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Abstract: K-frames were recently introduced by Gavruta in Hilbert spaces to study
atomic systems with respect to a bounded linear operator. K-g-frames are more
general than of g-frames in Hilbert spaces. Some results on k-g-frames are studied.

(K, ® K)) — g—framefor the tensor product of Hilbert spaces H, ® H, is introduced
and some results on it are established.
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1.INTRODUCTION

Frames are generalization of bases. D. Han and D.R. Larson [5] have developed a
number of basic aspects of operator-theoretic approach to frame theory in Hilbert
space. Peter G. Casazza [1] presented a tutorial on frame theory and he suggested
the major directions of research in frame theory. A. Najati and A. Rahimi [6] have
developed the generalized frame theory and introduced methods for generating g-
frames of a Hilbert space. Sun[7] introduced the concepts of g-Riesz bzses and g-
frames.Recently, K-frames in a Hilbert space is introduced by L.Gavruta [4]as a
generalization of the notion of the frame in Hilbert space. Fahimeh Arabyani
Neyshaburi and Ali Akber Arefijamaal[3] were characterize all duals of a given k-
frame and given some approaches for constructing K-frames. In [8], the authors Y
Zhou and Y.Zhu are put forward the concept of K-g- frames, which are more general
than ordinary g-frames in Hilbert spaces. Dingli Hua and Yongdong Huang [2] are
proposed for construction methods for K-g-frames. The g-frame operator for g-
frame in Hilbert space is introduced and results of g-frame operator are presented
by GU Reddy in [9] and in [10] the tensor product of g-frames in tensor product of
Hilbert spaces were studied.

In this paper Some results on k-g-frames are studied. (K, ® K)) — g — frame for
the tensor product of Hilbert spaces H, ® H, is introduced and some results on it
are established.

2. PRELIMINARIES

Frames are generalizations of orthonormal basis in Hilbert spaces. We recall the
basic definations of frames.
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Definition 2.1: A sequence {fj}jEJ of vectors in a Hilbert space H is called a
frame if there exists two constants 0 < A < B < oc, such that

Alf[ <X|f. ) <B|f[f veH
jed

The above inequality is called a frame inequality. The numbers A and B are

called the lower and upper frame bounds respectively. If A= B then{f j} 5 1s

je
called tight frame, if A=B=1 then{f,- }je 5 1s called normalized tight frame. A

synthesis operator T : |, — H is defined as Te = f where {&} is an orthonormal
basis for |.. The analysis operator T : H — | is an adjoint of synthesis operator T

T'f=)<f f >e VfeH

jed

and 1is defined as

A frame operatorS=TT*:H — H is defined as
S=><f, f>f vieH
i

The following few theorems from [1, 5] are useful in our discussion.

o0
i=1>

Theorem 2.2: For an orthonormal system {€ } ", , the following are equivalent

(i) {e} ., is an orthonormal basis.

Gi) f=2,<f.€>8 v feH.
i=1
(iii) <f, g> =< .8 ><€,9> v f geH.
i=1

v) 2 fe>l=|f',v feH.
i=1

(v) Span{e;} , =H.
(vi) If <f,e;>=0Vithenf=0.

Theorem 2.3. Suppose{f,- }jej is a frame for H if and only if Al ,, <S<BI |

and{f i } jes 1s normalized tight frame for H if and only if S=1, 0 where | o is an

identity operator on H.
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The following theorem gives the existence of inverse of frame operator.

Theorem 2.4. [5] Let Sbe a frame operator for the frame{f i }je 5 with frame
bounds A and B in the Hilbert space H. Then S' exists, positive and

B, <S'T<A'l,.

op —
Throughout this paper {H,, ] € J} will denote a sequence of Hilbert spaces.
LetL(H,H J-) be a collection all bounded linear operators from H to HJ. and

A, eL(H,H,):jed}.

Definition 2.5. A sequence of operators {A;};_;is said to be g-frame for

Hilbert space H with respect to sequence of Hilbert spaces {H ;, j € J, if there

exist two constants 0 < A < B <oc, such that
AP <Ya, 1 <Blf|" vieH.
jed

The above inequality is called a g-frame inequality. The numbers A and B are
called the lower frame bound and upper frame bound respectively. A g-frame

{A;} ., for His said to be g-tight frame if A= B and g-normalized tight frame for
Hif A=B=1.

