International Review of Pure and Applied Mathematics Volume 14 • Number 2 • July-December 2018

A STUDY OF *k-g-* FRAMES IN HILBERT SPACES

G. Upender Reddy, P. Kalyani and D. Swapna

Abstract: K-frames were recently introduced by Gãvruţa in Hilbert spaces to study atomic systems with respect to a bounded linear operator. K-g-frames are more general than of g-frames in Hilbert spaces. Some results on k-g-frames are studied.

 $(K_1 \otimes K_2) - g - frame$ for the tensor product of Hilbert spaces $H_1 \otimes H_2$ is introduced and some results on it are established.

Mathematics Subject Classification (2010): 42C15

Key words: frame: g-frame, k-g-frame

1. INTRODUCTION

Frames are generalization of bases. D. Han and D.R. Larson [5] have developed a number of basic aspects of operator-theoretic approach to frame theory in Hilbert space. Peter G. Casazza [1] presented a tutorial on frame theory and he suggested the major directions of research in frame theory. A. Najati and A. Rahimi [6] have developed the generalized frame theory and introduced methods for generating gframes of a Hilbert space. Sun[7] introduced the concepts of g-Riesz bzses and gframes.Recently, K-frames in a Hilbert space is introduced by L.Gavruta [4]as a generalization of the notion of the frame in Hilbert space. Fahimeh Arabyani Neyshaburi and Ali Akber Arefijamaal[3] were characterize all duals of a given kframe and given some approaches for constructing K-frames. In [8], the authors Y Zhou and Y.Zhu are put forward the concept of K-g- frames, which are more general than ordinary g-frames in Hilbert spaces. Dingli Hua and Yongdong Huang [2] are proposed for construction methods for K-g-frames. The g-frame operator for gframe in Hilbert space is introduced and results of g-frame operator are presented by GU Reddy in [9] and in [10] the tensor product of g-frames in tensor product of Hilbert spaces were studied.

In this paper Some results on k-g-frames are studied. $(K_1 \otimes K_2) - g - frame$ for the tensor product of Hilbert spaces $H_1 \otimes H_2$ is introduced and some results on it are established.

2. PRELIMINARIES

Frames are generalizations of orthonormal basis in Hilbert spaces. We recall the basic definations of frames.

Definition 2.1: A sequence $\{f_j\}_{j \in J}$ of vectors in a Hilbert space *H* is called a frame if there exists two constants $0 < A \le B < \infty$, such that

$$A\left\|f\right\|^{2} \leq \sum_{j \in J} \left|\left\langle f, f_{j}\right\rangle\right|^{2} \leq B\left\|f\right\|^{2} \ \forall \ f \in H$$

The above inequality is called a frame inequality. The numbers A and B are called the lower and upper frame bounds respectively. If A = B then $\{f_j\}_{j \in J}$ is called tight frame, if A=B=1 then $\{f_j\}_{j \in J}$ is called normalized tight frame. A synthesis operator $T: l_2 \to H$ is defined as $Te_j = f_j$ where $\{e_j\}$ is an orthonormal basis for l_2 . The analysis operator $T^*: H \to l_2$ is an adjoint of synthesis operator T and is defined as $T^*f = \sum_{j \in J} \langle f, f_j \rangle e_j \quad \forall f \in H$.

A frame operator $S = TT^* : H \to H$ is defined as $Sf = \sum_{i} \langle f, f_i \rangle \langle f_j \rangle \langle f \in H$

The following few theorems from [1, 5] are useful in our discussion.

Theorem 2.2: For an orthonormal system $\{e_i\}_{i=1}^{\infty}$, the following are equivalent

- (i) $\{e_i\}_{i=1}^{\infty}$ is an orthonormal basis.
- (ii) $f = \sum_{i=1}^{\infty} \langle f, e_i \rangle \langle e_i \rangle \langle f \rangle \langle f \rangle \langle f \rangle$
- (iii) $\langle f, g \rangle = \sum_{i=1}^{\infty} \langle f, e_i \rangle \langle e_i, g \rangle, \forall f, g \in H.$

(iv)
$$\sum_{i=1}^{\infty} |\langle f, e_i \rangle|^2 = ||f||^2, \forall f \in H$$
.

(v) Span
$$\{e_i\}_{i=1}^{\infty} = H$$
.

(vi) If $\leq f$, $e_i > = 0 \forall i$ then f = 0.

Theorem 2.3. Suppose $\{f_j\}_{j \in J}$ is a frame for H if and only if $AI_{op} \leq S \leq BI_{op}$ and $\{f_j\}_{j \in J}$ is normalized tight frame for H if and only if $S = I_{op}$, where I_{op} is an identity operator on H. The following theorem gives the existence of inverse of frame operator.

