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A STUDY OF k-g- FRAMES IN HILBERT SPACES
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Abstract: K-frames were recently introduced by Gãvruţa in Hilbert spaces to study
atomic systems with respect to a bounded linear operator. K-g-frames are more
general than of g-frames in Hilbert spaces. Some results on k-g-frames are studied.
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1. INTRODUCTION

Frames are generalization of bases. D. Han and D.R. Larson [5] have developed a
number of basic aspects of operator-theoretic approach to frame theory in Hilbert
space. Peter G. Casazza [1] presented a tutorial on frame theory and he suggested
the major directions of research in frame theory. A. Najati and A. Rahimi [6] have
developed the generalized frame theory and introduced methods for generating g-
frames of a Hilbert space. Sun[7] introduced the concepts of g-Riesz bzses and g-
frames.Recently, K-frames in a Hilbert space is introduced by L.Gavruta [4]as a
generalization of the notion of the frame in Hilbert space. Fahimeh Arabyani
Neyshaburi and Ali Akber Arefijamaal[3] were characterize all duals of a given k-
frame and given some approaches for constructing K-frames. In [8], the authors Y
Zhou and Y.Zhu are put forward the concept of K-g- frames, which are more general
than ordinary g-frames in Hilbert spaces. Dingli Hua and Yongdong Huang [2] are
proposed for construction methods for K-g-frames. The g-frame operator for g-
frame in Hilbert space is introduced and results of g-frame operator are presented
by GU Reddy in [9] and in [10] the tensor product of g-frames in tensor product of
Hilbert spaces were studied.

In this paper Some results on k-g-frames are studied. (K
1
 � K

2
) – g – frame for

the tensor product of Hilbert spaces H
1
 � H

2
 is introduced and some results on it

are established.

2. PRELIMINARIES

Frames are generalizations of orthonormal basis in Hilbert spaces. We recall the
basic definations of frames.
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Definition 2.1: A sequence {f
j
}

j�J
 of vectors in a Hilbert space H is called a

frame if there exists two constants 0 < A � B < �, such that

HffBfffA
Jj

j ���� �
�

222
,

The above inequality is called a frame inequality. The numbers A and B are

called the lower and upper frame bounds respectively. If A = B then� �
Jjjf

�  is

called tight frame, if A=B=1 then� �
Jjjf

�  is called normalized tight frame. AA

synthesis operator T : l
2
 � H is defined as Te

j
 = f

j
 where {e

j
} is an orthonormal

basis for l
2
. The analysis operator T* : H � l

2
 is an adjoint of synthesis operator T

and is defined as HfefffT
Jj

jj ������
�

� , .

A frame operator HHTTS �� � :  is defined as

HffffSf
j

jj ����� � ,

The following few theorems from [1, 5] are useful in our discussion.

Theorem 2.2: For an orthonormal system {e
i
} �

�1i , the following are equivalent

(i) {e
i
} �

�1i  is an orthonormal basis.

(ii) f =�
�

�

��
1

,
i

ii eef  Hf �� .

(iii) <f, g> =�
�

�

����
1

,,
i

ii geef  , Hgf �� , .

(iv) �
�

�

��
1

2
,

i
ief =

2
f , Hf �� .

(v) Span {e i } �
�1i  = H.

(vi) If <f, e i > = 0 � i then f = 0.

Theorem 2.3. Suppose� �
Jjjf

�  is a frame for H if and only if opop BISAI ��

and� �
Jjjf

�  is normalized tight frame for H if and only if S = I
op

, where I
op

 is an

identity operator on H.



A STUDY OF K-G-FRAMES IN HILBERT SPACES 219

The following theorem gives the existence of inverse of frame operator.

Theorem 2.4. [5] Let S be a frame operator for the frame� �
Jjjf

�  with frame

bounds A and B in the Hilbert space H.  Then S -1 exists, positive and

opop IASIB 111 ��� �� .

Throughout this paper {H
j
, j � J} will denote a sequence of Hilbert spaces.

Let ),( jHHL  be a collection all bounded linear operators from H to H
j
 and

� �JjHHL jj ��� :),( .

