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Abstract. In this paper we consider the estimation problem for reduced-
form models that link the real economy to financial markets. Estimation

is based on extending the work of R.J. Elliott and V. Krishnamurthy, who
derived new recursive filters to estimate parameters of a linear Gaussian,
Kalman, filter. This paper extends those works to the calibration of a model

for the beta of an industry - that is, the process describing the sensitivity
of an industrial sector’s returns to broad market movements. In fact, the
dynamics for the beta of an industry are considered where the mean reversion
level depends on the state of the economy and filtered estimates for these

state-dependent mean reversion levels are used in a discrete time version of
the beta dynamics. The beta process is estimated using the corresponding
returns process, and a new recursive filter is developed to estimate the mean
reversion levels of the beta process.

1. Introduction

The link between the real economy and financial markets is an issue that has
long been of interest to financial economists [14, 4]. In general, capturing this
link may be made through structural models or reduced-form models. Structural
models, which involve using “deep” primitive parameters and decision making to
connect stock returns to macroeconomic events, usually result in general equilib-
rium models that do very poorly in matching empirically observed asset pricing
phenomena. Reduced-form models, which are exogenously specified systems of
equations, perform well in fitting empirical phenomena, but usually result in la-
tent factors related to risk premia that are difficult to estimate, especially in the
presence of structural breaks or sudden policy regime shifts in the real economy.

In this paper we consider the estimation problem for reduced-form models based
on extending the work of [9, 10] who derived new recursive filters to estimate pa-
rameters in the Kalman filter framework, where a linear Gaussian signal is ob-
served in Gaussian noise. Some of these results were applied by [7] to commodity
markets. This paper presents a further application and extension to estimate the
mean reverting beta process of an industry or sector which is a well documented
empirical stylized fact in financial markets. That is, beginning with [2], several
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authors (for example [3, 12]) have demonstrated that the dynamics of the con-
ditional single factor market model beta for individual stocks and portfolios of
stocks, while unobservable, is generally mean reverting. As beta measures system-
atic risk, it is important to distinguish between conditional time variation in beta
and the regime shifts or structural changes in the parameters of the beta model,
which represents a macroeconomic event. Thus, a novel feature of our method-
ology is that the long-run mean reversion level for the beta process is structured
to depend on the“state” of the economy which, in turn, is captured by a separate
hidden Markov model. In fact a preliminary filter is used to estimate the state
of the economy and these estimates are passed into the beta dynamics which are
observed and filtered through the equity returns process. In order to be able to
calibrate our extended filter to data, we also derive filter-based EM algorithms for
parameter estimation. The calibration procedure is recursive and the estimates are
updated with each new piece of data, unlike methods based on straight maximum
likelihood.

The paper proceeds in a sequence of steps which will now be described:

Section 2 describes the mean reverting dynamics of the beta process which
is estimated from related equity returns. The discrete-time version of the beta
dynamics is introduced, and the long-run mean of the process is allowed to vary
based on a filtered estimate of the state of the economy. Section 2 also introduces
the Kalman filter that is used to recursively estimate the beta process from the
returns.

Section 3 describes how the state of the economy is modeled by GDP growth fol-
lowing a finite state regime switching Markov chain. The three states of the chain
correspond to the economic state being ‘high’, ‘medium’ or ‘low’. Related discrete
time dynamics are described together with a filter which recursively estimates the
state of the economy.

Section 4 describes the change of measure procedure which enables the models
for both the beta process and the state of the economy to be constructed from
sequences of i.i.d. N(0, 1) random variables. The change of measure procedure is
then extended to change the parameters of the model.

Section 5 introduces our particular expectation maximization (EM) algorithm
to estimate the parameters of the model. This is a recursive procedure which
re-estimates the parameters until some stopping condition is satisfied. It uses first
order conditions applied to the expected value of the log-likelihood.

Section 6 derives recursions for measures associated with various component
processes which arise in the EM algorithms and establishes surprisingly simple
explicit forms for the densities associated with these processes. These are then
used to further obtain explicit expressions for the conditional expected values of
the sums, in terms of the conditional mean µk and variance Pk, provided by the
Kalman filter. Further, recursions for the coefficients in these sums are derived.

Section 7 finally provides the updated coefficients required in the EM algorithm.
Section 8 concludes.
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2. The Beta Process

2.1. Mean Reverting Beta Dynamics. To provide some background to our
estimation problem, we note that in economics and finance, conditional single fac-
tor asset pricing models (such as the conditional CAPM) are used in determining
the cost of equity capital for firms. This cost of capital is, in turn, used in a num-
ber of different ways. In common stock valuation, it is used to determine discount
rates applied to the future streams of dividends. In the performance evaluation of
portfolio management, it is used as risk-adjusted benchmarks. In event studies it
is used to obtain normal expected rates of return, and in the regulation of utility
companies it is used to set the required rates of return. The standard conditional
single factor asset pricing representation is

Rt = αt + βtRm,t + ϵt.

where Rt is the return on the equity of a firm, Rm,t is the return on the market,
βt is a measure of the systematic or market risk of the firm’s equity, and ϵt is
random zero mean shock. The implementation of conditional single factor models
thus requires an estimate of a time-varying beta (β) and as mentioned above, it
has been demonstrated that the dynamics of the conditional single factor market
model beta follows a mean reverting process [2, 3, 12]. We therefore suppose that
the β process has dynamics in continuous time given by:

dβt = α(Bt − βt)dt+ σdωt . (2.1)