Definition 2.6. Let {A; };_;be a g-frame for Hilbert space H. A g-frame

operator

SUt=YAA f vfeH

jed

S: H — H is defined as

By using above definitions the following theorem on g-frame operator can be
derived easily, so left to reader.

Theorem 2.7. If S is a g- frame operator , then we have

2

(i) <ng,f>=ZJ:HAjf , forall f1 H.
je

(i) Stis a positive operator.

(iii) S¢is a self adjoint operator.
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Theorem 2.8. Suppose {A;} ., is a g-frame iff A IOp <3$¥<B IOp and

{ A} ;s g-normalized tight frame iff §= L, where IOp is an identity operator on
H.

Proof. Since {A; } ;. is a g-frame so, we have,

2, for all f € H.

NI P
jed

8]

2
Consider <A1, £, 7> =A<t == A [ < 20 T <p 1]
=B<f,f>=< Blopf, f>
= Al <3<BI
op op
Conversely suppose A IQp <S9 <B IQp

:><Alopf,f>s<ng,f>S<Iopr, f>, for all f € H.
2
safif < 2T <pep
jed

which implies {A; } ;_; is a g-frame for H.

Suppose {A; } ;.; is a g-normalized tight frame for H

= ;HAi fH2 =||f||2 for all f € H.

<:><S?f,f>=<|0pf,f><:>81=lop.

We can easily seen that the frame operator & is invertible and § ! is a positive
operator.

The following theorem gives the existence of inverse of g-frame operator.
Theorem 2.9. Let § be a g-frame operator of the g-frame { A } ;_; with frame
bounds A and B in the Hilbert space H. Then B-! I, <S8t < A’ L,

Proof. Since { A; } ;_; is a g-frame for Hilbert space H, so by theorem 2.8, we
have



A STUuDY OF K-G-FRAMES IN HILBERT SPACES 221

Al <S9<BI_
Since Al <S9=0<(S9-Al )S9-1=0<] —-AS9-!
(2.10) =891 <A'L
Similarly, we can prove that
(2.11) B'I <Set
From the equations (2.10) and (2.11), we get B! [,<S9o-1 <A L,

Theorem 2.12. Let {A i } be a g- frame for Hilbert space H with respect to

jed
{H i }je ; and V € B(H) be an invertible operator. Then {A Y% }je 5 1s a g-frame

for H with respect to {H i } ;yand its g-frame operator is V* SeV.

je

Proof. Since Ve B(H), v f € H, we have Vf € H.

Given that {AJ- } jes 1s a g- frame for H, by 2.5 for all Vf € H, we have,

ST <pprp

Since V € B(H), therefore we have,

M <V I and v < v

by using above inequalities, the equation (2.14) becomes
2
112 .
ANV ZIA <BVP e v ren
= {A; V} ., is g-frame for H.

For each f € H, we have

Ss\f = Z:A*J'AJVf

jed

Ve SEVi— ZV*A*J.AJ.Vf

jed

= V" S¢ Vis a g-frame operator for the frame {A Y% } je3 -
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3. K-G-FRAMES
In this paper L(H) is the family of all linear bounded operators on Hand K € L(H)

Definition 3.1. Let K € L(H) . A sequence {f,- }jej in Hilbert space H is said

to be a K-frame for H if there exists two constants 0 < A < B < o, such that
AR " <Y< £, 8, 5 <B|f
jed

Where A and B are called lower and upper frame bounds for k-frame

2, erH'

respectively. If K=I, then k-frames are just ordinary frames. If A=B then {f,- } jesls

called k-tight frame, if A=B=1 then {f,- } i<y 1s called normalized k-tight frame. The

frame operator is given by Sk: H ® H is defined as Skf=jz;4<f’ fJ'>fJ' , for all
feH

Definition 3.2. Let K e L(H) and A; e L(H,H ) ;. A sequence of

operators {A j} ; 1s said to be K-g-frame for Hilbert space H with respect to

je
sequence of Hilbert spaces {H i } i<y 1f there exist two constants 0 <A< B <p, such
that

Z,erH..

Ak 1 < X, 1 < el

The above inequality is called a K-g-frame inequality. The numbers A and B
are called the lower and upper frame bounds of K-g-frame respectively. When
K=I, K-g-frame is a g-frame.