Theorem 2.4. [5] Let S be a frame operator for the frame $\{f_j\}_{j \in J}$ with frame bounds A and B in the Hilbert space H. Then S⁻¹ exists, positive and $B^{-1}I_{op} \leq S^{-1} \leq A^{-1}I_{op}$.

Throughout this paper $\{H_j \ j \in J\}$ will denote a sequence of Hilbert spaces. Let $L(H, H_j)$ be a collection all bounded linear operators from H to H_j and $\{\Lambda_j \in L(H, H_j) : j \in J\}$.

Definition 2.5. A sequence of operators $\{\Lambda_j\}_{j\in J}$ is said to be g-frame for Hilbert space *H* with respect to sequence of Hilbert spaces $\{H_j, j \in J\}$, if there exist two constants $0 < A \le B < \infty$, such that

$$A \|f\|^2 \leq \sum_{j \in J} \|\Lambda_j f\|^2 \leq B \|f\|^2 \quad \forall f \in H$$

The above inequality is called a g-frame inequality. The numbers A and B are called the lower frame bound and upper frame bound respectively. A g-frame $\{\Lambda_j\}_{j\in J}$ for H is said to be g-tight frame if A = B and g-normalized tight frame for H if A = B = 1.

Definition 2.6. Let $\{\Lambda_j\}_{j\in J}$ be a g-frame for Hilbert space H. A g-frame operator

$$S^{g}: H \to H$$
 is defined as $S^{g} f = \sum_{j \in J} \Lambda_{j}^{*} \Lambda_{j} f \quad \forall f \in H$

By using above definitions the following theorem on g-frame operator can be derived easily, so left to reader.

Theorem 2.7. If S^g is a g- frame operator , then we have

(i)
$$< S^{g} f, f > = \sum_{j \in J} \left\| \Lambda_{j} f \right\|^{2}$$
, for all f \hat{I} H.

- (ii) S^{g} is a positive operator.
- (iii) S^g is a self adjoint operator.

Theorem 2.8. Suppose $\{\Lambda_j\}_{j\in J}$ is a g-frame iff $A I_{op} \leq S^g \leq B I_{op}$ and $\{\Lambda_j\}_{j\in J}$ is g-normalized tight frame iff $S^g = I_{op}$ where I_{op} is an identity operator on *H*.

Proof. Since $\{\Lambda_j\}_{j\in J}$ is a g-frame so, we have,

$$\mathbf{A} \left\| f \right\|^2 \le \sum_{j \in J} \left\| \Lambda_j f \right\|^2 \le \mathbf{B} \left\| f \right\|^2, \text{ for all } f \in H.$$

Consider $< A I_{op} f, f > = A < f, f > = A ||f||^2 \le \sum_{j \in J} ||\Lambda_j f||^2 \le B ||f||^2$ = $B < f, f > = < B I_{op} f, f >$

 $\implies \qquad \mathbf{A} \mathbf{I}_{\mathrm{op}} \leq S^{g} \leq B \mathbf{I}_{\mathrm{op}}$

Conversely suppose $A I_{op} \le S g \le B I_{op}$

$$\Rightarrow \langle \mathbf{A} \mathbf{I}_{op} \mathbf{f}, \mathbf{f} \rangle \leq \langle \mathbf{S} \, s \, \mathbf{f}, \mathbf{f} \rangle \leq \langle \mathbf{I}_{op} \mathbf{B} \mathbf{f}, \mathbf{f} \rangle, \text{ for all } \mathbf{f} \in \mathbf{H}.$$
$$\Rightarrow \mathbf{A} \left\| f \right\|^2 \leq \sum_{j \in J} \left\| \Lambda_j \, f \right\|^2 \leq \mathbf{B} \, \left\| f \right\|^2$$

which implies $\{\Lambda_i\}_{i \in J}$ is a g-frame for *H*.

Suppose $\{\Lambda_j\}_{j\in J}$ is a g-normalized tight frame for *H*

$$\Leftrightarrow \sum_{j \in J} \left\| \Lambda_j f \right\|^2 = \left\| f \right\|^2 \text{ for all } f \in H.$$
$$\Leftrightarrow \langle S^g f, f \rangle = \langle I_{\text{op}} f, f \rangle \Leftrightarrow S^g = I_{\text{op}}.$$

We can easily seen that the frame operator S^g is invertible and S^{g-1} is a positive operator.

The following theorem gives the existence of inverse of g-frame operator.

Theorem 2.9. Let S^g be a g-frame operator of the g-frame $\{\Lambda_j\}_{j\in J}$ with frame bounds A and B in the Hilbert space H. Then $B^{-1} I_{op} \leq S^{g-1} \leq A^{-1} I_{op}$.