Here α > 0, σ > 0,, and ω = (ωt, t ≥ 0) is a standard Brownian motion defined
on the probability space (Ω,F , P ). For estimation and calibration, we consider
discrete time version of (2.1). For k = 1, 2, . . . , and with h as the size of the time
interval

βk+1 − βk = αh(Bk − βk) + σ
√
hωk+1 .

or
βk+1 = (1− αh)βk + αBkh+ σ

√
hωk+1 (2.2)

where ω = (ω1, ω2, . . . ) is a sequence of i.i.d N(0, 1) random variables and the
long-run mean Bk depends on the state of the economy in a manner that will
be described in Section 3 below. Now β is not observed directly but through a
priceS = (St , t ≥ 0) or equivalently a returns process R = (Rt , t ≥ 0) of the form

St = St−1 exp (Rt) . (2.3)

The discretized returns process Rk is related to β as

Rk = ln(Sk)− ln(Sk−1) = mβkh+ γ
√
h vk (2.4)

where, again, v = (v1, v2, . . . ) is a sequence of i.i.d N(0, 1) random variables. In
this expression, the variable m is usually referred to as the market risk premium.

2.2. Kalman Filter. To estimate the parameters of the model, we employ a
Kalman filtering approach which requires that we first take the mean reverting
beta process above and re-express it as a system of an ”observation” process, y,
and a ”signal” process, x. We take the returns as the observation process and
write

yk := Rk = mβkh+ γ
√
h vk .
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We shall also write xk := βk so the signal process x and observations y have joint
dynamics

xk = ck +Qxk−1 +Gωk, (2.5)

yk =Mxk +Hvk (2.6)

where from (2.2) and (2.4)

ck = αBkh, Q = (1− αh), G = σ
√
h

M = mh, H = γ
√
h .

With the dynamics for x and y given by (2.5) and (2.6) we define the information
filtrations

Fx
k = σ{x0, x1, x2, . . . , xk}

Yk = σ{y1, y2, . . . , yk} and

Gk = σ{x0, x1, . . . , xk, y1, y2, . . . , yk}.
We initially assume that the coefficients ck, Q,G,M, and H of the model (2.5)
and (2.6) have been estimated, and given Yk we wish to recursively estimate xk.
The optimal mean square estimate of xk given Yk is then given by the Kalman
filter which we now describe. It is shown in [6] how the Kalman filter is derived
from the recursions in Section 6.1 below. However, we just state the Kalman filter
estimates here without proof.
Write

µk = µk|k = E[xk|Yk]

Pk = Pk|k = E[(xk − µk)
2|Yk]

µk|k−1 = E[xk|Yk−1]

Pk|k−1 = E[(xk − µk|k−1)
2|Yk−1].

Then
µk|k−1 = ck +Qµk−1

Pk|k−1 = σ2h+Q2Pk−1 .

Theorem 2.1 (Kalman Filter). The Kalman filter then gives the updating equa-
tions as:

µk = µk|k−1 +Kk(yk −M)µk|k−1

Pk = Pk|k−1 −KkMPk|k−1

Kk = Pk|k−1M(M2Pk|k−1 + γ2h)−1.

K is called the Kalman gain.

3. The Real Economy and Long-Run Mean Beta

In this section, we describe how the long-run mean of the beta process, Bk, is
obtained through a linkage with the real economy. We suppose the “state” of the
economy is represented by a hidden Markov model (HMM). Depending on the type
of HMM used, the state may be modeled as structurally changing or as regime
switching. For example a HMM whose hidden dynamics undergo random change
points (the rate matrix of the chain changes at the random time) can be used
to model structural change, while a classic continuous-time, finite-state, hidden
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Markov chain can be used to model regime switching. For the rest of this paper
we shall assume the state of the economy undergoes regime switching.

3.1. Regime Switching State of the Economy. We suppose the state of the
economy is represented by a Markov chain Z. There are three states: High,
medium, low. These states may describe various aspects of the economy that
affect the risk in financial markets. For example, the states may describe economic
production or they may describe consumer sentiment. Without loss of generality,
these states are identified with the unit vectors

e1 =

 1
0
0

 , e2 =

 0
1
0

 , e3 =

 0
0
1


so the chain has values in {e1, e2, e3}.

We suppose there is some economic time series (see below) from which we can
estimate Z. Suppose Z is defined on (Ω,F , P ) and, for time period k write

E[Zk] =

 p1k
p2k
p3k

 = pk ∈ R3.

Here pik = P (Zk = ei), and we suppose the transition probabilities are P (Zk+1 =
ej |Zk = ei) = πji . Then, with Π = (πji , 1 ≤ i, j ≤ 3)

Zk+1 = ΠZk +Mk+1. (3.1)

Here Mk+1 is a martingale increment. That is, with Fz
k = σ{Z0, Z1, . . . , Zk}

E[Mk+1|Fz
k ] = E[Zk+1|Zk] = 0 ∈ R3.

We suppose the state of the economy, Z is observed through the process Y =
(Y1, Y2, . . . ) where, as an example, we take Y to be the growth rate, (first difference
of the logarithm) of real GDP, such as in the [13] model of the business cycle. In
fact, we suppose that for k = 1, 2, . . .

Yk = ⟨g, Zk⟩ + ⟨δ, Zk⟩ νk. (3.2)

Here, ⟨ · ⟩ is the scalar product, g = (g1, g2, g3), δ = (δ1, δ2, δ3), and under the
measure P, ν = (ν1, ν2, ν3, · · · ) is a sequence of i.i.d N(0, 1) random variables.

