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Abstract. We investigate the spectrum of the generator of a self-adjoint

transition semigroup of a (symmetric) Lévy process taking values in d–dimen-
sional space.

1. Introduction

Lévy processes are essentially stochastic processes with independent increments.
They have been extensively studied in recent years, as they include not only the
most important Gaussian process – Brownian motion, but also many rich processes
with jumps such as the α-stable ones. Four monograph treatments have been
published in the last twenty five years that explore different aspects of their theory
and application [1, 3, 12, 13]. The transition semigroups induced by the process
may be studied in various Banach spaces, such as the space of continuous functions
that vanish at infinity and the Lp–spaces. The fact that these operators, and
their generators, may be written as pseudo–differential operators, whose symbol
is given by the characteristic exponent of the process, has led to extensive work
on Lévy–type operators that generate a very large class of Feller processes – see
e.g. [4, 8, 9, 10, 11]. In this short note, we are interested in the generator as an
operator acting in L2(Rd).

For a long time, necessary and sufficient conditions have been known for when
such an operator is self–adjoint and this material has recently been reviewed in
Chapter 4 of [2]. Such operators are of interest in mathematical physics as they
include both the free non–relativistic Hamiltonian (i.e. the (negative) Laplacian),
and its relativistic counterpart. Some deep perturbation theory studies of these
operators (at the form sum level), have been carried out in [7], while [5] has
studied the relationship between recurrence of the underlying Lévy process and
the existence of at least one negative bound state under perturbation by negative
bounded potentials with compact support. However the author is not aware of
any studies of the spectrum of the operator in question. For the case of Lévy
processes on the torus, the spectrum consists of eigenvalues corresponding to the
range of the characteristic exponent (see section 5.2.3 in [2]). When we work on
Rd, we expect to obtain a continuous spectrum which is again given by the closure
of the range of the characteristic exponent. After collecting together all the known
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λ ∈ (−∞, 0) \ Ran(−η). The required result holds if gλ is bounded, where for all
u ∈ Rd,

gλ(u) :=
1 + η(·)
λ+ η(·)

.

There are two cases to consider. Firstly assume that supu∈Rd η(u) = K < ∞.
Then Ran(η) = [0,K]. Choose ϵ > 0 and assume that λ ∈ (∞,−K − ϵ). Then we
find that

sup
u∈Rd

|gλ(u)| ≤
1 +K

ϵ
< ∞.

But then we conclude that

(−∞,−K) =
∪
ϵ>0

(−∞,−K − ϵ) ⊆ ρ(A),

and so σ(A) = Ran(−η), as required. If supu∈Rd η(u) = ∞, then by the first part
of the proof we have (−∞, 0) ⊆ σ(A) and so the required result follows directly
from Proposition 3.1. □

Corollary 3.3. If limu→∞ η(u) = ∞, then σ(A) = (−∞, 0].

Proof. This is an immediate consequence of Theorem 3.2 and the continuity of
η. □

We note that the condition of Corollary 3.3 was also required in [5] to obtain
the result alluded to in the introduction.

Some well–known and important examples satisfy the conditions of Corollary
3.3. These include

• The Laplacian ∆, where η(u) = |u|2.
• The fractional Laplacian −(−∆)α/2, where η(u) = |u|α with 0 < α < 2.

• The relativistic Schrödinger operator −
√
b2I −∆ + bI, where η(u) =√

b2 + |u|2 − b for some b > 0.

More generally, to obtain σ(A) = (−∞, 0] we may take A = −f(−∆), where f
is a strictly increasing Bernstein function for which f(0) = 0, in which case the
underlying Lévy process is a subordinated Brownian motion (see e.g. [14]). The
above three examples are all special cases of this class. In the case where f is
a complete Bernstein function, our main result Theorem 3.2, is a special case of
Theorem 13.11 in [14] (p.211).

To find other interesting class of examples, we first write A = A1 + A2, where
A1 is the second order differential operator in (2.1).

Lemma 3.4. If ν is a finite measure and M := ν(Rd), then A2 is a bounded
operator in L2(Rd), with σ(A2) ⊆ [−2M, 0].

