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TRANSIENT SOLUTION OF GENERALIZED FINITE
BIRTH-DEATH PROCESS

MOHIT, D. V. GUPTA AND P. K. SHARMA

ABSTRACT: A transient single server queueing model with finite birth-death process is
considered. The transient distribution of the number of customers in the system and the
expected length of the system for a finite birth and death process are derived by solving
the system of differential-difference equations using Laplace-Transforms and finding the
inversion through the properties of tridiagonal symmetric matrices. Some numerical
comparisons are made with the randomization method.

Keywords: Transient, Birth-Death process, Differential-difference equations, Laplace
transform.

1. INTRODUCTION

Much of the vast literature on queueing models is confined to results describing steady-
state operation only. But in many potential applications of queueing theory, the
practitioner needs to know how the system will operate up to some instant ‘t’. Many
systems begin operations and are stopped at some specified time t. Business or service
operations such as rental agencies or medical clinics which open and close, never operate
under steady-state conditions. Furthermore, if the system is empty initially, the fraction
of time the server is busy and the initial rate of output etc will be below the steady-
state values, and hence, the use of steady-state results to obtain these measures is not
appropriate. Thus, the investigation of the transient behaviour of queueing processes is
also important from the point of view of the theory and its applications.

The transient derivation of Markovian queueing models is quite a complicated
procedure. Detailed analysis of transient solution of some of these models is discussed
in Gross and Harris [5]. The solution of the M/M/1/� model postdated that of the basic
Erlang work by nearly half a century, with the first published solution due to Ledermann
and Reuter [7], in which they used spectral analysis for the general birth-death process.
In the same year, an additional paper appeared on the solution of this problem by Bailey
[2], and later on by Champernowne [3]. Bailey’s approach to the time-dependent
problem was via generating functions for partial differential equation, and
Champernowne’s was via complex combinatorial methods. It is Bailey’s approach that
has been popular over the years.

In this paper, a finite transient state birth-death process is considered. The model
has also been studied by Rosenlund [9]. The explicit solution for M/M/1 obtained by
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Takacs [11] is cumbersome. The computational procedure described here for generalized
birth-death process is simpler in application as well as in computation. Sharma and
Dass [10] in 1988 simplified the earlier presentation of the method in considering the
finite capacity M/M/1 model for finding the transient solution. Herein, method of Sharma
and Dass [10] is followed with a little modification thus leading to a simpler computation
of the model’s solution. Krinik et. al. [6] have applied the randomization technique to
solve transient single server queueing model. Al-Seedy [1] has obtained transient
solution of M/M/2 queueing model with balking using generating function technique.
But these techniques are not applicable to generalized birth-death transient queueing
models.

2. THE MATHEMATICAL MODEL

Consider the generalized birth-death process with (N + 1) states viz. 0, 1, 2, …, N
having birth-death rates �

n
 and �

n
 respectively, when it is in state n. Let it be assumed

that the initial system size at time 0 is i. Let P
n
(t) denotes probability that the process is

in state n at time t. Then differential-difference equations governing the system size
are given by
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3. SOLUTION OF MATHEMATICAL MODEL

We solve these time-dependent equations by using combination of probability generating
functions, partial differential equations and Laplace transforms. Let P

—

n
(s) be the Laplace-

transform of P
n
(t). Taking Laplace-transform of equation (1), we get

0 0 1 1 0

1 1 1 1

1 1

( ) ( ) ( ) , 0

( ) ( ) ( ) ( ) , 1 ( 1)

( ) ( ) ( ) ,

i

n n n n n n n in

N N N N iN

s P s P s n

P s s P s P s n N

P s s P s n N

� � � �

� �

�� � � � � � �
�

�� � � � � � � � � � � � � �
��� � � � � � � �

(2)

where �
in
 is the Kronecker delta.

Let C
N
(s) be the determinant of the coefficient matrix of (2). Let T

r
(s) and B

r
(s) be

the determinants of the r � r matrices formed at the top left corner and at the bottom
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right corner of the coefficient matrix. Also let T0(s) = B0(s) = 1.

The solution of equation (1) is given as
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where  the first product may be interpreted as 1
n

j
j k

u
�

��  whenever n < k.

Our aim is to express (3) as a partial fraction and we know that C
N
(s) is given by
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Notice that s is zero of C
N
(s) if and only if – s is an eigenvalue of the matrix E

N
, where
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Observe that s = 0 is an eigenvalue of E
N
. However, since each off-diagonal element

is non-zero, all eigenvalues are distinct. Thus, s is the only zero of C
N (s). Also, since

all minors of elements of E
N
 are positive, by the strum sequence property, all other

eigenvalues are positive. Therefore, all the eigenvalues of the positive semi-definite
matrix E

N
 are real, distinct zeros one of which is zero and the rest are the negatives of

the eigenvalues of E
N
. Let the zeros of C

N
(s) be z

k
, k = 0, 1, …, N, with z0 = 0. P

—

n
(s) in
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(3) can also be expressed as:
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The partial fraction form is given as
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The distribution of the state can be obtained by inverting (5) which is

P
n
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where �
n, k’s are given by (6).