We will also write Gk = σ{Y1, . . . , Yk, Z1, . . . , Zk} and Yk = σ{Y1, . . . , Yk},
and ϕ(x) = 1√

2π
e−x2/2 will denote the N(0, 1) density. Given Yk, we desire to

recursively obtain the estimate of Zk

Ẑk := E[Zk|Yk].

This estimate of the state of the economy is then used to select a long-run mean
beta which is passed to the beta process as shown next.



492 ROBERT J. ELLIOTT* AND CARLTON OSAKWE

3.2. The Long-Run Mean Beta. With B = (B1,B2,B3)
′ ∈ R3, Bk = ⟨B, Zk⟩

so the long-run mean for β depends on the state of the economy represented by Z.

We shall suppose that Zk is replaced by its filtered estimate Ẑk so β has dynamics:

βk+1 = (1− αh)βk + αB̂kh+ σ
√
hωk+1

where B̂k = ⟨B, Ẑk⟩ . The set of coefficients or parameters of our model are therefore

θ := {α,B1,B2,B3, Q,G
2,M,H2}.

We therefore need to obtain the filtered estimate Ẑk and use that in the Kalman
filter for xk (equivalently βk) to derive a filter-based EM algorithm for obtaining
maximum parameter likelihood estimates of the set of coefficients θ This represents
a new filtering method for the calibration of regime switching beta dynamics, one
that depends on the state of the economy. The main technique employed here is
the introduction of a reference probability measure that simplifies the derivations
of filters.

4. Change of Measure

A basic framework used in the filtering and estimation results of [6], [9] and [7] is
the reference probability. This is an initial probability P under which the signal x
and observations y are themselves just sequences of N(0, 1) i.i.d random variables.
A change of measure then gives our original framework under which x and y have
the dynamics (2.5) and (2.6). Similarly, we can find a reference probability measure
P ∗ under which Z is a Markov chain with transition probabilities given by Π in
(3.1) above and observations Y are sequences of N(0, 1) i.i.d random variables. A
change of measure then recovers the original probability P such that under which
Z and Y have the dynamics (3.1) and (3.2).

4.1. Reference Probability for the Beta Process (P ). Suppose P is a a
probability measure under which x = (x0, x1, . . . ) and y = (y1, y2, . . . ) are se-

quences of i.i.d. N(0, 1) random variables. Write ϕ(x) = 1√
2π
e−x2/2, ψ(x) =

1√
2π
e−y2/2 for two copies of the N(0, 1) density.

Now consider the following random variables:

λ0 =
ψ
(
H−1(y0 −Mx0)

)
Hψ(y0)

(4.1)

and for ℓ ≥ 1

λℓ =
ψ
(
H−1(yℓ −Mxℓ)

)
Hψ(yℓ)

·
ϕ
(
G−1(xℓ −Qxℓ−1 − cℓ)

)
Gϕ(xℓ)

. (4.2)

Write Λk =
k

Π
ℓ=0

λℓ . A new probability measure P (the ”real world” probability)

can be defined by setting

dP

dP

∣∣∣∣
Gk

= Λk . (4.3)
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Notation 4.1. Define

wℓ = G−1(xℓ −Qℓ−1 − cℓ), ℓ = 1, 2, . . .
vℓ = H−1(yℓ −Mxℓ), ℓ = 0, 1, 2, . . .

Theorem 4.1. Under P defined by (4.3)

w = (w1, w2, w3, . . . )

and v = (v0, v1, v2, . . . )

are sequences of i.i.d. N(0, 1) random variables. That is, under P

xℓ = cℓ +Qxℓ−1 +Gwℓ

and yℓ =Mxℓ +Hvℓ .

So under P , x and y do have the ‘real world’ dynamics (2.5) and (2.6). The
proof follows from Lemma 3.2 of of [10]. However, as mentioned above, due to the
independence of x and y, P is an easier measure under which to work.

4.2. Reference Probability for the Real Economy(P ∗). We now describe
the change of measure procedure for the state of the economy process Z. Suppose
that there is another probability measure P ∗ such that under P ∗, Z is a Markov
chain with transition densities as above and (Y1, Y2, . . . ) is a sequence of i.i.d.
N(0, 1) random variables.

For ℓ = 1, 2, . . . , write

ξℓ =
ϕ
(
⟨δ, Zℓ⟩−1

(
Yℓ − ⟨g, Zℓ⟩

)
⟨δ, Zℓ⟩ϕ(Yℓ)

and Dk =
k

Π
ℓ=0

ξℓ . A new probability measure P (the ”real world” probability) can

be defined by setting
dP

dP ∗

∣∣∣∣Gk

= Dk . (4.4)

By applying a similar approach to Theorem 4.1 above, it can be shown that under
P ,

νk =
Yk − ⟨g, Zk⟩

⟨δ, Zk⟩
is a sequence of i.i.d N(0, 1) random variables. That is, under P , Yk = ⟨g, Zk⟩ +
⟨δ, Zk⟩ νk as in (3.2).

4.3. Filtering the State of the Economy (Z). Using the reference probability

P ∗, we wish to find a recursion for Ẑk := E[Zk|Yk]. Write

p̂k := E[Zk|Yk] =
(
p̂1k, p̂

2
k, p̂

3
k

)/
.

