CAUCHY PROBLEM AND INTEGRAL REPRESENTATION ASSOCIATED TO THE POWER OF THE QWN-EULER OPERATOR

AYMEN ETTAIEB, HABIB OUERDIANE, AND HAFEDH RGUIGUI

Abstract

In this paper we give the integral representation of the power of the quantum white noise (QWN) Euler operator $\left(\Delta_{E}^{Q}\right)^{\rho}$, for $\rho \in \mathbb{N}$, in terms of the QWN-derivatives $\left\{D_{t}^{-}, D_{t}^{+} ; t \in \mathbb{R}\right\}$ as a kind of functional integral acting on nuclear algebra of white noise operators. The solution of the Cauchy problem associated to $\left(\Delta_{E}^{Q}\right)^{\rho}$ is worked out in the basis of the QWN coordinate system.

1. Introduction

As an infinite dimensional analogue of the Euler operator defined on \mathbb{R}^{d} by $\sum_{k=1}^{d} x_{k} \frac{\partial}{\partial x_{k}}$, the operator

$$
\begin{equation*}
\Delta_{E}:=\Delta_{G}+N=\sum_{k=1}^{\infty}\left\langle\cdot, e_{k}\right\rangle \partial_{e_{k}}, \tag{1.1}
\end{equation*}
$$

was investigated in $[4,5]$, where Δ_{G} and N are the infinite dimensional Laplacians initiated by Gross [8] and Piech [25], respectively, $\left\{e_{n} ; n \geq 0\right\}$ is an arbitrary orthonormal basis for $L^{2}(\mathbb{R}), \partial_{e_{k}}$ denotes the holomorphic derivative in the direction e_{k} acting on the test function space $\mathcal{F}_{\theta}\left(\mathcal{S}_{\mathbb{C}}^{\prime}\left(\mathbb{R}^{d}\right)\right)$. For details see [20].

In our previous paper [2], the existence of a solution of the Cauchy problem associated with the Euler operator Δ_{E} in the basis of nuclear algebra of entire functions is investigated. More precisely, for two linear continuous operators K_{1} and K_{2} from the complexification of some nuclear space into its topological dual space, the (infinite dimensional) Euler operator is defined as follows

$$
\begin{equation*}
\Delta_{E}\left(K_{1}, K_{2}\right)=\Delta_{G}\left(K_{1}\right)+N\left(K_{2}\right) . \tag{1.2}
\end{equation*}
$$

It is shown that under some appropriate conditions, $\Delta_{E}\left(K_{1}, K_{2}\right)$ is the generator of a one-parameter group transformation. Furthermore, by using the $\mathcal{G}_{K_{1}, K_{2}}$ transform studied in $[10,4]$, the solution of the Euler Cauchy Problem was worked out.

[^0]Using the Hermite functions one can easily show that

$$
\begin{equation*}
\left(x \frac{d}{d x}\right)^{\rho}=\sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!}\left(\sum_{j=0}^{m}\binom{m}{j}(-1)^{j} j^{\rho}\right) x^{m}\left(\frac{d}{d x}\right)^{m} \tag{1.3}
\end{equation*}
$$

and the solution of the Cauchy problem $\frac{\partial}{\partial t} u_{t}=\left(x \frac{d}{d x}\right)^{\rho} u_{t}$ with $u_{0} \in S(\mathbb{R})$ is given by

$$
\begin{equation*}
u_{t}(x)=\sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!}\left(\sum_{j=0}^{m}\binom{m}{j}(-1)^{j} e^{t j^{\rho}}\right) x^{m}\left(\frac{d}{d x}\right)^{m} u_{0}(x) \tag{1.4}
\end{equation*}
$$

As a generalization of (1.3), the operator $\left(\alpha \Delta_{G}+\beta N\right)^{\rho}, \alpha, \beta \in \mathbb{C}, \rho \in \mathbb{N}$ is studied in [6] in the space of test and generalized white noise functionals. For each positive integer ρ, the explicitly one-parameter semigroup and cosine family of operators is given on an appropriate test space of which infinitesimal generator is $\left(\alpha \Delta_{G}+\beta N\right)^{\rho}$. As an application, the existence and uniqueness of solutions of the Cauchy problems for the first and second order differential equations associated with the operator $\left(\alpha \Delta_{G}+\beta N\right)^{\rho}$ are studied.