4. RESULTS AND DISCUSSIONS

Extensive computations are made to test the method and obtain the performance
measures of the transient queueing models. Value of N is taken as 4. Here C4 is of the
form
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Here z
k
, k = 0, 1, 2, 3, 4 are the roots of C4(s).

Here T
r
(s) and B

r
(s) are determinants of the r � r matrices at the top left corner and

bottom right corner of the coefficient matrix respectively and T0(s) = B0(s) = 1.
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Transient probabilities are given by

P
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Expected number of customers in the system are given by

L
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First of all, following parameters are chosen

�
i
 = 1, 0 � i � (N – 1)

�
i
 = 1, 1 � i � N

Probabilities at different times P
n
(t) and expected length of the system L

s
 are computed

until the following criterion is satisfied

| Pn
(t + h) – P

n
(t) | < � � n

i.e. difference of probabilities at the consecutive time-steps is less than a specified
tolerance parameter �. In the present computations, � is taken as 10–3. The results are
reported in Table 1. It is clear from the table that after a certain time, probabilities P

n
(t)

reach the steady state. Next �
i
 are chosen as 2, 3 and 4 � i for the same value of �

i
 and

the entire computational procedure is repeated. The results are reported in Tables 2, 3
and 4 respectively. From the tables, it is clear that as �

i
 increases, expected length of

the system L
S
 decreases. To investigate the effect of change of arrival rate, following

values of �
i
 and �

i
 are taken

�
i
 = 2, �

i
 = 2 � i

�
i
 = 3, �

i
 = 2 � i

�
i
 = 4, �

i
 = 2 � i,
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Effect of t on P0, P1, P2, P3, P4 & L
S
.

Table 1

� = 1 and � = 1

t P
0

P
1

P
2

P
3

P
4

L
S

0.0 0.999 0.000 0.000 0.000 0.000 0.000
1.0 0.523 0.308 0.122 0.035 0.009 0.699
2.0 0.385 0.296 0.179 0.090 0.047 1.117
3.0 0.319 0.269 0.194 0.127 0.089 1.397
4.0 0.279 0.248 0.198 0.151 0.122 1.588
5.0 0.253 0.232 0.199 0.166 0.146 1.719
6.0 0.236 0.222 0.199 0.177 0.163 1.808
7.0 0.224 0.215 0.199 0.184 0.175 1.868
8.0 0.217 0.210 0.199 0.189 0.182 1.910
9.0 0.211 0.207 0.199 0.192 0.188 1.938

10.0 0.207 0.204 0.199 0.195 0.192 1.957
11.0 0.205 0.203 0.199 0.196 0.194 1.970
12.0 0.203 0.202 0.199 0.197 0.196 1.980
13.0 0.202 0.201 0.199 0.198 0.197 1.986
14.0 0.201 0.201 0.199 0.198 0.198 1.990
15.0 0.201 0.201 0.199 0.199 0.198 1.993
16.0 0.201 0.201 0.199 0.199 0.199 1.995
17.0 0.201 0.201 0.199 0.199 0.199 1.997
18.0 0.201 0.201 0.199 0.199 0.199 1.998

Table 2

� = 1 and � = 2

t P
0

P
1

P
2

P
3

P
4

L
S

0.0 0.999 0.000 0.000 0.000 0.000 0.000
1.0 0.633 0.257 0.082 0.021 0.008 0.517
2.0 0.565 0.263 0.111 0.043 0.017 0.687
3.0 0.539 0.261 0.121 0.054 0.024 0.764
4.0 0.527 0.259 0.125 0.059 0.028 0.801
5.0 0.521 0.258 0.127 0.061 0.030 0.820
6.0 0.518 0.258 0.128 0.060 0.031 0.820
7.0 0.517 0.258 0.128 0.063 0.031 0.827
8.0 0.516 0.258 0.128 0.064 0.031 0.830
9.0 0.516 0.258 0.128 0.064 0.032 0.834

10.0 0.516 0.258 0.128 0.064 0.032 0.834
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Table 3

� = 1 and � = 3

t P
0

P
1

P
2

P
3

P
4

L
S

0.0 0.999 0.000 0.000 0.000 0.000 0.000
1.0 0.710 0.215 0.056 0.012 0.002 0.379
2.0 0.679 0.222 0.069 0.021 0.006 0.450
3.0 0.672 0.222 0.073 0.023 0.007 0.470
4.0 0.669 0.223 0.073 0.024 0.008 0.476
5.0 0.669 0.223 0.074 0.024 0.008 0.478
6.0 0.669 0.223 0.074 0.024 0.008 0.478

Table 4

� = 1 and � = 4

t P
0

P
1

P
2

P
3

P
4

L
S

0.0 0.999 0.000 0.000 0.000 0.000 0.000
1.0 0.766 0.183 0.040 0.008 0.001 0.294
2.0 0.753 0.187 0.045 0.011 0.002 0.322
3.0 0.751 0.187 0.046 0.011 0.002 0.327
4.0 0.750 0.187 0.046 0.011 0.002 0.327
5.0 0.750 0.187 0.046 0.011 0.002 0.327
6.0 0.750 0.187 0.046 0.011 0.002 0.327

Only the steady-state probabilities and expected length of customers in the system
are reported in Table 5. Table 2 and Table 5 clearly demonstrate that as arrival rate �

i

increases, L
S
 also increases. Table 6 contains the computational results for different

values of N corresponding to the same values of �
i
 and �

i
 when steady state is achieved.