As it is easier to work under P ∗, we have by an abstract form of Bayes’ Theorem
known as the Kallianpur-Striebel formula [6],

E[Zk|Yk] =
E∗[DkZk|Yk]

E∗[Dk|Yk]

where E∗ denotes the expectation under P ∗.
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Write
qk = E∗[DkZk|Yk

]
=

3∑
i=1

E∗
[
Dk−1 ·

ϕ
(
Yk−gi

δi

)
δiϕ(Yk)

· ⟨Zk, ei⟩ |Yk

]
ei

=
3∑

i=1

E∗
[ϕ(Yk−gi

δi

)
δiϕ(Yk)

· ⟨Dk−1ΠZk−1, ei⟩ Yk

]
ei

With Φ(Yk) the diagonal matrix with entries
ϕ
(

Yk−gi
δi

)
δiϕ(Yk)

, this gives the recursion

qk = Φ(Yk)Πqk−1 (4.5)

Now with 1 = (1, 1, . . . 1)

⟨Zk, 1⟩ = 1

so
E∗[Dk|Yk

]
= ⟨E∗[DkZk|Yk

]
, 1⟩

= ⟨qk, 1⟩
Therefore,

p̂k =
qk

⟨qk, 1⟩
∈ R3

and qk is updated in each period by (4.5).

5. Estimation of the Parameters

In this section, we show how the parameters of our model can be estimated using
the expectation maximization (EM) algorithm. The EM algorithm was introduced
by [5]. Our main focus is on the estimation of the parameters of the mean reverting

beta process which has as part of its inputs, the filtered estimate Ẑk. This filtered
estimate will itself require estimation of the parameters g and δ in the state of
the economy model (equations 3.1 and 3.2), but we do not address that here, as
methods for their estimation can be found in [10].

The filter-based EM algorithm estimation methods that we develop, will rely
on sequentially changing the parameters from one set of coefficients to another by
changing the probability from one measure to another.

5.1. Change of Parameters. We have noted that the coefficients, or parame-
ters, of our model are

θ := {α,B1,B2,B3, Q,G
2,M,H2}.

Suppose a second set of parameters is:

θ := {α,B1,B2,B3, Q,G
2,M,H

2}.

Theorem 4.1 shows how to change the parameters from {0, 0, 0, 0, 1, 0, 1} to θ. A
similar argument proves the following result.
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Notation 5.1. Write

ρ0 =
H

H
·
ψ
(
H−1(y0 −Mx0)

)
ψ
(
H

−1
(y0 −Mx0)

)
for ℓ ≥ 1

ρℓ =
H

H

ψ
(
H−1(yℓ −Mxℓ)

)
ψ
(
H −1(yℓ −Mxℓ)

) · G
G

ϕ
(
G−1(xℓ −Qxℓ−1 − cℓ)

)
ϕ
(
G−1(xℓ −Qxℓ−1 − cℓ)

) .
Theorem 5.1. Suppose under the probability measure Pθ that x and y have dy-
namics

xk = ck +Qk−1 +Gwk (5.1)

yk =Mxk +Hvk . (5.2)

Let

Λk(θ, θ) =
k∏

ℓ=0

ρℓ .

A new probability measure Pθ can be defined by setting

dPθ

dPθ

∣∣∣
Gk

= Λk( θ, θ). (5.3)

Then under Pθ the x and y have dynamics

xk = ck +Qxk−1 +Gwk (5.4)

yk =Mxk +Hvk . (5.5)

That is, changing the measure from Pθ to Pθ using the density (5.3) changes the
dynamics from (5.1), (5.2) to (5.4), (5.5).

5.2. Coefficient Updates. A finite-dimensional recursive EM algorithm will
now be developed for estimating the coefficients, θ, or parameters of our model.
This algorithm is recursive in the sense that the estimates at time period k are de-
rived from the estimates at time period (k−1) plus an algorithmically determined
correction which is based on the new information at time period k. Essentially,
at time period k, starting with an initial parameter estimate θ0, which comes
from time period (k − 1), the algorithm utilizes Theorem 5.1 above to generate
a sequence of parameter estimates that converges to the most likely values of the
parameter set θ, given the new information at time period k.

Suppose at time period k, that after j iterations, a parameter set θj has been
obtained. This parameter set θj then gives a probability measure Pj defined by
(4.3) relative to the reference probability measure. Consider another parameter
set, which we denote by

θ := {α,B1,B2,B3, Q,G
2,M,H2}.

To change the parameters from the set θj to θ we use the density given in (5.3).

Λk(θj , θ) =
k∏

ℓ=0

ρℓ . (5.6)
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The EM algorithm (see [10]) then suggests we look for the parameter set θ which
maximizes the expected likelihood

Eθj [Λk(θj , θ)|Yk]

or, equivalently, maximizes the expected log-likelihood, which from the densities
ϕ(x) and ψ(x) defined in Section 4.1, we get to be:

Eθj [log Λk(θj , θ)|Yk] =− (k + 1) logH − k log G

− G−2

2
Eθj

[ k∑
ℓ=1

(xℓ −Qxℓ−1 − cℓ)
2|Yk

]
− H−2

2
Eθj

[ k∑
ℓ=0

(yℓ −Mxℓ)
2|Yk

]
+Θj .

(5.7)

Here Θj represents all terms not depending on θ, and where we recall that

cℓ = αB̂ℓh = αh(B1p̂
1
ℓ + B2p̂

2
ℓ + B3p̂

3
ℓ).