Proof. Since the measure ν is finite and symmetric, A2f(x) =
∫
Rd(f(x + y) −

f(x))ν(dy), for f ∈ L2(Rd), x ∈ Rd. For each y ∈ Rd, define the shift operator τy
by τyf(x) = f(x + y). The linear operator A2 is bounded as by convexity of the
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facts we need in section 2, we will prove this conjecture in section 3 and present
some examples. We use only elementary techniques in this note, the main purpose
of which is to stimulate interest in the somewhat neglected area where spectral
theory meets probability.

2. Preliminaries

The material in the section can be found in Chapters 3 and 4 of [2]. Much of
it is also in Chapter 3 of [1]. Let (µt, t ≥ 0) be a weakly continuous convolution
semigroup of probability measures in Rd. These arise naturally as the collections
of laws of a Lévy process taking values in Rd. We obtain a strongly continuous
semigroup (Tt, t ≥ 0) of contractions in L2(Rd) by the prescription

Ttf(x) =

∫

Rd

f(x+ y)µt(dy),

for all x ∈ Rd, t ≥ 0, f ∈ L2(Rd). In this article, we will require that µt is
symmetric for all t ≥ 0, i.e. µt(B) = µt(−B), for all Borel sets B in Rd. In
this case the semigroup (Tt, t ≥ 0) is self–adjoint, and its self–adjoint infinitesimal
generator A acts on the space C2

c (Rd) of twice continuously differentiable functions
with compact support on Rd by the prescription

Af(x) =
d∑

i,j=1

aij∂i∂jf(x)

+
1

2

∫

Rd

(f(x+ y)− 2f(x) + f(x− y))ν(dy), (2.1)

for all f ∈ C2
c (Rd), x ∈ Rd, where a = (aij) is a non–negative definite symmetric

d× d matrix, and ν is a symmetric Lévy measure, i.e.

ν({0}) = 0 and

∫

Rd

(|y|2 ∧ 1)ν(dy) < ∞,

(see Chapter 4 of [2] for the proof).
We have the Lévy–Khintchine formula∫

Rd

eiu·xµt(dx) = e−tη(u),

where η is a continuous, negative definite function with η(0) = 0 that takes the
form

η(u) = au · u+

∫

Rd

(1− cos(u · y))ν(dy), (2.2)

for all u ∈ Rd. We define the usual Fourier transform �f of f ∈ L2(Rd) by

�f(y) = 1

(2π)d/2

∫

Rd

e−ix·yf(x)dx,

for y ∈ Rd. The domain of the generator A is the non–isotropic Sobolev space

Hη(Rd) =
{
f ∈ L2(Rd),

∫

Rd

η(y)2| �f(y)|2dy < ∞
}
.
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norm, Jensen’s inequality and unitarity of τy, we have

||A2f || ≤
∫

Rd

||τyf + f ||ν(dy)

≤ 2M ||f ||,

The second result follows from the fact that for all u ∈ Rd

η(u) =

∫

Rd

(1− cos(u · y))ν(dy) ≤ 2M.

□

A necessary and sufficient condition for σ(A2) = [−2M, 0] is that

ν({y ∈ Rd;u · y = (2n+ 1)π for some u ∈ Rd, n ∈ Z}) > 0.

Now let α > 0 be arbitrary. For an example where σ(A2) = [−α, 0], take d = 1
and ν = α

4 (δ−1 + δ1).

Corollary 3.5. If ν is finite and there exist bi > 0 for all i = 1, . . . , d such that

au · u ≥
d∑

i=1

biu
2
i

for all u ∈ Rd, then σ(A) = (−∞, 0).

Proof. This follows from the fact that η(u) ≥
∑d

i=1 biu
2
i → ∞, as u → ∞. □

Note that the condition in the last corollary is satisfied if a is bounded below
in the sense that there exists b > 0 so that a ≥ bI.

Remark 3.6. As expected, both the semigroup operators and generator are uni-
tarily equivalent to multiplication operators, and the unitary equivalence is imple-

mented by the Fourier transformation F : L(Rd) → L2(Rd), where F(f) = �f for

each f ∈ L2(Rd). Then if we define η(D) �f(u) = η(u) �f(u) for all f ∈ Hη(Rd), u ∈
Rd, we have

Af = F−1(−η(D))Ff,

and (with an obvious notation), for all t ≥ 0.