Again it is clear from the table that as N increases, expected length of customers in
system L

S
 also increases. Also the above results are reported when values of �

i
 and �

i

are same � i. The method works equally well for varying values of �
i
 and �

i
. It is

assumed that customers arrive from a single infinite source in accordance with parameter
�. Customers are served by one of the c-servers. The capacity of the system is limited
to N (including those being served) i.e. there is a waiting room with capacity (N – c).

Table 5

�
i

�
i

P
0

P
1

P
2

P
3

P
4

L
S

2.0 2 0.200 0.200 0.199  0.199  0.199  1.999
3.0 2 0.075 0.115 0.170  0.255  0.383  2.759
4.0 2 0.032 0.064 0.129  0.257  0.515  3.159
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Table 6

�
i
 = 1 and �

i
 = 2 � i

N P
0

P
1

P
2

P
3

P
4

P
5

L
S

3.0 0.533 0.266 0.132  0.066  –  –  0.731
4.0 0.516 0.258 0.128  0.064  0.032  –  0.834
5.0 0.508 0.254 0.127  0.063  0.031  0.015  0.896

An arriving customer who finds all the c-servers busy on arrival, but the waiting
room not full, may balk with probability q or may join the system with probability p
where p + q = 1. Thus �q is the instantaneous balking rate. After joining the queue, a
customer may renege i.e. he will wait a certain length of time for the service to begin,
otherwise he will depart from the system. The length of time he will wait is a random
variable having exponential distribution with parameter �. In this case,

�
n
 =

, 0 ( 1)

,

n c

p c n N

� � � ��
� � � ��

�
n
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, 0 ( 1)

( ) ,

n n c

c n c c n N
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For the purpose of computational results, following parameters are chosen

N = 3, c = 2, p = 0.5, � = 5, � = 1, � = 2

Values of �
i
 and �

i
 reduce to

�0 = �, �1 = �, �2 = p�, �3 = p�
�1 = �, �2 = 2 �, �3 = 2 � + �, �4 = 2 � + 2�

The above values of �
i
 and �

i
 correspond to the model with reneging and balking,

computational procedure is carried out and the results are reported in Table 7. Further,

Table 7

N = 3,c = 2, p = 0.5, � = 5, � = 1, � = 2

t P
0

P
1

P
2

P
3

L
S

0.0 0.999 0.000 0.000 0.000 0.000
1.0 0.650 0.283 0.062 0.006 0.428
2.0 0.616 0.303 0.075 0.008 0.478
3.0 0.613 0.306 0.076 0.008 0.484
4.0 0.612 0.306 0.076 0.008 0.484
5.0 0.612 0.306 0.076 0.008 0.484
6.0 0.612 0.306 0.076 0.008 0.484
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for the same values of N, c, � and �; values of p and � are chosen as 1 and 0 respectively
and the results are reported in Table 8. These results correspond to the case when there
is no balking and reneging. Expected length of customers in the system in this case is
greater than that with balking and reneging. The results depict the same behaviour as
reported by Mohanty et al., [8] and are in agreement with the observed pattern.

Table 8

N = 3,c = 2, p = 1, � = 0, � = 1, � = 2

t P
0

P
1

P
2

P
3

L
S

0.0 1.000 0.000 0.000 0.000 0.000
1.0 0.648 0.297 0.059 0.012 0.452
2.0 0.610 0.298 0.073 0.017 0.497
3.0 0.604 0.301 0.075 0.018 0.507
4.0 0.603 0.301 0.075 0.018 0.508
5.0 0.603 0.301 0.075 0.018 0.508
6.0 0.603 0.301 0.075 0.018 0.508

5. CONCLUSION

The classical treatment of the transient behaviour is usually more complex than the
steady state behaviour. A generalised finite-state birth-death process is considered and
transient distribution of the number of customers is derived using Laplace transform of
differential-difference equations and inverting again using the properties of tri-diagonal
matrices. The numerical computations are carried out until the desired convergence
criterion is satisfied, thus arriving at the steady–state distribution of the queueing model.
The probability distribution of the number of customers and expected length of the
system are given for various values of parameters viz. �, � and N. It is observed that as
service rate � increases, expected length of the system L

S
 decreases. Further, as arrival

rate � increases, L
S
 increases. Similarly as N increases, L

S
 again increases. The queueing

model with balking and reneging can also be tackled using generalized birth-death
model. Expected length of customers in the system is greater in the queueing model
with balking and reneging than the model without these. The computational results
presented here exhibit the similar pattern as randomization method (Grassmann [4]).
Moreover, the computational method presented here is efficient and easier to implement.
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