Proof. Since $\{\Lambda_j\}_{j\in J}$ is a g-frame for Hilbert space H, so by theorem 2.8, we have

 $A I_{op} \leq S \, {}^{g} \leq B I_{op}$ Since A I_{op} $\leq S \, {}^{g} \Rightarrow 0 \leq (S \, {}^{g} - A I_{op}) S \, {}^{g} \, {}^{-1} \Rightarrow 0 \leq I_{op} - A S \, {}^{g} \, {}^{-1}$ (2.10) $\Rightarrow S \, {}^{g} \, {}^{-1} \leq A^{-1} I_{op}$ Similarly, we can prove that

(2.11) $B^{-1} I_{op} \le S^{g-1}$

From the equations (2.10) and (2.11), we get $B^{-1} I_{op} \le S g^{-1} \le A^{-1} I_{op}$.

Theorem 2.12. Let $\{\Lambda_j\}_{j\in J}$ be a g- frame for Hilbert space H with respect to $\{H_j\}_{j\in J}$ and $V \in B(H)$ be an invertible operator. Then $\{\Lambda_j V\}_{j\in J}$ is a g-frame for H with respect to $\{H_j\}_{j\in J}$ and its g-frame operator is V^* S^g V.

Proof. Since $V \in B(H)$, $\forall f \in H$, we have $Vf \in H$.

Given that $\{\Lambda_i\}_{i \in J}$ is a g- frame for H, by 2.5 for all Vf \in H, we have,

$$\mathbf{A} \left\| V f \right\|^2 \le \sum_{j \in J} \left\| \Lambda_j V f \right\|^2 \le \mathbf{B} \left\| V f \right\|^2$$

Since $V \in B(H)$, therefore we have,

$$\|Vf\|^2 \le \|V\|^2 \|f\|^2$$
 and $\|V^{-1}\|^{-2} \|f\|^2 \le \|Vf\|^2$

by using above inequalities, the equation (2.14) becomes

$$A \|V^{-1}\|^{-2} \|f\|^{2} \leq \sum_{j \in J} \|\Lambda_{j} V f\|^{2} \leq B \|V\|^{2} \|f\|^{2}, \ \forall \ f \in H$$

 $\Rightarrow \{\Lambda_j V\}_{j \in J}$ is g-frame for *H*.

For each $f \in H$, we have

$$S^{g} Vf = \sum_{j \in J} \Lambda^{*}_{j} \Lambda_{j} Vf$$
$$\Rightarrow V^{*} S^{g} Vf = \sum_{j \in J} V^{*} \Lambda^{*}_{j} \Lambda_{j} Vf$$

 \Rightarrow V * S^g V is a g-frame operator for the frame $\left\{ \Lambda_{j} V \right\}_{j \in J}$.

3. K-G-FRAMES

In this paper L(H) is the family of all linear bounded operators on H and $K \in L(H)$

Definition 3.1. Let $K \in L(H)$. A sequence $\{f_j\}_{j \in J}$ in Hilbert space H is said to be a K-frame for H if there exists two constants $0 < A \le B < \infty$, such that $A \|K^*f\|^2 \le \sum_{j \in J} |\langle f, f_j \rangle|^2 \le B \|f\|^2$, $\forall f \in H$.

Where A and B are called lower and upper frame bounds for k-frame respectively. If K=I, then k-frames are just ordinary frames. If A=B then $\{f_j\}_{j\in J}$ is called k-tight frame, if A=B=1 then $\{f_j\}_{j\in J}$ is called normalized k-tight frame. The frame operator is given by S^k: H \mathbb{R} H is defined as S^k f = $\sum_{j\in J} \langle f, f_j \rangle f_j$, for all $f \in H$

Definition 3.2. Let $K \in L(H)$ and $\Lambda_j \in L(H, H_j)_{j \in J}$. A sequence of operators $\{\Lambda_j\}_{j \in J}$ is said to be K-g-frame for Hilbert space H with respect to sequence of Hilbert spaces $\{H_j\}_{j \in J}$ if there exist two constants $0 < A \le B < \mu$, such that

$$A \left\| K^* f \right\|^2 \le \sum_{j \in J} \left\| \Lambda_j f \right\|^2 \le B \left\| f \right\|^2, \ \forall \ f \in H.$$

The above inequality is called a K-g-frame inequality. The numbers A and B are called the lower and upper frame bounds of K-g-frame respectively. When K=I, K-g-frame is a g-frame.

A k-g- frame is said to be tight if there exist a constant a positive constant A such that

$$\sum_{j \in J} \left\| \Lambda_j f \right\|^2 = A \left\| K^* f \right\|^2, \ \forall \ f \in H.$$

If A=1 then $\{\Lambda_j\}_{j\in J}$ is said to be parseval tight k-g-frame.