FTtF−1 = e−η(D).

This gives rigorous meaning to the formal relation (2.4).

Acknowledgment. I am grateful to René Schilling for helpful comments on the
first draft of this paper, and the referee for correcting some typos .
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Clearly C2
c (Rd) ⊆ Hη(Rd), and on this larger domain we have the pseudo-differ-

ential operator representation

Af(x) = − 1

(2π)d/2

∫

Rd

eix·yη(y) �f(y)dy. (2.3)

Underlying (2.3) is the formal relation

Aeiu·x = −η(u)eiu·x, (2.4)

which suggests that the spectrum σ(A) = Ran(−η). This is certainly true when A
is the Laplacian (aij = δij and ν = 0). We investigate it next in the more general
context.

3. Results

LetB be a closed linear operator in a real Banach space E with domainDB ⊆ E.
We recall that its spectrum σ(B) is the closed subset of C defined by

σ(B) := {λ ∈ C;λI −B fails to be invertible from DB to E}.

The resolvent set of B is ρ(B) := C \ σ(B). We need a general result. It is surely
well–known, but we include a proof for the reader’s convenience.

Proposition 3.1. If (St, t ≥ 0) is a strongly continuous self–adjoint contraction
semigroup acting in a Hilbert space H and having infinitesimal generator B then

σ(B) ⊆ (−∞, 0].

Proof. Since B generates a contraction semigroup, by the Hille–Yosida theorem,
σ(B) ⊆ {z ∈ C;ℜ(z) ≤ 0}, but B is self–adjoint and so σ(B) ⊆ R. The result
follows. □

Our approach to investigating the spectrum of A is by a standard argument
using Fourier transforms, as is well–known for the case of the Laplacian.

Theorem 3.2.

σ(A) = Ran(−η).

Proof. Consider the equation

(λI −A)f = g,

for λ ∈ C, f ∈ Hη(Rd), g ∈ L2(Rd). Taking Fourier transforms of both sides we
obtain

(λ+ η(y)) �f(y) = �g(y),
for all y ∈ Rd. If the operator equation has a solution, then

(1 + η(·)) �f(·) = 1 + η(·)
λ+ η(·)

�g(·) ∈ L2(Rd).

This clearly cannot be the case when λ = −η(y) for some y ∈ Rd, and it follows

that Ran(−η) ⊆ σ(A).
Our goal now is to prove that the resolvent set ρ(A) = C \ Ran(−η). By

Proposition 3.1, we know that C \ (−∞, 0] ⊆ ρ(A). So it is sufficient to consider
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a complete Bernstein function, our main result Theorem 3.2, is a special case of
Theorem 13.11 in [14] (p.211).

To find other interesting class of examples, we first write A = A1 + A2, where
A1 is the second order differential operator in (2.1).

Lemma 3.4. If ν is a finite measure and M := ν(Rd), then A2 is a bounded
operator in L2(Rd), with σ(A2) ⊆ [−2M, 0].

Proof. Since the measure ν is finite and symmetric, A2f(x) =
∫
Rd(f(x + y) −

f(x))ν(dy), for f ∈ L2(Rd), x ∈ Rd. For each y ∈ Rd, define the shift operator τy
by τyf(x) = f(x + y). The linear operator A2 is bounded as by convexity of the

724 DAVID APPLEBAUM

λ ∈ (−∞, 0) \ Ran(−η). The required result holds if gλ is bounded, where for all
u ∈ Rd,

gλ(u) :=
1 + η(·)
λ+ η(·)

.

There are two cases to consider. Firstly assume that supu∈Rd η(u) = K < ∞.
Then Ran(η) = [0,K]. Choose ϵ > 0 and assume that λ ∈ (∞,−K − ϵ). Then we
find that

sup
u∈Rd

|gλ(u)| ≤
1 +K

ϵ
< ∞.

But then we conclude that

(−∞,−K) =
∪
ϵ>0

(−∞,−K − ϵ) ⊆ ρ(A),

and so σ(A) = Ran(−η), as required. If supu∈Rd η(u) = ∞, then by the first part
of the proof we have (−∞, 0) ⊆ σ(A) and so the required result follows directly
from Proposition 3.1. □

Corollary 3.3. If limu→∞ η(u) = ∞, then σ(A) = (−∞, 0].