In [3], by using the new idea of QWN-derivatives pointed out by Ji-Obata in $[15,14]$, the quantum analogous Δ_{E}^{Q} of (1.2) is defined as the sum $\Delta_{G}^{Q}+N^{Q}$, where Δ_{G}^{Q} and N^{Q} stand for appropriate quantum counterparts of the Laplace operators. The functional integral representations of Δ_{E}^{Q} in terms of the QWNderivatives $\left\{D_{t}^{-}, D_{t}^{+} ; t \in \mathbb{R}\right\}$ on the class of white noise operators is given by

$$
\begin{aligned}
\Delta_{E}^{Q}\left(K_{1}, K_{2}\right) & =\sum_{j=1}^{\infty} M_{\left\langle\cdot, K_{1} e_{j}\right\rangle}^{Q+} D_{e_{j}}^{+}+\sum_{j=1}^{\infty} M_{\left\langle\cdot, K_{2} e_{j}\right\rangle}^{Q-} D_{e_{j}}^{-} \\
& =\int_{\mathbb{R}^{2}} \tau_{K_{1}}(s, t) M_{\left\langle\cdot, \delta_{s}\right\rangle}^{Q+} D_{t}^{+} d s d t+\int_{\mathbb{R}^{2}} \tau_{K_{2}}(s, t) M_{\left\langle\cdot, \delta_{s}\right\rangle}^{Q-} D_{t}^{-} d s d t
\end{aligned}
$$

where, for $z \in N^{\prime}$,

$$
M_{\langle\cdot, z\rangle}^{Q-}=\sigma^{-1}\left(M_{\langle\cdot, z\rangle} \otimes I\right) \sigma, \quad M_{\langle\cdot, z\rangle}^{Q+}=\sigma^{-1}\left(I \otimes M_{\langle\cdot, z\rangle}\right) \sigma
$$

$M_{\langle\cdot, z\rangle}$ is the classical multiplication operator by the distribution $\langle\cdot, z\rangle$ and σ is the Wick symbol defined in (2.5).

In the present paper, by using the QWN-derivatives and their adjoints, the power of the QWN-Euler operator $\left(\Delta_{E}^{Q}\right)^{\rho}$, for $\rho \in \mathbb{N}$, is studied. The first main result is the functional integral representation of $\left(\Delta_{E}^{Q}\right)^{\rho}$ in terms of the QWN-derivatives $\left\{D_{t}^{-}, D_{t}^{+} ; t \in \mathbb{R}\right\}$ on the class of white noise operators. The second remarkable feature is to solve the Cauchy problem associated to $\left(\Delta_{E}^{Q}\right)^{\rho}$.

The paper is organized as follows. In Section 2, we briefly recall well-known results on nuclear algebra of entire holomorphic functions, then we recall the creation derivative and annihilation derivative as well as their adjoints. In Section 3 , we give an integral representation of the power of the QWN-Euler operator. In Section 4, we solve the Cauchy problem associated to the power of the QWN-Euler operator and we give an integral representation of the solution.

2. Preliminaries

Let H be the real Hilbert space of square integrable functions on \mathbb{R} with norm $|\cdot|_{0}, E \equiv \mathcal{S}(\mathbb{R})$ and $E^{\prime} \equiv \mathcal{S}^{\prime}(\mathbb{R})$ be the Schwartz space consisting of rapidly decreasing C^{∞}-functions and the space of the tempered distributions, respectively. Then the Gel'fand triple

$$
\begin{equation*}
E \subset H \subset E^{\prime} \tag{2.1}
\end{equation*}
$$

can be reconstructed in a standard way (see Ref. [20]) by the harmonic oscillator $A=1+t^{2}-d^{2} / d t^{2}$ and H. The eigenvalues of A are $2 n+2, n=0,1,2, \cdots$, the corresponding eigenfunctions $\left\{e_{n} ; n \geq 0\right\}$ form an orthonormal basis for $L^{2}(\mathbb{R})$ and each e_{n} is an element of E. In fact E is a nuclear space equipped with the Hilbertian norms