A k-g- frame is said to be tight if there exist a constant a positive constant A
such that

2

, V feH.

a1 = Al

If A=1 then {A i } jcy 1s said to be parseval tight k-g-frame.
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Definition 3.3: Let {A,- }jej be a K-g-frame for H. A synthesis operator
12
T:2(H) o H

is defined aST({gj }jeJ):ZA*JgJ v {gj }jeJ el’ ({Hj}jej) ,

jed

Definition 3.4: Let {A,- }jej be a K-g-frame for H. The analysis operator
T H-: |2({H i }je J) is the adjoint of synthesis operator T and is defined as
T f={A f}] | vfeH

Definition 3.5: Let {A; } ;_; be a K-g-frame for Hilbert space H. A K- g-

frame operator

S9f=YAAT, vVfeH

jed

SY¥.H —» H is defined as

Note that <Skg f, f> = ;HAi fHZ .

Theorem 3.6: If K € L(H)and {A,- }jej is a K-g-frame for Hilbert space H

with respect to {H i }je ; then S¥ > AKK™.

Proof. Suppose {A i }je 5 1s a K-g-frame for H

L

N A<K*f,K*f> < <Sk9f,f>erH

Z,erH.

N <AKK*f,f> < <Sk9f, f> V feH
= SY > AKK".
Theorem 3.7. Let {A i } jcy be a K-g-frame for Hilbert space H with respect to
{H i } jes - fV:H — H is any bounded linear invertible operator such that \/ !

is commutes with K*, then {A i V} jcy 1s k-g-frame for H.
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Proof. Suppose {Aj }jEJ is a K-g-frame for H, by definition we have

Ak 1] SJ;HAJ.fHZ <B|f[, v f eH.

If V:H->H is a bounded linear invertible operator
Vv f eH impliesVf eH

Therefore AJKVE[ < ;HAJ.Vf |* < e[’
<BV[*[f[" ¥ f eH (3.8)
Now AT = ARV = ARV s v afkew
g”\ﬂ”z;”/\jw | vfeH

o AV sZlam] vt en 69)

By using (3.8) and (3.9) we have
o AV Ik = Zlam] < VP v eH
= {AJ’V}J-EJ is a k-g-frame for H.

Theorem3.10: If K € L(H) and {Aj }jEJ is a K-g-frame for Hilbert space H
with respect to {H i }je ; If V:H — H is any bounded linear operator then

{AJ- A }jEJ is a Vk-g-frame for H with respect to {H i }jej .

Proof. Given {A i }je ; 1s a K-g-frame for Hilbert space H with respect to

{H j }jej , we have
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Ak £ SJ;HAJ.fHZ < BJf[*. ¥ f eH.

Since V € L(H) implies V" f € H for any f € H, then we have

Ak vt < j;Hz\jv*fu2 <BVf[", v feH.

_ AV ] <A v < BV v f eH.
jed

= {AJ- A }jEJ is a Vk-g-frame for H with respect to {H i }jej .

Theorem 3.11: Let K ,K,elL(H) and {/\j}jEJ is a

K,-g- frame and K, -g- frame for H and « , 8 are scalars then {Aj }jEJ is

a (oK, +pK,)—g—- frame for H and KK, —g— frame for H .

Pr oof. Suppose {A }J ;isa K, —g- frame for H

LAl < Sl <l v reh,
je

Given {Aj }jej isa K, —g- frame for H

o A <A < B v fen
je

Consider
(K, + K, —HaK f 48K £ =2k £ 2ok o] - [ak, f - K [
< 2fak; £ +2aK; 1| = 2l ;£ + 2l [k £ ]
2\04

da” 2|8 2
alt] « 2 ajesof o 20 2L p
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AR g o

AA,
= 2(A e +AlA)

1 1
P L RSN

1 1 B, +B,
LBl + e - (BB

=l K, +pK,) A (B+Bj V f eH
= sapr el 1 s Zin T < I v 1 e

(aK, +pK,) £ < Z;HAJ. dh
<

Which shows that {A }J yisa (aK, +pK,)—g— frame for H .

Now [(K,K,) £ <K ;o

A:z H(KIKZ)*f T <A HKfsz <Y|a, 1 <B |t
= k3] E
:HK?HZ o<,y 1] < JZEJ:HAijZ <B|f[f vieH

Which shows that {A }J ;isa K K,—g- frame for H.

