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Chosen-Plaintext Attack on Block Ciphers 
Based on the use of Fast Information 
Calculation Algorithm
Ivan Fedyanin* and  Valery Korzhik*

Abstract :  In this work we consider a problem of chosen-plaintext attack (CPA) on symmetric block ciphers. 
Our solution is based on well known Shannon inequality for mutual information between plaintext and 
ciphertext. Since cipher key entropy is limited this inequality gives nonzero value for mutual information 
between genuine plaintext and cipertext for any cipher. Numerical calculation of mutual information has 
received a support through relatively recent paper by A. Kraskov at al. This approach executes a computing 
of k-nearest neighbour distance. We have applied such technique to 16-bit and 32 bit block lengths, four 
rounds substitution-permutation Heys’s ciphers. Our simulation showed that CPA problem can be reliably 
solved against such cipher. Unfortunately, we are faced so far with unreal computing problem for ciphers 
with more than 32 bit block lengths.
Keywords : Semantic security, block ciphers, Shannon inequality, k-nearest neighbour distance.

1. INTRODUCTION
Contemporary cryptosystems should be computationally secure. This means that the best known 
cryptanalytic attack is untractable with point of view computational resourses of codebreakers. But there 
is also more stronger requirement to modern cryptosystems – resistance to so called chosen-plaintext 
attack(CPA)  or in another words semantic security[1].

Let us consider an attacker who has several plaintexts and one ciphertext. The following question 
arises: which of plaintexts has been encrypted by given ciphertext or none of them? If such problem cannot 
be solved in a feasible time and with tractable hardware, then cryptosystem is called indistinguishable 
under CPA or semantic secure one.

It is well known that many public-key cryptosystems (RSA among them) are not semantic secure. In fact, 
because public key is insecure an attacker is able to encrypt with it all plaintexts and compare the results with 
given ciphertext. As far as symmetric block ciphers this problem was not solved completely [2].

We consider substitution-permutation four rounds block cipher proposed by Heys [3] starting with 
block length 16 bits and key string having 80 bits. That means that total number of keys is 280  1.2.1024 
and hence brute force attack by key exhaustion is unrealistic.

In Fig. 1 is presented a scheme of such cipher and in Table 1 and Table 2 are presented S-box transforms 
and permutation mapping.

Table 1
S-box Transforms that Have the Same Structure for all S-boxes and they are Presented in Hexadecimal System

Input 0 1 2 3 4 5 6 7 8 9 10(A) 11(B) 12(C) 13(D) 14(E) 15(F)

Output E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7
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Figure 1: Substitution-permutation block cipher with block length 16 due to Heys[3]

Table 2
Permutation Mappings that Have the Same Structure for all Cipher Rounds

Input 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Output 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

For the case of substitution-permutation cipher with block length 32 bits we extend the 16 bit cipher 
with addition of the second halve of scheme to the fi rst one keeping previous transforms in S-boxes and 
changing Table 2 for permutation mapping to Table 3 showed below.
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Table 3
Permutation Mappings for 32-bit Block Length Cipher

Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Output 1 5 9 13 17 21 25 29 2 6 10 14 18 22 26 30

Input 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Output 3 7 11 15 19 23 27 31 4 8 12 16 20 24 28 32

The remainder of work is organised as follows: In Section 2 the CPA is described theoretically. The 
simulation results on CPA both for block cipher with block length 16 and 32 are given in Section 3. 
Finally, we summarize the results of our work in the conclusion.

2. THEORETICAL DESCRIPTION OF CPA AGAINST BLOCK CIPHERS

It is well known inequality for mutual information between plaintext and ciphertext that should be valid 
for any cryptosystem[4],[5]:

 I(MN, CN)  H(MN) – H(KL) (1)
where MN is a sequence of message symbols of the length N, CN is a sequence of ciphertext symbols of the 
length N (without of the generality lost we believe that these lengths are equal one to another), KL is the  
binary key string of the length L .

We can transform inequality (1) by dividing both its sides on N:
 I(MN, CN)  H(MN) – H(KL) (2)

where symbol “ ʹ ” means that we consider a normilized to N corresponding values.
Since for computationally secure contemporary block ciphers the length of the key L is much less 

than the length of the message, we get asymptotically (as N  ):
 I(MN, CN)  H(MN) > 0 (3)
It follows from inequality (3) that if some message MN has been in fact encrypted into ciphertext CN 

with any unknown key KL  of the limited length L then for very large message length N we get nonzero 
mutual information I(MN, CN) but this value approaches to zero if MN is not encrypted as CN with some 
key. Hence we can take a decision about a choice of message that is encrypted into given ciphertext 
comparing the value I(MN, CN) with some threshold.

But the following problem appears – how it is possible to calculate mutual information I(MN, CN) 
? Solution to this problem based on “binning” [6] was very hard generally but relatively recent has been 
published the paper [7] where it was  used a method based on the notion of k-nearest neighbour distance. 
This approach can be termed as fast mutual information calculation(FMIC) between two N-dimension 
random vectors X and Y. It has been proved in [7] that FMIC can be performed by the following algorithm:

 I(X, Y) = (1) –  (nx + 1) + Y(ny + 1) + (N) (4)
where  X = {x1, x2, ..., xN}, Y = {y1, y2, ... , yN}   vectors corresponding to MN and CN, (x) is digamma 
function, (x) = (x)–1 d(x)dx that satisfi es the recursion  (x + 1) = (x) + 1/x  and (1) = C, where 
C = 0.5772156... is the Euler-Mascheroni constant. For large x, (x)  log x – 1/2x. nx(i) is the number 
of points xj whose distance from xi is strictly less than (i)/2 and similarly for y instead of x. Here (i)/2 is 
the distance from zi = (xi, yi)  to its neighbour and x(i)/2 and y(i)/2 are distances between the same points 
projected into the X and Y subspaces. Obviously, (i) = max (x(i), y(i). ... is symbol that denotes an 
averaging both over all  i  [1, ... , N] and over all realizations of random samples. But in our case we 

average only on all samples i  [1, ... , N]  that is 
N

1
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In order to implement relation (4) for estimation of left side inequality (3) we map each of plaintext 
blocks  Mi = (mi1, mi2, ... min) into one integer Xi and each of the ciphertext blocks Ci =  (ci1, ci2, cin)  into 
one integer Yi following trivial relations, respectively:
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 i = 1, 2, ... , N (5)

where n is the block cipher length, xij, yij   binary symbols of plaintext MN and ciphertext CN, respectively. 
(We assume of course that block cipher is binary and has the same length n of input and output blocks). 
Experimental investigation of technique described above is presented in the next Section.

3. SIMULATION RESULTS OF CPA AGAINST  BLOCK CIPHERS

A. Heye’s cipher with block length 16

We generate pseudo randomly two binary sequences MI  and MII both of the length n • N, where n = 16 
is the cipher block length and N is  the number of tested blocks. One of these sequences, say MI is 
encrypted by Heye’s block cipher that gives n • N ciphertext bits. (It is worth to noting that in the case of 
meaningful plaintext the entropy H(MN) in (2) be lesser than for truly random binary sequence but it be 
still nonzero. Hence the proposed method works but we should select plaintext as close to truly random 
one only for simplicity reasons). Next we calculate mutual information I(MI, C)  by (4) and (5), where 
Xi are integers corresponding to MI and Yi  are integers corresponding to C = f (MI , K), where f (•) is the 
encryption function for Heye’s 16-bit block cipher with 80-bit key chosen pseudo randomly. After that it is 
calculated also by (4) and (5) mutual information I(MII, C) between ciphertext C obtained after encryption 
of plaintext MI and independent on it another plaintext MII. The results of such calculations against the 
number of message bits N are presented in Table 4.

Table 4  
Mutual Information Between Ciphertext and Plaintext Corresponding and no Corresponding to Given

Ciphertext Against the Plaintext Bit Length N..

N 102 103 104 2 × 104 4 × 104 8 × 104 3 × 105 106

I(MI , C) 0,3 1,2 5,52 7,057 8,77 10,3 12,65 14.24

I(MI , C) – 0,09 0,053 0,03 0,04 0,08 0,13 0,373 0.89

We can see from this Table 4 that in fact mutual information I(MI , C) for valid plaintext MI encrypted 
into C increases with increasing of N and approaches to normilized entropy of truly random binary string 
of the length 16. Mutual information I(MII, C) between ciphertext (obtained for plaintext MI) and  plaintext 
MII is close to 0. It is suffi ciently to select some threshold in order to distinguish between valid and invalid 
plaintexts for given ciphertext already for N  103.

In Table 5 are presented results of calculation for cross correlation R(C, M) between sequence C and 
sequences MI and MII which show that such criteria cannot be used for a breaking of block cipher semantic 
security. (This is a consequence of course, a presence of nonlinear transforms in algorithm of Heye’s block 
cipher containing into its S-boxes.)
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Table 5
Cross Correlation Between Ciphertext C and Plaintexts MI , MII Against the Plaintext Bit Length N..

N 4 × 104 8 × 104 3 × 105 106

R(MI , C) –0,000680 –0.038 0.011 –0.000977

R(MI , C) –0.0019 –0,000556 0.003 –0.00016

B. Heye’s cipher with block length 32

We consider block cipher with the same structure as Heye’s cipher but with block length 32 and with 
round keys consisting from 32 bit each. S-box transforms are shown in Table 1 and permutation mapping 
is shown in Table 3. Experiment with such “extended cipher” was arranged similarly as for ordinary cipher 
described in the point A with only differences that two plaintexts MI and MII have the length 32 bits and 
the same length has ciphertext C. The results of simulations are presented in Table 6.

Table 6
Mutual Information Between Cipher Text and Plaintext Corresponding and not Given Cipher Text Against the 

Plaintext Bit Length N..

N 103 104 2 × 104 4 × 104 8 × 104 3 × 105 106

I(MI , C) –0.065 0.025 0.038 0.078 0.083 0.3626 0.976

I(MI , C) –0.03 -0.007 0.0025 -0.012 0.0055 0.0014 0.0017

We can see from Table 6, that despite of the fact that mutual information I(MI, C) grows much slower 
with increasing of N than similar value for 16-bit block cipher (see Table 4) it is still exceeds the value 
I(MII, C) where N  104

This means that after a choice of appropriate threshold it is possible to distinguish “valid” plaintext 
from “invalid” one for given ciphertext. Thus the proposed approach can break semantic security of at 
least for block ciphers with limited block length n  32.

Our experiments with DES block cipher having block length 64 bits showed that this problem is 
rather untractable at least with the use of ordinary PC.

4. CONCLUSION

We have proposed a novelty approach to a breaking of block cipher semantic security based on Shannon 
inequality for mutual information and fast calculation of mutual information using nearest neighbour 
distance  relatively recently proposed by A. Kraskov  et.al.

Our simulation results performed on PC confi rmed that in fact this problem can be solved at least for 
block length less than 32. It is possible to increase the last value at the cost more powerful computers or 
by optimization of neighbour distance approach. We are going to do it in the nearest future. It is worth to 
noting that the use of the same technique allows to detect a presence of stegosystems [8] if it is known a 
message that could be embedded into some cover object and extraction algorithm is known also due to 
Kerchgoff assumption [9].
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