$$
|\xi|_{p}=\left|A^{p} \xi\right|_{0}, \quad \xi \in E, \quad p \in \mathbb{R}
$$

and we have

$$
E=\text { proj } \lim _{p \rightarrow \infty} E_{p}, \quad E^{\prime}=\text { ind } \lim _{p \rightarrow \infty} E_{-p}
$$

where, for $p \geq 0, E_{p}$ is the completion of E with respect to the norm $|\cdot|_{p}$ and E_{-p} is the topological dual space of E_{p}. We denote by $N=E+i E$ and $N_{p}=E_{p}+i E_{p}$, $p \in \mathbb{Z}$, the complexifications of E and E_{p}, respectively.
2.1. Spaces of holomorphic functions. Throughout the paper, we fix a Young function θ, i.e. a continuous, convex and increasing function defined on \mathbb{R}_{+}and satisfies the two conditions: $\theta(0)=0$ and $\lim _{x \rightarrow \infty} \theta(x) / x=+\infty$. The polar function θ^{*} of θ, defined by

$$
\theta^{*}(x)=\sup _{t \geq 0}(t x-\theta(t)), \quad x \geq 0
$$

is also a Young function (see Refs. [7] and [21]). For a complex Banach space $(B,\|\cdot\|)$, let $\mathcal{H}(B)$ denotes the space of all entire functions on B, i.e. of all continuous \mathbb{C}-valued functions on B whose restrictions to all affine lines of B are entire on \mathbb{C}. For each $m>0$ we denote by $\operatorname{Exp}(B, \theta, m)$ the space of all entire functions on B with θ-exponential growth of finite type m , i.e.

$$
\operatorname{Exp}(B, \theta, m)=\left\{f \in \mathcal{H}(B) ; \quad\|f\|_{\theta, m}:=\sup _{z \in B}|f(z)| e^{-\theta(m\|z\|)}<\infty\right\}
$$

The projective system $\left\{\operatorname{Exp}\left(N_{-p}, \theta, m\right) ; p \in \mathbb{N}, m>0\right\}$ gives the space

$$
\begin{equation*}
\mathcal{F}_{\theta}\left(N^{\prime}\right)=\underset{p \rightarrow \infty ; m \downarrow 0}{\operatorname{proj} \lim _{p}} \operatorname{Exp}\left(N_{-p}, \theta, m\right) . \tag{2.2}
\end{equation*}
$$

It is noteworthy that, for each $\xi \in N$, the exponential function $e_{\xi}(z):=e^{\langle z, \xi\rangle}$, where $z \in N^{\prime}$, belongs to $\mathcal{F}_{\theta}\left(N^{\prime}\right)$ and the set of such test functions spans a dense subspace of $\mathcal{F}_{\theta}\left(N^{\prime}\right)$. In the remainder of this paper we use the natation \mathcal{F}_{θ} to denote $\mathcal{F}_{\theta}\left(N^{\prime}\right)$. We are interested in continuous operators from \mathcal{F}_{θ} into its topological dual space \mathcal{F}_{θ}^{*}. The space of such operators is denoted by $\mathcal{L}\left(\mathcal{F}_{\theta}, \mathcal{F}_{\theta}^{*}\right)$ and assumed to carry the bounded convergence topology. For $z \in N^{\prime}$ and $\varphi(x)$ with Taylor expansions $\sum_{n=0}^{\infty}\left\langle x^{\otimes n}, f_{n}\right\rangle$ in \mathcal{F}_{θ}, the holomorphic derivative of φ at $x \in N^{\prime}$ in the direction z is defined by

$$
\begin{equation*}
(a(z) \varphi)(x):=\lim _{\lambda \rightarrow 0} \frac{\varphi(x+\lambda z)-\varphi(x)}{\lambda} \tag{2.3}
\end{equation*}
$$