Notation 5.2. Write

H0
k =

k∑
ℓ=0

x2ℓ H1
k =

k∑
ℓ=1

xℓxℓ−1

H2
k =

k∑
ℓ=1

x2ℓ−1 H3
k =

k∑
ℓ=1

x2ℓ

L1
k =

k∑
ℓ=1

cℓxℓ−1 L2
k =

k∑
ℓ=1

cℓxℓ

Jk =
k∑

ℓ=0

yℓxℓ

Yk =
k∑

ℓ=0

y2ℓ Ck =
k∑

ℓ=1

c2ℓ .

Then, for n = 0, 1, 2, 3 denote Ĥ n
k = Eθj [H

n
k |Yk], for n = 1, 2 denote L̂ n

k =

Eθj [L
n
k |Yk] and Ĵk = Eθj [Jk|Yk] as the corresponding filters for the processes de-

fined in Notation 5.2 above. Consequently, from (5.7), the expected log-likelihood

can be written in terms of the filters Ĥ L̂ n
k , and Ĵk, and the component processes

Yk, and Ck as

Γk(θ) :=− (k + 1) logH − k logG

− G−2

2

[
Ĥ 3

k +Q2Ĥ 2
k + Ck − 2QĤ 1

k − 2L̂ 2
k + 2QL̂ 1

k

]
− H−2

2

[
Yk +M2Ĥ 0

k − 2MĴk
]
+Θj .
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Theorem 5.2. Taking first order conditions of this expected log-likelihood we have
the following updated (EM) parameter estimates:

G2 =
1

k

[
Ĥ 3

k +Q2Ĥ 2
k + Ck − 2QĤ 1

k − 2L̂ 2
k + 2QL̂ 1

k

]
H2 =

1

k + 1

[
Yk +M2Ĥ 0

k − 2MĴk
]

Q =
(
Ĥ 2

k

)−1(
L̂ 1

k − Ĥ 1
k

)
M =

(
Ĥ 0

k

)−1
Ĵk .

Theorem 5.2 provides updates for G2 = σ2h, H2 = γ2h, Q = (1 − αh) and
M = ch. Here h is the time step, which is known, so these expressions provide
updates for the parameters σ2, γ2, α and c of the original model. However, the
updates for B1,B2,B3 require further calculations. Note that since

cℓ = αh
(
B1p̂

1
ℓ + B2p̂

2
ℓ + B3p̂

3
ℓ

)
then

Ck =

k∑
ℓ=1

c2ℓ = α2h2
( k∑

ℓ=1

( 3∑
i=1

B2
i (p̂

i
ℓ)

2 + 2
∑
i, j
i < j

BiBj p̂
i
ℓp̂

j
ℓ

))

Notation 5.3. Write for 1 ≤ i, j ≤ 3 :

Pi,j
k =

k∑
ℓ=1

p̂ i
ℓp̂

j
ℓ ,

∆1
k = αh

k∑
ℓ=1

(
B1p̂

1
ℓ + B2p̂

2
ℓ + B3p̂

3
ℓ

)
xℓ−1

∆2
k = αh

k∑
ℓ=1

(
B1p̂

1
ℓ + B2p̂

2
ℓ + B3p̂

2
ℓ

)
xℓ

∆1i
k =

k∑
ℓ=1

p̂ i
ℓxℓ−1 ∆2i

k =

k∑
ℓ=1

p̂ i
ℓxℓ

∆̂ 1i
k = Eθj

[
∆1i

k |Yk

]
, ∆̂ 2i

k = Eθj

[
∆2i

k |Yk

]
.

Theorem 5.3. Taking first order conditions with respect to B1,B2,B3 of the ex-
pected log-likelihood (5.7) we have the updated (EM) estimates for B1,B2 and B3

are given as solutions of the linear system:

P11
k B1 + P12

k B2 + P13
k B3 = (αh)−1

(
∆̂ 21

k −Q∆̂ 11
k

)
P21
k B1 + P22

k B2 + P23
k B3 = (αh)−1

(
∆̂ 22

k −Q∆̂ 12
k

)
P31
k B1 + P32

k B2 + P33
k B3 = (αh)−1

(
∆̂ 23

k −Q∆̂ 13
k

)
.

Writing Pk for the matrix (Pij
k , 1 ≤ i, j ≤ k),

B = (B1,B2,B3),
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and ∆̂k for the vector on the right, the new estimate for B is given by:

PkB = (αh)−1∆̂k .

Theorem 5.3 provides updates for B1,B2 and B3 . The interesting feature of
this theorem is that it demonstrates the informational interdependence between
financial markets and the real economy required by our sequentially updated EM
algorithm parameter estimates. Write θj+1 for the revised set of parameters
provided by Theorems 5.2 and 5.3. As we shall demonstrate below, the filters

Ĥ0
k , Ĥ

1
k , Ĥ

2
k , Ĥ

3
k , L̂

1
k , L̂

2
k , Ĵk , and ∆̂k in the theorems require µk and Pk from the

Kalman filter updating equations (Theorem 2.1). Once the revised θj+1 is com-
puted, new values for µk and Pk in the Kalman filter can then be obtained using
the revised θj+1 parameters. This gives rise to a recursive estimation procedure
which can be stopped when the total difference of the parameters at two successive
steps is sufficiently small.

6. Related Measures

A key objective of this paper is to derive an EM algorithm that is filter-based
and relatively simple to apply. In order to do this, we need recursive expressions
for certain measures associated with the processes H0,H1, H2, H3, L1, L2, J, ∆1i

and ∆2i. We first define these measures, then we provide a theorem to show
their recursive representations, and then we show how, given our assumption of
Gaussian error terms for the signal and observations processes, these recursive
representations can be characterized in terms of a relatively small number of simple
expressions that are straight forward to be numerically implemented.