Definition 2.5. A sequence of operators { j� } Jj� is said to be g-frame for

Hilbert space H with respect to sequence of Hilbert spaces {H Jjj �, }, if there

exist two constants 0 < A � B <�, such that

HffBffA
Jj

j ������
�

222

.

The above inequality is called a g-frame inequality. The numbers A and B are
called the lower frame bound and upper frame bound respectively. A g-frame

{ j� } Jj� for H is said to be g-tight frame if A  = B and g-normalized tight frame for

H if A = B = 1.

Definition 2.6. Let { j� } Jj� be a g-frame for Hilbert space H. A g-frame

operator

Sg: H � H is defined as HfffS
Jj

jj
g ������

�

�

.

By using above definitions the following theorem on g-frame operator can be
derived easily, so left to reader.

Theorem 2.7. If Sg is a g- frame operator , then we have

(i) < Sg f, f> = �
�

�
Jj

j f
2

, for all f Î H.

(ii) Sg is a positive operator.

(iii) Sg is a self adjoint operator.
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Theorem 2.8. Suppose { j� } Jj�  is a g-frame iff f A I
op

 � Sg � B I
op

 and

{ j� } Jj� is g-normalized tight frame iff f Sg = I
op

 where I
op

 is an identity operator on

H.

Proof. Since { j� } Jj� is a g-frame so, we have,

A 
2

f ��
�

�
Jj

j f
2

 � B 
2

f , for all f � H.

Consider < A I
op

 f, f > = A <f, f> = A
2

f  � �
�

�
Jj

j f
2

� B 
2

f

= B <f, f> = < B I
op 

f, f>

� A I
op

 � Sg � B I
op

Conversely suppose A I
op

 � S g  � B I
op

� <A I
op

f, f> � < S g f, f> � < I
op

Bf, f>, for all f � H.

� A
2

f  � �
�

�
Jj

j f
2

� B 
2

f

which implies { j� } Jj� is a g-frame for H.

Suppose { j� } Jj�  is a g-normalized tight frame for H

���
�

�
Jj

j f
2

=
2

f  for all f � H.

� < Sg f, f> =< I
op

 f, f > � Sg = I
op

.

We can easily seen that the frame operator Sg is invertible and Sg 1�  is a positive

operator.

The following theorem gives the existence of inverse of g-frame operator.

Theorem 2.9. Let Sg be a g-frame operator of the g-frame { j� } Jj� with frame

bounds A and B in the Hilbert space H. Then B-1 I
op

 � Sg 1�  � AA-1 I
op

.

Proof. Since { j� } Jj� is a g-frame for Hilbert space H, so by theorem 2.8, we
have
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A I
op

 � S g � B I
op

Since A I
op

 � S g � 0 � (S g -A I I
op

) S g 1� � 0 � I
op

 – A S S g 1�

(2.10) � S g 1�  � AA-1 I
op

Similarly, we can prove that

(2.11) B-1 I
op

 � Sg 1�

From the equations (2.10) and (2.11), we get B-1 I
op

 � S g 1�  � AA-1 I
op

.

Theorem 2.12. Let� �
Jjj �

�  be a g- frame for Hilbert space H with respect to

� �
JjjH

�  and )(HBV �  be an invertible operator. Then � �
JjjV �

�  is a g-frame

for H with respect to � �
JjjH

� and its g-frame operator is VV �  Sg V..

Proof. Since V � B(H) , �  f � H, we have Vf � H.

Given that { j� } Jj�  is a g- frame for H, by 2.5 for all VfVf � H, we have,

A 
2

Vf ��
�

�
Jj

j Vf
2

 � B
2

Vf

Since )(HBV � , therefore we have,

2
Vf � 2

V
2

f  and
21 ��V

2
f  � 

2
Vf

by using above inequalities, the equation (2.14) becomes

A
21 ��V

2
f  ��

�

�
Jj

j Vf
2

 � B
2

V
2

f , �  f � H

��{ j� V} Jj�  is g-frame for H.