We can check that the limit always exists, $a(z) \in \mathcal{L}\left(\mathcal{F}_{\theta}, \mathcal{F}_{\theta}\right)$ and $a^{*}(z) \in \mathcal{L}\left(\mathcal{F}_{\theta}^{*}, \mathcal{F}_{\theta}^{*}\right)$, where $a^{*}(z)$ is the adjoint of $a(z)$, i.e., for $\Phi \in \mathcal{F}_{\theta}^{*}$ and $\phi \in \mathcal{F}_{\theta},\left\langle\left\langle a^{*}(z) \Phi, \phi\right\rangle\right\rangle=$ $\langle\langle\Phi, a(z) \phi\rangle\rangle$. If $z=\delta_{t} \in E^{\prime}$ we simply write a_{t} instead of $a\left(\delta_{t}\right)$. By a straightforward computation we have

$$
\begin{equation*}
a_{t} e_{\xi}=\xi(t) e_{\xi}, \quad \xi \in N \tag{2.4}
\end{equation*}
$$

Similarly as above, for $\psi \in \mathcal{G}_{\theta^{*}}(N)$ with Taylor expansion $\psi(\xi)=\sum_{n}\left\langle\psi_{n}, \xi^{\otimes n}\right\rangle$ where $\psi_{n} \in N^{\prime \otimes n}$, we use the common notation $a(z) \psi$ for the derivative (2.3).

The Wick symbol of $\Xi \in \mathcal{L}\left(\mathcal{F}_{\theta}, \mathcal{F}_{\theta}^{*}\right)$ is by definition [20] a \mathbb{C}-valued function on $N \times N$ defined by

$$
\begin{equation*}
\sigma(\Xi)(\xi, \eta)=\left\langle\left\langle\Xi e_{\xi}, e_{\eta}\right\rangle\right\rangle e^{-\langle\xi, \eta\rangle}, \quad \xi, \eta \in N \tag{2.5}
\end{equation*}
$$

By a density argument, every operator in $\mathcal{L}\left(\mathcal{F}_{\theta}, \mathcal{F}_{\theta}^{*}\right)$ is uniquely determined by its Wick symbol.

Let $\mathcal{H}_{\theta}(N \oplus N)$ denotes the restriction of the space $\mathcal{F}_{\theta}\left(N^{\prime} \oplus N^{\prime}\right)$ over N, i.e.,

$$
\mathcal{H}_{\theta}(N \oplus N)=\bigcap_{p \geq 0, \gamma_{1}, \gamma_{2}>0} \operatorname{Exp}\left(N_{p} \times N_{p}, \theta, \gamma_{1}, \gamma_{2}\right)
$$

where $\operatorname{Exp}\left(N_{p} \oplus N_{p}, \theta, \gamma_{1}, \gamma_{2}\right)$ denotes the space of all entire functions on $N_{p} \times N_{p}$ such that

$$
\sup _{\left(x_{1}, x_{2}\right) \in\left(N_{p} \times N_{p}\right)}\left|g\left(x_{1}, x_{2}\right)\right| e^{-\theta\left(\gamma_{1}\left|x_{1}\right|_{p}\right)-\theta\left(\gamma_{2}\left|x_{2}\right|_{p}\right)}<\infty
$$

In other words, all holomorphic functions g in $\mathcal{H}_{\theta}(N \oplus N)$ admit the Taylor expansions $g\left(x_{1}, x_{2}\right)=\sum_{l, m}\left\langle g_{l, m}, x_{2}^{\otimes l} \otimes x_{1}^{\otimes m}\right\rangle$ for $x_{1}, x_{2} \in N$, where $g_{l, m} \in$ $\left(N^{\otimes l} \otimes N^{\otimes m}\right)_{\text {sym }(l, m)}$ such that for all $p \in \mathbb{N}$ and $\gamma_{1}, \gamma_{2}>0$

$$
\|\overrightarrow{\sigma(\Xi)}\|_{\theta, p,\left(\gamma_{1}, \gamma_{2}\right)}^{2}:=\sum_{l, m=0}^{\infty}\left(\theta_{l} \theta_{m}\right)^{-2} \gamma_{1}^{-l} \gamma_{2}^{-m}\left|g_{l, m}\right|_{p}^{2}<\infty
$$

where $\theta_{n}=\inf _{r>0} \frac{e^{\theta(r)}}{r^{n}}$, for $n \in \mathbb{N}$. Then using the kernel theorem and the reflexivity of the space \mathcal{F}_{θ}, we obtain the following characterization Theorem.