Definition 3.3: Let $\{\Lambda_j\}_{j \in J}$ be a K-g-frame for H. A synthesis operator $T: l^2(\{H_j\}_{j \in J}) \rightarrow H$

is defined as $T\left(\left\{g_{j}\right\}_{j\in J}\right) = \sum_{j\in J} \Lambda_{j}^{*}g_{j} \quad \forall \left\{g_{j}\right\}_{j\in J} \in l^{2}\left(\left\{H_{j}\right\}_{j\in J}\right)$.

Definition 3.4: Let $\{\Lambda_j\}_{j \in J}$ be a K-g-frame for *H*. The analysis operator $T^* H \rightarrow : l^2(\{H_j\}_{j \in J})$ is the adjoint of synthesis operator *T* and is defined as $T^* f = \{\Lambda_j f\}_{j \in J} \quad \forall f \in H$

Definition 3.5: Let $\{\Lambda_j\}_{j\in J}$ be a K-g-frame for Hilbert space H. A K- g-frame operator

$$S^{kg}: H \to H$$
 is defined as $S^{kg} f = \sum_{j \in J} \Lambda^*_j \Lambda_j f$, $\forall f \in H$.

Note that $\langle S^{kg} f, f \rangle = \sum_{j \in J} \left\| \Lambda_j f \right\|^2$.

Theorem 3.6: If $K \in L(H)$ and $\{\Lambda_j\}_{j \in J}$ is a K-g-frame for Hilbert space H with respect to $\{H_j\}_{j \in J}$ then $S^{kg} \ge AKK^*$.

Proof. Suppose $\{\Lambda_j\}_{j\in J}$ is a K-g-frame for H

$$\Rightarrow A \| K^* f \|^2 \le \sum_{j \in J} \| \Lambda_j f \|^2 \le B \| f \|^2, \ \forall \ f \in H.$$

$$\Rightarrow A \langle K^* f, K^* f \rangle \le \langle S^{kg} f, f \rangle \ \forall \ f \in H$$

$$\Rightarrow \langle AKK^* f, f \rangle \le \langle S^{kg} f, f \rangle \ \forall \ f \in H$$

$$\Rightarrow S^{kg} \ge AKK^*.$$

Theorem 3.7. Let $\{\Lambda_j\}_{j\in J}$ be a K-g-frame for Hilbert space H with respect to $\{H_j\}_{j\in J}$. If $V: H \to H$ is any bounded linear invertible operator such that V^{-1} is commutes with K*, then $\{\Lambda_j V\}_{j\in J}$ is k-g-frame for H.

Proof. Suppose $\{\Lambda_j\}_{j\in J}$ is a K-g-frame for H, by definition we have $A \|K^* f\|^2 \leq \sum_{j\in J} \|\Lambda_j f\|^2 \leq B \|f\|^2$, $\forall f \in H$.

If $V: H \to H$ is a bounded linear invertible operator $\forall f \in H \text{ implies } Vf \in H$

Therefore $A \| K^* V f \|^2 \le \sum_{j \in J} \| \Lambda_j V f \|^2 \le B \| V f \|^2$ $\le B \| V \|^2 \| f \|^2 \ \forall f \in H$ (3.8) Now $A \| K^* f \|^2 = A \| K^* V^{-1} V f \|^2 = A \| V^{-1} K^* V f \|^2 \le \| V^{-1} \|^2 A \| K^* V f \|^2$ $\le \| V^{-1} \|^2 \sum_{j \in J} \| \Lambda_j V f \|^2 \ \forall f \in H$ $\Rightarrow A \| V^{-1} \|^{-2} \| K^* f \|^2 \le \sum_{j \in J} \| \Lambda_j V f \|^2 \ \forall f \in H$ (3.9)

By using (3.8) and (3.9) we have

$$\Rightarrow A \|V^{-1}\|^{-2} \|K^*f\|^2 \le \sum_{j \in J} \|\Lambda_j Vf\|^2 \le B \|V\|^2 \|f\|^2 \quad \forall f \in H$$

$$\Rightarrow \{\Lambda_j V\}_{j \in J} \text{ is a k-g-frame for } H.$$

Theorem 3.10: If $K \in L(H)$ and $\{\Lambda_j\}_{j \in J}$ is a K-g-frame for Hilbert space H with respect to $\{H_j\}_{j \in J}$ If $V: H \to H$ is any bounded linear operator then $\{\Lambda_j V^*\}_{j \in J}$ is a Vk-g-frame for H with respect to $\{H_j\}_{j \in J}$.