6.1. Recursive Densities. For any bounded measurable test function g suppose

there are measures (or densities) αk, β
(n)
k , λ

(m)
k , γk and δ

(i)j
k such that:

E[Λkg(xk)|Yk] =

∫ ∞

−∞
αk(x)g(x)dx

E[ΛkH
(n)
k g(xk)|Yk] =

∫ ∞

−∞
β
(n)
k (x)g(x)dx, n = 1, 2,

E[ΛkL
(m)
k g(xk)|Yk] =

∫ ∞

−∞
λ
(m)
k (x)g(x)dx, m = 1, 2,

E[ΛkJkg(xk)|Yk] =

∫ ∞

−∞
γk(x)g(x)dx,

E[Λk∆
(i)j
k g(xk)|Yk] =

∫ ∞

−∞
δ
(i)j
k (x)g(x)dx, i = 1, 2, j = 1, 2, 3.

Theorem 6.1. These measures satisfy the following recursions:

αk(x) =
ψ
(
H−1(yk −Mx)

)
GHψ(yk)

∫ ∞

−∞
ϕ
(
G1(x−Qz − ck)

)
αk−1(z)dz (6.1)
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β0
k(x) =

ψ
(
H−1(yk −Mx)

)
GHψ(yk)

∫ ∞

−∞
ϕ
(
G−1(x−Qz − ck)

)
β0
k−1(z)dz

+ x2αk(x).

(6.2)

β1
k(x) =

ψ
(
H−1(yk −Mx)

)
GHψ(yk)

[ ∫ ∞

−∞
ϕ
(
G−1(x−Qz − ck)

)
β1
k−1(z)dz

+ x

∫ ∞

−∞
ϕ
(
G−1(x−Qz − ck)

)
zαk−1(z)dz

] (6.3)

β2
k(x) =

ψ
(
H−1(yk −Mx)

)
GHψ(yk)

[ ∫ ∞

−∞
ϕ
(
G−1(x−Qz − ck)

)
β2
k−1(z)dz

+

∫ ∞

−∞
ϕ
(
G−1(x−Qz − ck)

)
z2αk−1(z)dz

]
(6.4)

β3
k(x) =

ψ
(
H−1(yk −Mx)

)
GHψ(yk)

∫ ∞

−∞
ϕ
(
G−1(x−Qz−ck)

)
β3
k−1(z)dz+x

2αk(x) (6.5)

λ1k(x) =
ψ
(
H−1(yk −Mx)

)
GHψ(yk)

[ ∫ ∞

−∞
ϕ
(
G−1(x−Qz − ck)

)
λ1k−1(z)dz

+ ck

∫ ∞

−∞
ϕ
(
G−1(x−Qz − ck)

)
zαk−1(z)dz

]
(6.6)

λ2k(x) =
ψ
(
H−1(yk −Mx)

)
GHψ(yk)

∫ ∞

−∞
ϕ
(
G−1(x−Qz − ck)

)
λ2k−1(z)dz + ckxαk(x)

(6.7)

γk(x) =
ψ
(
H−1(yk −Mx)

)
GHψ(yk)

∫ ∞

−∞
ϕ
(
G−1(x−Qz − ck)

)
γk−1(z)dz + ykxαk(x)

(6.8)

δ1jk (x) =
ψ
(
H−1(yk −Mx)

)
GHψ(yk)

[ ∫ ∞

−∞
ϕ
(
G−1(x−Qz − ck)

)
δ1jk−1(z)dz

+ p̂ j
k

∫ ∞

−∞
ϕ
(
G−1(x−Qz − ck)

)
zαk−1(z)dz

]
(6.9)

δ2jk (x) =
ψ
(
H−1(yk −Mx)

)
GHψ(yk)

∫ ∞

−∞
ϕ
(
G−1(x−Qz − ck)

)
δ2jk−1(z)dz + p̂ j

kxαk(x).

(6.10)
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Proof. We shall prove the recursions (6.1) and (6.2). The other results are similar.
Now αk(x) is defined by:

E[Λkg(xk)|Yk] =

∫ ∞

−∞
αk(x)g(x)dx

= E
[
Λk−1

ψ
(
H−1(yk −Mxk)

)
Hψ(yk)

·
ϕ
(
G−1(xk −Qxk−1 − ck)

)
Gϕ(xk)

g(xk)|Yk

]
.

Under P all the xk and yk are N(0, 1) and i.i.d. so this is

= E
[
Λk−1

∫ ∞

−∞

1

HGψ(yk)
ψ
(
H−1(yk −Mx)

)
× ϕ

(
G−1(x−Qxk−1 − ck)

)
g(x)dx|Yk−1

]
=

1

HGψ(yk)

∫ ∞

−∞

∫ ∞

−∞
αk−1(z)ψ

(
H−1(yk −Mx)

)
ϕ
(
G−1(x−Qz− ck)

)
g(x)dxdz.

As g is arbitrary,

αk(x) =
ψ(yk −Mx)

HGψ(yk)

∫ ∞

−∞
αk−1(z)ϕ(x−Qz − ck)dz.