Proof. This is an immediate consequence of Theorem 3.2 and the continuity of
η. □

We note that the condition of Corollary 3.3 was also required in [5] to obtain
the result alluded to in the introduction.

Some well–known and important examples satisfy the conditions of Corollary
3.3. These include

• The Laplacian ∆, where η(u) = |u|2.
• The fractional Laplacian −(−∆)α/2, where η(u) = |u|α with 0 < α < 2.

• The relativistic Schrödinger operator −
√
b2I −∆ + bI, where η(u) =√

b2 + |u|2 − b for some b > 0.

More generally, to obtain σ(A) = (−∞, 0] we may take A = −f(−∆), where f
is a strictly increasing Bernstein function for which f(0) = 0, in which case the
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norm, Jensen’s inequality and unitarity of τy, we have

||A2f || ≤
∫

Rd

||τyf + f ||ν(dy)

≤ 2M ||f ||,

The second result follows from the fact that for all u ∈ Rd

η(u) =

∫

Rd

(1− cos(u · y))ν(dy) ≤ 2M.

□

A necessary and sufficient condition for σ(A2) = [−2M, 0] is that
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Corollary 3.5. If ν is finite and there exist bi > 0 for all i = 1, . . . , d such that
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2
i

for all u ∈ Rd, then σ(A) = (−∞, 0).

Proof. This follows from the fact that η(u) ≥
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i=1 biu
2
i → ∞, as u → ∞. □

Note that the condition in the last corollary is satisfied if a is bounded below
in the sense that there exists b > 0 so that a ≥ bI.

Remark 3.6. As expected, both the semigroup operators and generator are uni-
tarily equivalent to multiplication operators, and the unitary equivalence is imple-

mented by the Fourier transformation F : L(Rd) → L2(Rd), where F(f) = �f for

each f ∈ L2(Rd). Then if we define η(D) �f(u) = η(u) �f(u) for all f ∈ Hη(Rd), u ∈
Rd, we have

Af = F−1(−η(D))Ff,

and (with an obvious notation), for all t ≥ 0.

FTtF−1 = e−η(D).

This gives rigorous meaning to the formal relation (2.4).

Acknowledgment. I am grateful to René Schilling for helpful comments on the
first draft of this paper, and the referee for correcting some typos .
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norm, Jensen’s inequality and unitarity of τy, we have

||A2f || ≤
∫

Rd

||τyf + f ||ν(dy)

≤ 2M ||f ||,

The second result follows from the fact that for all u ∈ Rd

η(u) =

∫

Rd

(1− cos(u · y))ν(dy) ≤ 2M.

□

A necessary and sufficient condition for σ(A2) = [−2M, 0] is that

ν({y ∈ Rd;u · y = (2n+ 1)π for some u ∈ Rd, n ∈ Z}) > 0.

Now let α > 0 be arbitrary. For an example where σ(A2) = [−α, 0], take d = 1
and ν = α

4 (δ−1 + δ1).

Corollary 3.5. If ν is finite and there exist bi > 0 for all i = 1, . . . , d such that

au · u ≥
d∑

i=1

biu
2
i

for all u ∈ Rd, then σ(A) = (−∞, 0).

Proof. This follows from the fact that η(u) ≥
∑d

i=1 biu
2
i → ∞, as u → ∞. □

Note that the condition in the last corollary is satisfied if a is bounded below
in the sense that there exists b > 0 so that a ≥ bI.

Remark 3.6. As expected, both the semigroup operators and generator are uni-
tarily equivalent to multiplication operators, and the unitary equivalence is imple-

mented by the Fourier transformation F : L(Rd) → L2(Rd), where F(f) = �f for

each f ∈ L2(Rd). Then if we define η(D) �f(u) = η(u) �f(u) for all f ∈ Hη(Rd), u ∈
Rd, we have

Af = F−1(−η(D))Ff,

and (with an obvious notation), for all t ≥ 0.

FTtF−1 = e−η(D).

This gives rigorous meaning to the formal relation (2.4).
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