Proof. Given $\{\Lambda_j\}_{j \in J}$ is a K-g-frame for Hilbert space H with respect to $\{H_j\}_{j \in J}$, we have

$$A \left\| K^* f \right\|^2 \le \sum_{j \in J} \left\| \Lambda_j f \right\|^2 \le B \left\| f \right\|^2, \ \forall \ f \in H.$$

Since $V \in L(H)$ implies $V^* f \in H$ for any $f \in H$, then we have

$$A \| K^* V^* f \|^2 \leq \sum_{j \in J} \| \Lambda_j V^* f \|^2 \leq B \| V^* f \|^2, \ \forall \ f \in H.$$

$$\Rightarrow A \| (VK)^* f \|^2 \leq \sum_{j \in J} \| (\Lambda_j V^*) f \|^2 \leq B \| V \|^2 \| f \|^2, \ \forall \ f \in H.$$

$$\Rightarrow \left\{ \Lambda_j V^* \right\}_{j \in J} \text{ is a Vk-g-frame for H with respect to } \left\{ H_j \right\}_{j \in J}.$$

Theorem 3.11: Let $K_1, K_2 \in L(H)$ and $\{\Lambda_j\}_{j\in J}$ is a $K_1 - g - frame and K_2 - g - frame for H$ and α , β are scalars then $\{\Lambda_j\}_{j\in J}$ is a $(\alpha K_1 + \beta K_2) - g - frame for H$ and $K_1 K_2 - g - frame for H$.

Proof. Suppose $\{\Lambda_j\}_{j\in J}$ is a $K_1 - g - frame$ for H

$$\Rightarrow A_1 \left\| K_1^* f \right\|^2 \le \sum_{j \in J} \left\| \Lambda_j f \right\|^2 \le B_1 \left\| f \right\|^2, \ \forall \ f \in H.$$

Given

 $\left\{\Lambda_{j}\right\}_{j\in J}$ is a $K_{1} - g - frame$ for H

$$\Rightarrow A_2 \left\| K_2^* f \right\|^2 \le \sum_{j \in J} \left\| \Lambda_j f \right\|^2 \le B_2 \left\| f \right\|^2, \ \forall \ f \in H.$$

Consider

$$\begin{split} \left\| \left(\alpha K_{1} + \beta K_{2} \right)^{*} f \right\|^{2} &= \left\| \overline{\alpha} K_{1}^{*} f + \overline{\beta} K_{2}^{*} f \right\|^{2} = 2 \left\| \overline{\alpha} K_{1}^{*} f \right\|^{2} + 2 \left\| \overline{\beta} K_{2}^{*} f \right\|^{2} - \left\| \overline{\alpha} K_{1}^{*} f - \overline{\beta} K_{2}^{*} f \right\|^{2} \\ &\leq 2 \left\| \overline{\alpha} K_{1}^{*} f \right\|^{2} + 2 \left\| \overline{\beta} K_{2}^{*} f \right\|^{2} = 2 |\alpha|^{2} \left\| K_{1}^{*} f \right\|^{2} + 2 |\beta|^{2} \left\| K_{2}^{*} f \right\|^{2} \\ &= \frac{2 |\alpha|^{2}}{A_{1}} A_{1} \left\| K_{1}^{*} f \right\|^{2} + \frac{2 |\beta|^{2}}{A_{2}} A_{2} \left\| K_{2}^{*} f \right\|^{2} \leq \left(\frac{2 |\alpha|^{2}}{A_{1}} + \frac{2 |\beta|^{2}}{A_{2}} \right) \sum_{j \in J} \left\| \Lambda_{j} f \right\|^{2} \end{split}$$

$$= 2 \left(\frac{A_2 |\alpha|^2 + A_1 |\beta|^2}{A_1 A_2} \right) \sum_{j \in J} \left\| \Lambda_j f \right\|^2$$

$$\Rightarrow \frac{A_1 A_2}{2(A_2 |\alpha|^2 + A_1 |\beta|^2)} \left\| (\alpha K_1 + \beta K_2)^* f \right\|^2 \le \sum_{j \in J} \left\| \Lambda_j f \right\|^2$$

$$= \frac{1}{2} \sum_{j \in J} \left\| \Lambda_j f \right\|^2 + \frac{1}{2} \sum_{j \in J} \left\| \Lambda_j f \right\|^2$$

$$\le \frac{1}{2} B_1 \left\| f \right\|^2 + \frac{1}{2} B_2 \left\| f \right\|^2 = \left(\frac{B_1 + B_2}{2} \right) \left\| f \right\|^2$$

$$\Rightarrow \frac{A_1 A_2}{2(A_2 |\alpha|^2 + A_1 |\beta|^2)} \left\| (\alpha K_1 + \beta K_2)^* f \right\|^2 \le \sum_{j \in J} \left\| \Lambda_j f \right\|^2 \le \left(\frac{B_1 + B_2}{2} \right) \left\| f \right\|^2 \quad \forall f \in H$$

Which shows that $\{\Lambda_j\}_{j\in J}$ is a $(\alpha K_1 + \beta K_2) - g - frame \text{ for } H$.