Theorem 2.1. [3] The Wick symbol map realizes a topological isomorphism between the space $\mathcal{L}\left(\mathcal{F}_{\theta}^{*}, \mathcal{F}_{\theta}\right)$ and the space $\mathcal{H}_{\theta}(N \oplus N)$.
2.2. QWN-Derivatives. It is a fundamental fact in QWN theory [20] (see, also Ref. [16]) that every white noise operator $\Xi \in \mathcal{L}\left(\mathcal{F}_{\theta}, \mathcal{F}_{\theta}^{*}\right)$ admits a unique Fock expansion

$$
\begin{equation*}
\Xi=\sum_{l, m=0}^{\infty} \Xi_{l, m}\left(\kappa_{l, m}\right) \tag{2.6}
\end{equation*}
$$

where, for each pairing $l, m \geq 0, \kappa_{l, m} \in\left(N^{\otimes(l+m)}\right)_{s y m(l, m)}^{\prime}$ and $\Xi_{l, m}\left(\kappa_{l, m}\right)$ is the integral kernel operator characterized via the Wick symbol transform by

$$
\begin{equation*}
\sigma\left(\Xi_{l, m}\left(\kappa_{l, m}\right)\right)(\xi, \eta)=\left\langle\kappa_{l, m}, \eta^{\otimes l} \otimes \xi^{\otimes m}\right\rangle, \quad \xi, \eta \in N \tag{2.7}
\end{equation*}
$$

It is noteworthy that $\left\{\Xi^{a, b} ; a, b \in N\right\}$ spans a dense subspace of $\mathcal{L}\left(\mathcal{F}_{\theta}^{*}, \mathcal{F}_{\theta}\right)$, where

$$
\Xi^{a, b} \equiv \sum_{l, m=0}^{\infty} \Xi_{l, m}\left(\frac{1}{l!m!} a^{\otimes l} \otimes b^{\otimes m}\right) \in \mathcal{L}\left(\mathcal{F}_{\theta}^{*}, \mathcal{F}_{\theta}\right)
$$

From Refs. [13] and [14], (see also Refs. [15] and [1]), we summarize the novel formalism of QWN-derivatives. For $\zeta \in N$, then $a(\zeta)$ extends to a continuous linear operator from \mathcal{F}_{θ}^{*} into itself (denoted by the same symbol) and $a^{*}(\zeta)$ (restricted to \mathcal{F}_{θ}) is a continuous linear operator from \mathcal{F}_{θ} into itself. Thus for any white noise operator $\Xi \in \mathcal{L}\left(\mathcal{F}_{\theta}, \mathcal{F}_{\theta}^{*}\right)$, the commutators

$$
[a(\zeta), \Xi]=a(\zeta) \Xi-\Xi a(\zeta), \quad\left[a^{*}(\zeta), \Xi\right]=a^{*}(\zeta) \Xi-\Xi a^{*}(\zeta)
$$

are well defined white noise operators in $\mathcal{L}\left(\mathcal{F}_{\theta}, \mathcal{F}_{\theta}^{*}\right)$. The $Q W N$-derivatives are defined by

$$
\begin{equation*}
D_{\zeta}^{+} \Xi=[a(\zeta), \Xi], \quad D_{\zeta}^{-} \Xi=-\left[a^{*}(\zeta), \Xi\right] \tag{2.8}
\end{equation*}
$$

These are called the creation derivative and annihilation derivative of Ξ, respectively.

The QWN-derivatives $D_{z}^{ \pm}$are natural QWN counterparts of the holomorphic partial derivatives $\partial_{1} \equiv \frac{\partial}{\partial x_{1}}$ and $\partial_{2} \equiv \frac{\partial}{\partial x_{2}}$ on the space of entire functions with two variables $\mathcal{H}_{\theta}(N \oplus N)$, for more details see [3].