□

Proof of (6.2). With H0
k =

k∑
ℓ=0

x2ℓ the measure β0
k is defined by

E[ΛkH
0
kg(xk)|Yk]

=

∫ ∞

−∞
β0
k(x)g(x)dx

=
1

Hψ(yk)
E
[
Λk−1H

0
k−1 ψ

(
H−1(yk −Mxk)

) ϕ(G−1(xk −Qxk−1 − ck)
)

Gϕ(xk)
g(xk)

+ Λk−1 x
2
kψ

(
H−1(yk −Mxk)

)ϕ(G−1(xk −Qxk−1 − ck)
)

Gϕ(xk)
g(xk) |Yk−1

]
=

1

HGψ(yk)
E
[
Λk−1H

0
k−1

∫ ∞

−∞
ψ
(
H−1(yk−Mx)

)
ϕ
(
G−1(x−Qxk−1−ck)

)
g(x)dx

+Λk−1

∫ ∞

−∞
x2ψ

(
H−1(yk −Mx)

)
ϕ
(
G−1(x−Qxk−1 − ck)

)
g(x)dx |Yk−1

]
=

1

HGψ(yk)

[ ∫ ∞

−∞

∫ ∞

−∞
β0
k−1(z)ψ

(
H−1(yk −Mx)

)
ϕ
(
G−1(x−Qz− ck)

)
g(x)dxdz

+

∫ ∞

−∞

∫ ∞

−∞
αk−1(z)x

2ψ
(
H−1(yk −Mx)

)
ϕ
(
G−1(x−Qz − ck)

)
g(x)dxdz

]
.
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As g is arbitrary this implies

β0
k(x) =

ψ
(
H−1(yk −Mx)

)
HGψ(yk)

[ ∫ ∞

−∞
β0
k−1(z)ϕ

(
G−1(x−Qz − ck)

)
dz

+ x2
∫ ∞

−∞
αk−1(z)ϕ

(
G−1(x−Qz − ck)

)
dz

]
.

Remark 6.2. These recursions have initial values: α0(x) is the initial distribution
of x0 = β0, which we assume to be Gaussian.

β0
0(x) = x2α0(x), β1

0(x) = 0, β2
0(x) = 0,

β3
0(x) = 0, λ10(x) = 0, λ20(x) = 0, γ0(x) = xyα0(x),

δ1j0 (x) = 0, δ2j0 (x) = 0, j = 1, 2, 3.

The recursive representations (6.1) to (6.10) use the Gaussian densities ϕ and
ψ but, in general, are not themselves Gaussian. However, if, as we have assumed
in Remark 6.2 above, α0(x) is Gaussian then the recursion (6.1) gives rise to a
recursive family of Gaussian densities αk(x) whose mean and variance provide the
Kalman filter as stated in Section 2.2. See [6]. For the other densities we derive
explicit finite-dimensional expressions for them in the next section.

6.2. Explicit Expressions for Densities. The interesting fact, first described
in [9] and [7], is that explicit expressions can now be found for the expected
quantities required in the parameter updates of Theorems 5.2 and 5.2, and these
expressions have very simple updates in terms of the conditional mean µk and
variance Pk provided by the Kalman filter of Section 2.2.
Write:

σk = P−1
k−1 +Q2G−2

Σk = G−2σ−1
k Q

Sk = σ−1
k+1

(
P−1
k µk −QG−2ck

)
.

We first note

Theorem 6.3. There are real constants a
(n)
k , b

(n)
k , d

(n)
k such that for

k = 0, 1, 2, . . . the measure β
(n)
k has the form:

β
(n)
k (x) =

(
a
(n)
k + b

(n)
k x+ d

(n)
k x2

)
αk(x), n = 0, 1, 2, 3.

Proof. Consider the case n = 0. Then from (6.2)

β
(0)
k (x) =

ψ
(
H−1(yk −Mk)

)
GHψ(yk)

∫ ∞

−∞
ϕ
(
G−1(x−Qz − ck)

)
β
(0)
k−1(z)dz + x2αk(x).

We prove the result by induction. When k = 0 β
(0)
0 (x) = x2α0(x) so the result

holds for k = 0.
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Suppose the result is true up to k = 1. Then

β
(0)
k (x) =

ψ
(
H−1(yk −Mx)

)
GHψ(yk)

×
∫ ∞

−∞
ϕ
(
G−1(x−Qz − ck)

)(
a
(0)
k−1 + b

(0)
k−1z + d

(0)
k−1z

2
)
αk−1(z)dz.

Now recall that ψ(z) is a N(0, 1) density and, up to normalization, αk−1 is
N(µk−1 , Pk−1). After completing the square, the integrals can be evaluated and
we find that

β
(0)
k (x) =

(
a
(0)
k + b

(0)
k x+ d

(0)
k x2

)
αk(x)

where

a
(0)
k = a

(0)
k−1 + b

(0)
k−1Sk−1 + d

(0)
k−1σ

−1
k + d

(0)
k−1S

2
k−1 , a

(0)
0 = 0

b
(0)
k = Σk

(
b
(0)
k−1 + 2d

(0)
k−1Sk−1

)
, b

(0)
0 = 0,

d
(0)
k = Σ2

kd
(0)
k−1 + 1, d00 = 1.