Now $\left\| (K_1 K_2)^* f \right\|^2 \le \left\| K_2^* \right\|^2 \left\| K_1^* f \right\|^2$ $\Rightarrow \frac{A_1}{\left\| K_2^* \right\|^2} \left\| (K_1 K_2)^* f \right\|^2 \le A_1 \left\| K_1^* f \right\|^2 \le \sum_{j \in J} \left\| \Lambda_j f \right\|^2 \le B_1 \left\| f \right\|^2$ $= \frac{A_1}{\left\| (K_1 K_2)^* f \right\|^2} \le \sum \left\| \Lambda_j f \right\|^2 \le B_1 \left\| f \right\|^2 \quad \forall f \in H$

$$\Rightarrow \overline{\left\|K_{2}^{*}\right\|^{2}} \left\|\left(K_{1}K_{2}\right) f\right\| \leq \sum_{j \in J} \left\|\Lambda_{j}f\right\| \leq B_{1} \left\|f\right\| \quad \forall f \in H$$

Which shows that $\{\Lambda_j\}_{j\in J}$ is a $K_1K_2 - g - frame$ for H.

4. TENSOR PRODUCT OF K- G-FRAMES

In this section the tensor product of K-g-frames in tensor product of Hilbert spaces is introduced. It was shown that the tensor product of two K- g-frames is a K-g-frame for the tensor product of Hilbert spaces.

Let H_1 and H_2 be two Hilbert spaces with inner products $<.,.>^1$, $<.,.>_2$ and norms $\|.\|_1$, $\|.\|_2$ respectively. The tensor product of H_1 and H_2 is denoted by $H_1 \otimes H_2$ and is an inner product space with respect to the inner product

$$\langle f_1 \otimes g_1, f_2 \otimes g_2 \rangle = \langle f_1, f_2 \rangle_1 \langle g_1, g_2 \rangle_2$$

for all $f_1, f_2 \in H_1$ and $g_1, g_2 \in H_2$. The norm on $H_1 \otimes H_2$ is defined by

$$||f \otimes g|| = ||f||_1 ||g||_2 \quad \forall f \in H_1, g \in H_2.$$

The space $H_1 \otimes H_2$ is clearly completion with the above inner product. Therefore the space $H_1 \otimes H_2$ is a Hilbert space. We denote $L(H_1, H_2)$ be the space of all bounded linear operators from $H_1 \rightarrow H_2$. Let $M \in L(H_1)$ and $N \in L(H_2)$ be two operators, then the tensor product of operator $M \otimes N$ acts on $H_1 \otimes H_2$ as

$$(M \otimes N)(f \otimes g) = Mf \otimes Ng$$

for every $\forall f \in H_1, g \in H_2$ and $f \otimes g \in H_1 \otimes H_2$.

We note that if $M_1, M_2 \in L(H_1), N_1, N_2 \in L(H_2)$ and $M_1 \otimes N_1, M_2 \otimes N_2 \in L(H_1 \otimes H_2)$ then $(M_1 \otimes N_1)(M_2 \otimes N_2) = M_1M_2 \otimes N_1N_2$.

In this paper we denote I_{H_1} is an identity operator on H_1 and I_{H_2} is an identity operator on H_2 then $I_{H_1} \otimes I_{H_2} = I_{H_1 \otimes H_2}$ is an identity operator on $H_1 \otimes H_2$.

The following is the extension of (3.2) to the sequence of operators $\{\Lambda_i \otimes \beta_j\}$.

Definition 4.1. Let $K_1 \otimes K_2 \in L(H_1 \otimes H_2)$ and $\{\Lambda_i\}$ and $\{\beta_j\}$ be the sequences of operators in Hilbert spaces H_1 and H_2 respectively. Then the sequence of operators $\{\Lambda_i \otimes \beta_j\}$ is said to be a $(K_1 \otimes K_2) - g - frame$ for the tensor product of Hilbert spaces $H_1 \otimes H_2$, if there exist two constants 0 < Ad" B $<\mu$, such that

$$\mathbf{A}\left\|\left(K_{1}\otimes K_{2}\right)^{*}\left(f\otimes g\right\|^{2}\leq \sum_{i,j}\left\|\left(\Lambda_{i}\otimes \beta_{j}\right)\left(f\otimes g\right)\right\|^{2}\leq B\left\|f\otimes g\right\|^{2}, \forall f\otimes g\in H_{1}\otimes H_{2}$$

The numbers A and B are called lower and upper frame bounds of $(K_1 \otimes K_2) - g - frame$.