4. TENSOR PRODUCT OF K- G-FRAMES

In this section the tensor product of K-g-frames in tensor product of Hilbert spaces
is introduced. It was shown that the tensor product of two K- g-frames is a K-g-
frame for the tensor product of Hilbert spaces.
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Let H, and H, be two Hilbert spaces with inner products <.,.>!, <.,.> and

norms || , respectively. The tensor product of H, and H, is denoted by H, ® H,

1 b
and is an inner product space with respect to the inner product

<f1 ®g, , f2®gz> :<f1, f2>1 <91,92>2
forall f,f,e H, and g,,0,€ H,. The norm onH, ® H, is defined by
[f@gl=]t]lel, vfeH.geH,

The space H, ® H, is clearly completion with the above inner product.
Therefore the space H, ® H, is a Hilbert space. We denote L(H,,H ) be the
space of all bounded linear operators from H, — H,. LetM e L(H,) and
N € L(H,) be two operators, then the tensor product of operator M ® N acts on
H,®H, as

(M®N)(f ®g)=Mf ®Ng

forevery VfeH ,geH, and f ®geH, ®H,.
We note that if M,,M, eL(H,),N,,N,eL(H,) and
M, ®N,,M,®N, e L(H,® H,) then (M, ® N))( M, ® N,)=M M, ® NN, .
In this paper we denote | u, 1s an identity operator on H, and | n, 18 anidentity

operator on H, then | H, X1 H, = | H,eH, 1S an identity operator on H, ® H, .
The following is the extension of (3.2) to the sequence of operators { A; ® B }.

Definition 4.1. Let K, ®K, e L(H, ® H,) and {A;} and {8} be the
sequences of operators in Hilbert spaces H, and H, respectively. Then the sequence
of operators { A; @B } is said to be a(K, ® K,)— g— frame for the tensor

product of Hilbert spaces H, ® H,, if there exist two constants 0 < Ad” B <y,
such that
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AlK, ®K,)" (f ®gH2sZH(Ai ®p)(fog)| <B|fog].Vf®geH, ®H,
1]

The numbers A and B are called lower and upper frame bounds of
(K, ® K,)—g- frame.

Theorem 4.2: Let K, eL(H,), K, elL(H,) and {A;}, {8} be
K,—g— frame and K, —g— frame for Hilbert spaces H,, H, with respect to
{H,} and {sz} , respectively. Then {Ai ® B }‘is a(K,® K,)—g- frame
for H, ® H, with respect to {Hli ®H,, }

Proof: Let { A, } bea K, —g— framefor H, with frame bounds A, and B
with respect to {Hli} then, for all f e H, and K, e L(H))

2, vV feH,.

(4.3) NS J_EZJIIAi f" <Bf

Let { B;} bea K, —g— frame for H, with frame bounds A, and B, with

respect to {sz }‘, then, forall ge H, and K, e L(H,)

2, vV geH,.

(4.4) Akl < ;Hﬁj g <8[g

multiplying the equations (4.3) and (4.4), we get

SVSH N SUIEY I P L RELEL NI ACLATELE
iel jed
L AA[K ek < YAt s <BBf @ Yf®geH, ®H,
i,jed

_ AA|K @K, (feg| <X|afepsd <BB|fog] Vi®geH OH,
ijed

— AAZH(K1®K2)*(f®g)HZ sZ“JH(A@ﬁj)(f@g)Hz <BB,f®g| Vi®geH ®H,
i,je

— A, ®p,fisa (K, ®K,)-g- framefor H, ® H, .
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Theorem4.3: If {A, ® 8, | isa (K, ® K,)— g - framefor H, ® H, with
respect to {H L ®OH, J- } Then {A } and {,3 } are K-g-frames for Hilbert spaces H,

and H, with respect to {H i } and {H 2j }respectlvely.

Proof: Suppose that {Ai ® B, }‘ isa (K, ® K,)-g- framefor H ® H,
with frame bounds A and B. Then for each f ® ge H, ® H, — {0 ® ()}

Ak, @K, (feg <3n ®s)(feg)| <Blfog] viogeH ®H,
i,jed

L Ak tekig| <X[atesg <Bjfeg] viogeH, ®H,
i,jed

= AR il <GP laD <8 Flol vt eHgeh,
ie je

Consider f ® gis a non zero vector i.e. f and g are non zero vectors, therefore
the above inequality becomes

H 29” H H Blg|’ 2
Z” —||f|| VfeH,,geH
=2ls o ;H/ﬁ- of | 2

L AKX )a, * v icH.
ied

AHK;‘guz B = Lgnz

A = =
where EH'BJ gH2 and ;H'Bj 9”2
je E

which shows that { A, } is a K, —g— framefor H,. Similarly we can prove that

{B}isa K, —g- framefor H,.
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