervals. However, the limit
of its normalization is not a function but a random distribution (in the sense of
generalized functions), it is called the Brownian white noise measure. To keep
track of the random difference curve one tracks its rescaled integral, which con-
verges weakly to Brownian motion. A rigorous formulation (bringing in r(u), Y (u),
Z(u)) is the following

Theorem 2.1. The sequence of processes 2πn3/2
∫ t

0 (fn − f0) ds, 0 ≤ t ≤ 1, con-
verges weakly to

∫ t

0

r(u)Z(u)dW (u)−
∫ t

0

∫ s

0

∂u(r(u)Z(u))dW (u) ds, 0 ≤ t ≤ 1,

as n → ∞, where W (·) denotes the Wiener measure on C[0, 1], the space of real

valued continuous functions on the interval [0, 1].

In this sense, the limit of the scaled random difference curve is locally the

Gaussian noise measure r(t)Z(t)dW (t)−(
∫ t

0
∂u(r(u)Z(u))dW (u)) dt (see [8]). The

rate of convergence may also be interesting from the probabilistic point of view.

3. Proof of the Main Result

We first keep track of the integral (omitting r(u), Y (u), Z(u))
∫ s

0

e2πiHn(u)du =

∫ s

0

e2πinudu = (1/2πn)[sin(2πns)−i{cos(2πns)−1}], 0 ≤ s ≤ 1.

(3.1)
The main observation about this function on the right is that over each (k/n, (k+
1)/n] interval the imaginary part is the graph of 1− cos(2πnx), 0 < x ≤ 1/n, and
the real part is the graph of sin(2πnx), 0 < x ≤ 1/n. The periodic behavior along
with the factor (1/2πn) indicates the C0-closeness as s varies in [0, 1].
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Plugging in Hn(ω, u) described in the previous section the corresponding in-
tegral

∫ s

0 e
2πiHn(ω,u)du differs from (3.1) in randomly inverting the imaginary

part of the graph over each (k/n, (k + 1)/n] interval. To see this consider s ∈
(k/n, (k + 1)/n]. Then

∫ s

k

n

e2πi(Sk±n(u−k/n))du

= (1/2πn)
[

sin(2πn(s− k/n))± (−i){cos(2πn(s− k/n))− 1}
]

.

Noting that the integral over each (k/n, (k+1)/n] is zero and using the periodicity
of sin and cos functions we have established that the graph of

∫ s

0
e2πiHn(ω,u)du is

obtained by randomly inverting the imaginary part of the graph of (3.1) over each
(k/n, (k + 1)/n] interval. We now prove that

2πn3/2

∫ t

0

{

∫ s

0

sin 2πHn(ω, u)du
}

ds, 0 ≤ t ≤ 1,

converges weakly to Brownian motion as n→ ∞ and

2πn3/2

∫ t

0

{

∫ s

0

cos 2πHn(ω, u)du
}

ds, 0 ≤ t ≤ 1,

converges to the zero process.
To see the exact form of this (random) function we note that, as proved, the

function
∫ s

0 e
2πiHn(ω,u)du has a graph which is the graph of (3.1) with the imag-

inary part randomly inverted over each [k/n, (k + 1)/n) interval. The integral
of the (periodic) function in (3.1) over each [k/n, (k + 1)/n) interval is (i/2πn2)
(the real part integrates to contribute zero). Thus the integral of the function
∫ s

0 e
2πiHn(ω,u)du is ±i(1/2πn2) over the same interval, the ± sign coming from the

random inverting. Written explicitly, for k/n ≤ t < (k + 1)/n,

∫ t

0

{
∫ s

0

e2πiHn(ω,u)du}ds =
k−1
∑

j=0

∫ (j+1)/n

j/n

{

∫ s

0

e2πiHn(ω,u)du
}

ds

+

∫ t

k/n

{

∫ s

0

e2πiHn(ω,u)du
}

ds

=
i

2πn2

k
∑

j=1

Xj +O
( 1

n2

)

,

where Xj are independent ±1 random variables. Note that the integral from k/n
to t adds a continuous function of order O( 1

n2 ) to the random walk obtained from

the Xj ’s. Multiplying by 2πn3/2 we get the weak convergence to Brownian motion.

In this sense the random difference
∫ s

0 e
2πiHn(ω,u)du, 0 ≤ s ≤ 1, when normalized

converges to the generalized derivative of Brownian motion, called Brownian white
noise.

For the general case, we consider (with some abuse of notation)
∫ s

0

r(u)e2πiHn(ω,u)du, 0 ≤ s ≤ 1,
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where r is a sufficiently differentiable function. In this case, depending on r, after
two integrations we get back a different random walk minus the area under another
random walk, and consider weak convergence again.

We shall deal with the real and the imaginary part of the integral separately.
As observed before the randomness has no role to play in the real part. A straight-
forward calculation shows that

∫ s

0

r(u) cos(2πHn(ω, u))du =

∫ s

0

r(u) cos(2πnu)du

=
1

2nπ
r(s) sin 2nπs− 1

2nπ

∫ s

0

r′(u) sin 2nπu du

=
1

2nπ
r(s) sin 2nπs+

1

4n2π2
r′(s) cos 2nπs

− 1

4n2π2
r′(0)− 1

4n2π2

∫ s

0

r′′(u) cos 2nπu du

Therefore,
∫ t

0

{

∫ s

0

r(u) cos(2πHn(ω, u))du
}

ds =
1

2πn

∫ t

0

r(s) sin(2πns) ds+O
( 1

n2

)

.

Since the first term on the right hand side is O(1/n2) it follows that

lim
n→∞

n3/2

∫ t

0

{

∫ s

0

r(u) cos 2πHn(ω, u)du
}

ds = 0.