Theorem 4.2: Let $K_1 \in L(H_1)$, $K_2 \in L(H_2)$ and $\{\Lambda_i\}$, $\{\beta_j\}$ be $K_1 - g - frame$ and $K_2 - g - frame$ for Hilbert spaces H_1, H_2 with respect to $\{H_{1i}\}$ and $\{H_{2j}\}$, respectively. Then $\{\Lambda_i \otimes \beta_j\}$ is a $(K_1 \otimes K_2) - g - frame$ for $H_1 \otimes H_2$ with respect to $\{H_{1i} \otimes H_{2j}\}$.

Proof: Let $\{\Lambda_i\}$ be a $K_1 - g - frame$ for H_1 with frame bounds A_1 and B_1 with respect to $\{H_{1i}\}$ then, for all $f \in H_1$ and $K_1 \in L(H_1)$

(4.3)
$$A_{1} \left\| K_{1}^{*} f \right\|^{2} \leq \sum_{j \in J} \left\| \Lambda_{i} f \right\|^{2} \leq B_{1} \left\| f \right\|^{2}, \ \forall \ f \in H_{1}.$$

Let $\{ B_j \}$ be a $K_2 - g - frame$ for H_2 with frame bounds A_2 and B_2 with respect to $\{H_{2j}\}$, then, for all $g \in H_2$ and $K_2 \in L(H_2)$

(4.4)
$$A_2 \|K_2^* g\|^2 \le \sum_{j \in J} \|\beta_j g\|^2 \le B_2 \|g\|^2, \ \forall \ g \in H_2.$$

multiplying the equations (4.3) and (4.4), we get

$$\begin{split} A_{1}A_{2}\left\|K_{1}^{*}f\right\|^{2}\left\|K_{2}^{*}g\right\|^{2} &\leq \left(\sum_{i\in I}\left\|\Lambda_{i}f\right\|^{2}\right)\left(\sum_{j\in J}\left\|\beta_{j}g\right\|^{2}\right) \leq B_{1}B_{2}\left\|f\right\|^{2}\left\|g\right\|^{2} \quad \forall f \in H_{1}, g \in H_{2} \\ \Rightarrow & A_{1}A_{2}\left\|K_{1}^{*}f \otimes K_{2}^{*}g\right\|^{2} \quad \leq \sum_{i,j\in J}\left\|\Lambda_{i}f\right\|^{2}\left\|\beta_{j}g\right\|^{2} \leq B_{1}B_{2}\left\|f \otimes g\right\|^{2} \quad \forall f \otimes g \in H_{1} \otimes H_{2} \\ \Rightarrow & A_{1}A_{2}\left\|\left(K_{1} \otimes K_{2}\right)^{*}\left(f \otimes g\right)\right\|^{2} \quad \leq \sum_{i,j\in J}\left\|\Lambda_{i}f \otimes \beta_{j}g\right\|^{2} \leq B_{1}B_{2}\left\|f \otimes g\right\|^{2} \quad \forall f \otimes g \in H_{1} \otimes H_{2} \\ \Rightarrow & A_{1}A_{2}\left\|\left(K_{1} \otimes K_{2}\right)^{*}\left(f \otimes g\right)\right\|^{2} \quad \leq \sum_{i,j\in J}\left\|\Lambda_{i}f \otimes \beta_{j}g\right\|^{2} \leq B_{1}B_{2}\left\|f \otimes g\right\|^{2} \quad \forall f \otimes g \in H_{1} \otimes H_{2} \\ \Rightarrow & A_{1}A_{2}\left\|\left(K_{1} \otimes K_{2}\right)^{*}\left(f \otimes g\right)\right\|^{2} \quad \leq \sum_{i,j\in J}\left\|\left(\Lambda_{i} \otimes \beta_{j}\right)\left(f \otimes g\right)\right\|^{2} \leq B_{1}B_{2}\left\|f \otimes g\right\|^{2} \quad \forall f \otimes g \in H_{1} \otimes H_{2} \\ \Rightarrow & \left\{\Lambda_{i} \otimes \beta_{j}\right\} \text{ is a } \left(K_{1} \otimes K_{2}\right) - g - frame \text{ for } H_{1} \otimes H_{2}. \end{split}$$

Theorem 4.3: If $\{\Lambda_i \otimes \beta_j\}$ is a $(K_1 \otimes K_2) - g - frame$ for $H_1 \otimes H_2$ with respect to $\{H_{1i} \otimes H_{2j}\}$. Then $\{\Lambda_i\}$ and $\{\beta_j\}$ are K-g-frames for Hilbert spaces H_1 and H_2 with respect to $\{H_{1i}\}$ and $\{H_{2j}\}$ respectively.