The proofs for β(n), n = 1, 2, 3 are similar but the recursions are:

a
(1)
k = a

(1)
k−1 + b

(1)
k−1Sk−1 + d

(1)
k−1σ

−1
k + d

(1)
k−1S

2
k−1 , a

(1)
0 = 0

b
(1)
k = Σk

(
b
(1)
k−1 + 2d

(1)
k−1Sk−1

)
+ Sk−1 , b

(1)
0 = 0

d
(1)
k = Σ2

kd
(1)
k−1 +Σk , d

(1)
0 = 0

a
(2)
k = a

(1)
k−1 + b

(2)
k−1Sk−1 + d

(2)
k−1σ

−1
k + S2

k(d
(2)
k−1 + 1) + σ−1

k+1 , a
(2)
0 = 0

b
(2)
k = Σk

(
b
(2)
k−1 + 2(d

(2)
k−1 + 1)Sk−1

)
, b

(2)
0 = 0

d
(2)
k = Σ2

k(d
(2)
k−1 + 1), d

(2)
0 = 0

a
(3)
k = a

(3)
k−1 + b

(3)
k−1Sk−1 + d

(3)
k σ−1

k + S2
k−1d

(3)
k−1 , a

(3)
0 = 0

b
(3)
k = Σk

(
b
(3)
k−1 + 2d

(3)
k−1Sk−1

)
, b

(3)
0 = 0

d
(3)
k = Σ2

kd
(3)
k−1 + 1, d

(3)
0 = 0.

□

In the same way we can establish the form of the densities

λ1k(x), λ
2
k(x), γk(x), δ

1j
k (x), δ2jk (x), j = 1, 2, 3,

and the recursions for their coefficients. We state these results as a sequence of
theorems.
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Theorem 6.4. λ
(m)
k (x) has the form

λ
(m)
k (x) =

(
a
(m)
k + b

(m)
k x

)
αk(x), m = 1, 2,

where

a
(1)
k = a

(1)
k−1 +

(
b
(1)
k−1 + 1

)
Sk−1 , a

(1)
0 = 0

b
(1)
k = Σk

(
b
(1)
k−1 + 1

)
, b

(1)

0 = 0

and

a
(2)
k = a

(2)
k−1 + a

(2)
k−1Sk−1 , a

(2)
0 = 0

b
(2)
k = Σk b

(2)
k−1 + 1, b

(2)
0 = 0.

Theorem 6.5. γk(x) has the form

γk(x) = (pk + qkx)αk(x)

where

pk = pk−1 + qk−1Sk−1, p0 = 0

qk = Σkqk−1 + yk, q0 = y0 .

Theorem 6.6. The measures δ
(i)j
k (x), i = 1, 2, j = 1, 2, 3, have the form

δ
(i)j
k (x) =

(
u
(i)j
k + v

(i)j
k x

)
αk(x)

where

u
(1)j
k = u

(1)j
k−1 +

(
v
(1)j
k−1 + 1

)
Sk−1, u

(1)j
0 = 0

v
(1)j
k = Σk

(
v
(1)j
k−1 + 1

)
, v

(1)j
0 = 0

and

u
(2)j
k = u

(2)j
k−1 + v

(2)j
k−1Sk−1 , u

(2)j
0 = 0

v
(2)j
k = Σkv

(2)j
k−1 + 1, v

(2)j
0 = 0.

7. Updates for the Parameter Estimates

With the explicit expressions we have derived for the densities αk, β
(n)
k , λ

(m)
k ,

γk and δ
(i)j
k , it is then straight forward to obtain the recursive filters Ĥ0

k , Ĥ
1
k , Ĥ

2
k ,

Ĥ3
k , L̂

1
k , L̂

2
k , Ĵk , and ∆̂k which are then used directly to obtain the updates of

the parameter estimates

Theorem 7.1. For n = 0, 1, 2, 3

Ĥ
(n)
k = a

(n)
k + b

(n)
k µk + d

(n)
k Pk + d

(n)
k µ2

k .
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Proof. Using the abstract Bayes Theorem as in Section 4 above,

Ĥ
(n)
k = E

[
H

(n)
k |Yk

]
=
E[ΛkH

(n)
k |Yk

]
E[Λk|Yk]

=

∫∞
−∞ β

(n)
k (x)dx

αk

where

αk =

∫ ∞

−∞
αk(x)dx = E[Λk|Yk].

Now αk(x) is an unnormalized N(µk, Pk), density so∫ ∞

−∞
β
(n)
k (x)dx = αkE

[
a
(n)
k + b

(n)
k x+ d

(n)
k x2

]
= αk

(
a
(n)
k + b

(n)
k µk + d

(n)
k Pk + d

(n)
k µk

)
and the results follow. □

Using the updated equations of Theorem 6.3 this result enables us to recursively

estimate Ĥ
(n)
k , n = 0, 1, 2, 3. In the same way we can recursively update the other

quantities required to calibrate the model:

L̂
(m)
k = E

[
L
(m)
k |Yk

]
= a

(m)
k + b

(m)
k µk

Ĵk = E
[
Jk|Yk

]
= pk + qkµk

∆̂
(i)j
k = E

[
∆

(i)j
k |Yk

]
= u

(i)j
k + v

(i)j
k µk .

These are then used in Theorems 5.2 and 5.3 to update the estimates of the
parameters.

8. Conclusions

In this paper we have considered reduced-form models that link the real econ-
omy to financial markets. A mean reverting beta process for a stock market
industry sector is considered where the mean reversion level for the beta switches
between three values depending on the state of the economy. The state of the
economy is modelled as a three state Markov chain observed in the growth rate
process of real GDP.

Discrete time versions for the dynamics of the state of the chain and the beta
process are considered. The filtered, estimated, values of the state of the economy
are used to estimate the long term mean. The beta process is estimated from
observations of the returns.

Novel recursive estimates for calibrating the model are introduced which apply
ideas from [10] and [7]. The filters and the filter-based EM algorithms used to
estimated the mean reverting levels are new and allow for a richer information set
to be used in the calibration of beta.
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