For each f � H, we have

Sg Vf = �
�

� ��
Jj

jj Vf

� V �  Sg Vf = �
�

�� ��
Jj

jj VfV

� V * Sg V is a g-frame operator for the frame � �
JjjV �

� .
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3. K-G-FRAMES

In this paper L(H) is the family of all linear bounded operators on H and )(HLK �

Definition 3.1. Let )(HLK � . A sequence � �
Jjjf

�  in Hilbert space H is said

to be a K-frame for H if there exists two constants 0 < A � B < �, such that

HffBfffKA
Jj

j ������ �
�

� ,,
222

.

Where A and B are called lower and upper frame bounds for k-frame

respectively. If K=I, then k-frames are just ordinary frames. If A=B then � �
Jjjf

� is

called k-tight frame, if A=B=1 then� �
Jjjf

�  is called normalized k-tight frame. The

frame operator is given by S k : H ® H is defined as S k f = j
Jj

j fff�
�

,  , for all

f � H

Definition 3.2. Let )(HLK �  and Jjjj HHL ��� ),( . A sequence of

operators � �
Jjj �

�  is said to be K-g-frame for Hilbert space H with respect to

sequence of Hilbert spaces � �
JjjH

�  if there exist two constants 0 < A � B <µ, such

that

�
�

� �����
Jj

j HffBffKA .,
222

 .

The above inequality is called a K-g-frame inequality. The numbers A and B
are called the lower and upper frame bounds of K-g-frame respectively. When
K=I, K-g-frame is a g-frame.

A k-g- frame is said to be tight if there exist a constant a positive constant A
such that

�
�

� ����
Jj

j HffKAf .,
22

If A=1 then� �
Jjj �

�  is said to be parseval tight k-g-frame.
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Definition 3.3: Let � �
Jjj �

�  be a K-g-frame for H. A synthesis operator

� �� � HHlT
Jjj �

�
2:

is defined as � �� � � � � �� �
JjjJjj

Jj
jjJjj HlgggT

��
�

�
�

����� 2

 .

Definition 3.4: Let� �
Jjj �

�  be a K-g-frame for H. The analysis operator

� �� �
JjjHlHT

�
� � 2:  is the adjoint of synthesis operator T and is defined as

� � HfffT
Jjj ����

�
�

Definition 3.5: Let { j� } Jj� be a K-g-frame for Hilbert space H. A K- g-

frame operator

HHS kg �:  is defined as �
�

� �����
Jj

jj
kg HfffS , .

Note that �
�

��
Jj

j
kg fffS

2
, .

Theorem 3.6: If )(HLK � and � �
Jjj �

�  is a K-g-frame for Hilbert space H

with respect to � �
JjjH

�  then �� AKKS kg .

Proof. Suppose � �
Jjj �

�  is a K-g-frame for H

� �
�

� �����
Jj

j HffBffKA .,
222

� HfffSfKfKA kg ����� ,,

� HfffSffAKK kg ���� ,,

� �� AKKS kg .

Theorem 3.7. Let� �
Jjj �

�  be a K-g-frame for Hilbert space H with respect to

� �
JjjH

�  . If HHV �:  is any bounded linear invertible operator such that 1�V

is commutes with K*, then� �
Jjj V

�
�  is k-g-frame for H.
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Proof. Suppose � �
Jjj �

� is a K-g-frame for H, by definition we have

�
�

� �����
Jj

j HffBffKA .,
222

If HHV �:  is a bounded linear  invertible operator

HVfimpliesHf ���

Therefore �
�

� ���
Jj

j VfBVfVfKA
222

HffVB ��� 22
(3.8)

Now
22121212

VfKAVVfKVAVfVKAfKA ������� ���

HfVfV
Jj

j ���� �
�

� 221

�  HfVffKVA
Jj

j �����
�

��� 2221

(3.9)

By using (3.8) and (3.9) we have

� �
�

��� �����
Jj

j HffVBVffKVA
222221

� � �
Jjj V

�
�  is a k-g-frame for H.

Theorem 3.10: If )(HLK �  and � �
Jjj �

�  is a K-g-frame for Hilbert space H

with respect to � �
JjjH

�  If HHV �:  is any bounded linear operator then

� �
Jjj V

�
��  is a Vk-g-frame for H with respect to � �

JjjH
� .