Thus the real part of the integral when scaled by n3/2 converges to zero uniformly.
To deal with the imaginary part of the integral, for l/n ≤ s < (l + 1)/n, we

split it as follows

[ns]−1
∑

k=0

∫ (k+1)/n

k/n

r(u) sin(2πHn(ω, u))du+

∫ s

l/n

r(u) sin(2πHn(ω, u))du, (3.2)

and then writing r(u) = r(k/n)+(r(u)−r(k/n)) on the subinterval (k/n, (k+1)/n]
we get the following for (3.2):

[ns]−1
∑

k=0

∫ (k+1)/n

k/n

(r(u) − r(k/n)) sin(2πHn(ω, u))du

+ r(l/n)

∫ s

l/n

sin(2πHn(ω, u))du

+

∫ s

l/n

(r(u) − r(l/n)) sin(2πHn(ω, u))du. (3.3)

We denote the function (represented by the sum) on the first row by ψ1(s) and
the two terms on the second and third rows by ψ2(s) and ψ3(s) respectively.

Since n3/2
∫ t

0 ψ2(s)ds gives a random walk with steps ± 1√
n
r(k/n) over the interval

[k/n, (k + 1)/n), n3/2
∫ t

0
ψ2(s)ds converges weakly to 1

2π

∫ t

0
r(s)dW (s).
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Next we consider the part ψ1. The summands of ψ1 are not necessarily zero as r
is non-constant. Substituting u = k/n+z/n in the k-th summand and disregarding
the ± signs, we get

1

n

∫ 1

0

[

r

(

k

n
+
z

n

)

− r

(

k

n

)

]

sin(2πz)dz.

To clearly understand this summand we divide the integral into two parts where
the sine function has the same sign, so that one can apply the mean value theorem
for integrals. Thus, we can get z1 ∈ (0, 1/2) so that

1

n

∫ 1

0

[r

(

k

n
+
z

n

)

− r

(

k

n

)

] sin(2πz)dz

=
1

n

∫ 1/2

0

[

r

(

k

n
+
z

n

)

− r

(

k

n

)

]

sin(2πz)dz

+
1

n

∫ 1

1/2

[

r

(

k

n
+
z

n

)

− r

(

k

n

)

]

sin(2πz)dz

=
1

n

∫ 1/2

0

[

r

(

k

n
+
z

n

)

− r

(

k

n
+
z

n
+

1

2n

)

]

sin(2πz) dz

=
1

nπ

[

r

(

k

n
+
z1
n

)

− r

(

k

n
+
z1
n

+
1

2n

)]

= − 1

2n2π
r′
(

k

n
+
z1
n

+
θ

2n

)

,

where 0 < θ < 1. If we add these integrals after multiplying each of them by
±1 from random inversions, and scale the sum by n3/2 then it corresponds to a
random walk converging weakly to

− 1

2π

∫ s

0

r′(u)dW (u).

The continuous random curve ψ1 + ψ3 matches this random walk at the points
k/n and is otherwise at a distance at most

O
( 1

n
|r(k/n+ 1/2n)− r(k/n)|

)

= O(1/n2)

from it. Thus after scaling by n3/2 the random curve ψ1 +ψ3 converges weakly to
the same limit and the integral of ψ1 + ψ3 converges weakly to

− 1

2π

∫ t

0

{

∫ s

0

r′(u)dW (u)
}

ds

by the continuous mapping theorem. This completes the proof of the main result.
For completeness we indicate how the random walk

[nt1]
∑

k=1

r(k/n)Yk (3.4)
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(here Yk are i.i.d. ± 1√
n
random variables) and the area under the random walk

−
[ns]
∑

i=1

r′(i/n)Yi (3.5)

up to time t2 converges jointly in distribution, after which tightness on product
space can be used to conclude weak convergence on C[0, 1]×C[0, 1]. To obtain the
area under (3.5), each random walk height is multiplied by 1/n and then added.
The interchange of summation gives the area as

−
k−1
∑

i=0

(
k − i

n
)r′(i/n)Yi, (3.6)

where k = [nt2]. From (3.4) and (3.6) the limiting joint finite dimensional dis-

tribution follows. The limit of the expression in (3.6) is seen to be − 1
2π

∫ t

0
(t −

u)r′(u) dW (u) which equals − 1
2π

∫ t

0
{
∫ s

0
r′(u)dW (u)}ds. Now the sum of the two

processes (3.4) and (3.6) converges weakly. �

4. Concluding Remarks

It is seen from the proof of Theorem 2.1 that the random Nash twist on the
initial short curve f0 to obtain an increase of r2(u) du2 to the induced metric f∗

0h,
leads to a process whose structure is similar to the following process (refer to [4,
Theorem 6.3])

X(t) =W (t)−
∫ t

0

∫ s

0

ℓ(s, u)dW (u) ds,

where ℓ(s, u) is a Volterra kernel with appropriate conditions. In our case, com-

ponentwise we need a Gaussian process
∫ t

0
r(u) dW (u) and a function r′(u)/r(u)

to replace W (t) and ℓ(s, u) in the above formula.
In higher dimension the difference metric g − f∗

0h can be written as a finite
sum of monomials r2dϕ2, where ϕ is a rank 1 function. Applying Nash twist along
(ImDf0)

⊥, one is able to add r2dϕ2 only approximately. To look into the problem
of C0 distance one may need several independent Brownian motions in different
directions and we refer to Theorem 3.2.5 of Kallianpur and Xiong ([5]) for such a
construction. However a precise formulation combining various directions is not
clear and we hope to explore these aspects in future.

Acknowledgment. The second author is greatly indebted to Misha Gromov for
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