Proof: Suppose that $\{\Lambda_i \otimes \beta_j\}$ is a $(K_1 \otimes K_2) - g - frame$ for $H_1 \otimes H_2$ with frame bounds A and B. Then for each $f \otimes g \in H_1 \otimes H_2 - \{0 \otimes 0\}$

$$\begin{split} A \Big\| (K_1 \otimes K_2)^* (f \otimes g) \Big\|^2 &\leq \sum_{i, j \in J} \Big\| (\Lambda_i \otimes \beta_j) (f \otimes g) \Big\|^2 \leq B \| f \otimes g \|^2 \quad \forall f \otimes g \in H_1 \otimes H_2 \\ \Rightarrow & A \Big\| (K_1^* f \otimes K_2^* g) \Big\|^2 \leq \sum_{i, j \in J} \Big\| \Lambda_i f \otimes \beta_j g \Big\|^2 \leq B \| f \otimes g \|^2 \quad \forall f \otimes g \in H_1 \otimes H_2 \\ \Rightarrow & A \| K_1^* f \Big\|^2 \Big\| K_2^* g \Big\|^2 \leq (\sum_{i, \in J} \| \Lambda_i f \|^2) (\sum_{j \in J} \| \beta_j \|^2) \leq B \| f \|^2 \| g \|^2 \quad \forall f \in H_1, g \in H_2 \end{split}$$

Consider $f \otimes g$ is a non zero vector i.e. f and g are non zero vectors, therefore the above inequality becomes

$$\Rightarrow \frac{A \|K_{2}^{*}g\|^{2}}{\sum_{j \in J} \|\beta_{j}g\|^{2}} \|K_{1}^{*}f\|^{2} \leq \sum_{i \in J} \|\Lambda_{i}f\|^{2} \leq \frac{B \|g\|^{2}}{\sum_{j \in J} \|\beta_{j}g\|^{2}} \|f\|^{2} \ \forall f \in H_{1}, g \in H_{2}$$

$$\Rightarrow A_{1} \|K_{1}^{*}f\|^{2} \leq \sum_{i \in J} \|\Lambda_{i}f\|^{2} \leq B_{1} \|f\|^{2}, \ \forall f \in H_{1}.$$

$$\text{where } A_{1} = \frac{A \|K_{2}^{*}g\|^{2}}{\sum_{j \in J} \|\beta_{j}g\|^{2}} \text{ and } B_{1} = \frac{A \|g\|^{2}}{\sum_{j \in J} \|\beta_{j}g\|^{2}}$$

which shows that $\{\Lambda_i\}$ is a $K_1 - g - frame$ for H_1 . Similarly we can prove that $\{\beta_j\}$ is a $K_2 - g - frame$ for H_2 .

ACKNOWLEDGEMENT

The research of the first author is partially supported by the UGC (India) [Letter No. F.20-4(1)/2012(BSR)].

REFERENCES

- P. G. Casazza, "The Art of Frame theory", *Taiwanese Journal of Mathematics*, Vol. 4, No. 2(2000), pp 129-201.
- [2] Dingli Hua and Yongdong Huang, k-G-Frames and Stability of K-G-Frames in Hilbert Spaces, J. Korean Math, Soc, 53(2016), No.6, pp. 1331-1345.
- [3] Fahimeh Arabyani Neyshaburi and Ali Akber Arefijamaal, Construction for K-frames and their Duals in Hilbert Spaces, The extended abstracts of The 4th Seminar on Functional Analysis and its Applications, 2-3rd March 2016, Ferdowsi University of Mashhad, Iran.
- [4] L.Gavruta, Frames for Operators, Appl. Comput. Harmon. Anal. 32(2012),139-144.
- [5] D. Han, and D.R. Larson, "Frames, Bases and Group Representations", Memories, Ams Nov 7(2000), Providence RI.
- [6] A. Najati, and A. Rahimi, "Generalized frames in Hilbert spaces", Bulletin of the Iranian Mathematical Society, Vol. 35, No. 1(2009), pp. 97-109.
- [7] W. Sun, G-Frames and G-Riesz bases, J. Math. Annal. Appl, 322(2006), No.1, 437-452.
- [8] Y. Zhou and Y. Zhu, K-g-frames and dual g-frames for closed subspaces, Acta Math, Sinica, 56(2013), No.5, 799-806.
- [9] G.U. Reddy and N.G.Reddy, Some Results on g-frame Operator in Hilbert Space, Int. J. Contemp. Math. Sciences, Vol.5, 2010, No.40, 1977-1984.
- [10] G.U. Reddy and N.G.Reddy, "A Note on Tensor product of G-Frames", *International Journal of Computational Science and Mathematics* (ISSN 0974-3189), Volume 4, Number 1(2012), pp. 57-62.

G. Upender Reddy¹, P. Kalyani² and D. Swapna³

¹Department of Mathematics Mahatma Gandhi University, Nalgonda, T. S *E-mail: upendermathsmgu@gmail.com* ²Dept of Mathematics, ATRI, Hyderabad.

³ Dept of Mathematics, NNRG, Hyderabad