Proof. Given � �
Jjj �

�  is a K-g-frame for Hilbert space H with respect to

� �
JjjH

� , we have



A STUDY OF K-G-FRAMES IN HILBERT SPACES 225

�
�

� �����
Jj

j HffBffKA .,
222

Since )(HLV �  implies HfV �� for any Hf � , then we have

�
�

���� �����
Jj

j HffVBfVfVKA .,
222

� �
�

�� �����
Jj

j HffVBfVfVKA .,)()(
2222

� � �
Jjj V

�
��  is a Vk-g-frame for H with respect to � �

JjjH
� .

Theorem 3.11: Let )(, 21 HLKK �  and � �
Jjj �

�  is  a

HforframegKandframegK ���� 21  and �� ,  are scalars then � �
Jjj �

�  is

a HforframegKK ��� )( 21 ��  and HforframegKK ��21 .

Proof. Suppose � �
Jjj �

�  is a HforframegK ��1

� �
�

� �����
Jj

j HffBffKA .,
2

1

22

11

Given � �
Jjj �

�  is a HforframegK ��1

�  �
�

� �����
Jj

j HffBffKA .,
2

2

22

22

Consider

� � 2

21

2

21 fKfKfKK ��� ��� ���� = 
2

21

2

2

2

1 22 fKfKfKfK ���� ��� ����

� �22

22

1

22

2

2

1 2222 fKfKfKfK ���� ���� ����

�
�

�� �
�
�

�

�

�
�

�

�
����

Jj
j f

AA
fKA

A
fKA

A

2

2

2

1

2
2

22
2

2
2

11
1

2
2222 ����
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= 
2

21

2

1
2

22 �
�

�
�
�

�

�

�
�

�

� �

Jj
j f

AA

AA ��

� � � 22

212

1

2

2

21

)(2
�
�

� ���
� Jj

j ffKK
AA

AA
��

��

= ��
��

���
Jj

j
Jj

j ff
22

2

1

2

1

�
2

2

2

1 2

1

2

1
fBfB �  = 

221

2
f

BB
�
�
�

�
�
� �

�  � � Hff
BB

ffKK
AA

AA

Jj
j ���

�
�

�
�
� �

����
�

�
�

� 221
22

212

1

2

2

21

2)(2
��

��

Which shows that � �
Jjj �

�  is a HforframegKK ��� )( 21 �� .

Now � � 2

1

2

2

2

21 fKKfKK ��� �

�
� � 2

1

22

11

2

212

2

1 fBffKAfKK
K

A

Jj
j ���� �

�

��

�

�
� � HffBffKK

K

A

Jj
j ����� �

�

�

�

2

1

22

212

2

1

Which shows that � �
Jjj �

�  is a HforframegKK ��21 .

4. TENSOR PRODUCT OF K- G-FRAMES

In this section the tensor product of K-g-frames in tensor product of Hilbert spaces
is introduced. It was shown that the tensor product of two K- g-frames is a K-g-
frame for the tensor product of Hilbert spaces.
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Let H
1
 and H

2
 be two Hilbert spaces with inner products <.,.> 1 , <.,.> 2 and

norms 
1

. ,
2

. respectively. The tensor product of H
1
 and H

2
 is denoted by 21 HH �

and is an inner product space with respect to the inner product

2211212211 ,,, ggffgfgf ���

for all 121 , Hff �  and 221 , Hgg � . The norm on 21 HH �  is defined by

2121
, HgHfgfgf ����� .

The space 21 HH �  is clearly completion with the above inner product.

Therefore the space 21 HH �  is a Hilbert space. We denote ),( 21 HHL be the

space of all bounded linear operators from 21 HH � . Let )( 1HLM �  and

)( 2HLN �  be two operators, then the tensor product of operator M ��N acts on

21 HH �  as

NgMfgfNM ���� )()(

for every 2121 , HHgfandHgHf ������ .

We note that if )(, 121 HLMM � , )(, 221 HLNN �  and

)(, 212211 HHLNMNM ����  then 21212211 ))(( NNMMNMNM ���� .

In this paper we denote 
1HI  is an identity operator on H

1
 and 

2HI  is an identity

operator on H
2
 then 

2121 HHHH III ���  is an identity operator on 21 HH � .

The following is the extension of (3.2) to the sequence of operators { i� �  ß j }.

Definition 4.1. Let )( 2121 HHLKK ���  and { i� } and {ß
j
} be the

sequences of operators in Hilbert spaces H
1
 and H

2
 respectively. Then the sequence

of operators { i� �ß j } is said to be a framegKK ��� )( 21  for the tensor

product of Hilbert spaces 21 HH � , if there exist two constants 0 < Ad” B <µ,

such that
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 A 21

22

,

2

21 ,)()(()( HHgfgfBgfgfKK
ji

ji ������������ �� �

The numbers A and B are called lower and upper frame bounds of

framegKK ��� )( 21 .

Theorem 4.2: Let )( 11 HLK � ,  )( 22 HLK �  and { i� }, {ß
j
} be

framegK ��1  and framegK ��2  for Hilbert spaces H
1
, H

2
 with respect to

� �iH1  and � �jH 2  , respectively. Then � �ji ��� is a framegKK ��� )( 21

for 21 HH � with respect to � �ji HH 21 � .

Proof: Let { i� } be a framegK ��1 for 1H  with frame bounds AA1  and B1

with respect to � �iH1  then, for all 1Hf �  and )( 11 HLK �

(4.3) �
�

� �����
Jj

i HffBffKA ., 1

2

1

22

11

Let { ß j } be a framegK ��2  for H
2
 with frame bounds AA

2
 and B

2
 with

respect to � �jH 2 , then, for all 2Hg �  and )( 22 HLK �

(4.4) �
�

� ����
Jj

j HggBggKA ., 2

2

2

22

22 �

multiplying the equations (4.3) and (4.4), we get

21

22

21

222

2

2

121 ,)()( HgHfgfBBgfgKfKAA
Ii Jj

ji ������ � �
� �

�� �

�  21

2

21
,

222

2121 HHgfgfBBgfgKfKAA
Jji

ji ��������� �
�

�� �

�  21

2

21
,

22

2121 )()( HHgfgfBBgfgfKKAA
Jji

ji ����������� �
�

� �

�  21

2

21
,

22

2121 )()()()( HHgfgfBBgfgfKKAA
Jji

ji ������������ �
�

� �

�  � �ji ���  is a framegKK ��� )( 21 for 21 HH � .
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Theorem 4.3: If � �ji ���  is a framegKK ��� )( 21 for 21 HH � with

respect to � �ji HH 21 � . Then� �i�  and� �j�  are K-g-frames for Hilbert spaces 1H

and 2H with respect to� �iH1  and� �jH 2 respectively..

Proof: Suppose that � �ji ���  is a framegKK ��� )( 21 for 21 HH �

with frame bounds A and B. Then for each � �0021 ����� HHgf

21

2

,

22

21 )()()()( HHgfgfBgfgfKKA
Jji

ji ������������ �
�

� �

�  21

2

,

22

21 )( HHgfgfBgfgKfKA
Jji

ji ���������� �
�

�� �

�  21

222

,

22

2

2

1 ,)()( HgHfgfBfgKfKA
Jj

j
Ji

i ������ ��
��

�� �

Consider gf � is a non zero vector i.e. f and g are non zero vectors, therefore

the above inequality becomes

�
21

2

2

2
22

12

2

2
, HgHff

g

gB
ffK

g

gKA

Ji

Jj
j

i

Jj
j

�������
�� �

�

�

�

�

��

�  �
�

� �����
Ji

i HffBffKA ., 1

2

1

22

11

where �
�

�

�

Jj
j g

gKA
A

2

2

2

1

�  and �
�

�

Jj
j g

gA
B

2

2

1

�

which shows that { i� } is a framegK ��1 for H
1
. Similarly we can prove that

{ß
j
} is a framegK ��2 for 2H .
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