Proposition 2.2. [3] Let be given $z \in N$. The creation derivative and annihilation derivative of $\Xi \in \mathcal{L}\left(\mathcal{F}_{\theta}^{*}, \mathcal{F}_{\theta}\right)$ are given by

$$
D_{z}^{-} \Xi=\sigma^{-1} \partial_{1, z} \sigma(\Xi) \quad \text { and } \quad D_{z}^{+} \Xi=\sigma^{-1} \partial_{2, z} \sigma(\Xi)
$$

Moreover, their dual adjoints are given by

$$
\left(D_{z}^{-}\right)^{*} \Xi=\sigma^{-1} \partial_{1, z}^{*} \sigma(\Xi) \quad \text { and } \quad\left(D_{z}^{+}\right)^{*} \Xi=\sigma^{-1} \partial_{2, z}^{*} \sigma(\Xi)
$$

3. Power of the QWN-Euler Operator

Recall from [3] that the QWN-Euler operator $\Delta_{E}^{Q}\left(K_{1}, K_{2}\right) \in \mathcal{L}\left(\mathcal{L}\left(\mathcal{F}_{\theta}^{*}, \mathcal{F}_{\theta}\right)\right)$ is defined by

$$
\Delta_{E}^{Q}\left(K_{1}, K_{2}\right)=\Delta_{G}^{Q}\left(K_{1}, K_{2}\right)+N_{K_{1}, K_{2}}^{Q}, \quad K_{1}, K_{2} \in \mathcal{L}\left(N^{\prime}, N^{\prime}\right)
$$

where $\Delta_{G}^{Q}\left(K_{1}, K_{2}\right)$ and $N_{K_{1}, K_{2}}^{Q}$ stand for the QWN- $\left(K_{1}, K_{2}\right)$-Gross Laplacian and the QWN-conservation operator, respectively, given by

$$
\begin{gathered}
\Delta_{G}^{Q}\left(K_{1}, K_{2}\right)=\sum_{j=1}^{\infty} D_{e_{j}}^{+} D_{K_{1}^{*} e_{j}}^{+}+\sum_{j=1}^{\infty} D_{e_{j}}^{-} D_{K_{2}^{*} e_{j}}^{-} \\
N_{K_{1}, K_{2}}^{Q}=\sum_{j=1}^{\infty}\left(D_{e_{j}}^{+}\right)^{*}\left(D_{K_{1}^{*} e_{j}}\right)^{+}+\sum_{j=1}^{\infty}\left(D_{e_{j}}^{-}\right)^{*} D_{K_{2}^{*} e_{j}}^{-}
\end{gathered}
$$

Throughout, for α_{1} and α_{2} non-zero complex numbers, we denote

$$
\Delta_{E}^{Q}\left(\alpha_{1}, \alpha_{2}\right)=\Delta_{E}^{Q}\left(\alpha_{1} I, \alpha_{2} I\right), \quad N_{\alpha_{1}, \alpha_{2}}^{Q}=N_{\alpha_{1} I, \alpha_{2} I}^{Q}
$$

Lemma 3.1. For any $\Xi \in \mathcal{L}\left(\mathcal{F}_{\theta}^{*}, \mathcal{F}_{\theta}\right)$ with $\Xi=\sum_{l, m=0}^{\infty} \Xi_{l, m}\left(\kappa_{l, m}\right)$, we have

$$
\begin{equation*}
N_{\alpha_{1}, \alpha_{2}}^{Q} \Xi=\sum_{l, m=0}^{\infty}\left(\alpha_{1} l+\alpha_{2} m\right) \Xi_{l, m}\left(\kappa_{l, m}\right) \tag{3.1}
\end{equation*}
$$

Proof. For $z \in N$, by direct computation, the partial derivatives of the identity (2.7) in the direction z are given by

$$
\partial_{1, z} \sigma\left(\Xi_{l, m}\left(\kappa_{l, m}\right)\right)(\xi, \eta)=\sigma\left(m \Xi_{l, m-1}\left(\kappa_{l, m} \otimes_{1} z\right)\right)(\xi, \eta)
$$

and

$$
\partial_{2, z} \sigma\left(\Xi_{l, m}\left(\kappa_{l, m}\right)\right)(\xi, \eta)=\sigma\left(l \Xi_{l-1, m}\left(z \otimes^{1} \kappa_{l, m}\right)\right)(\xi, \eta)
$$

where, for $z_{p} \in\left(N^{\otimes p}\right)^{\prime}$, and $\xi_{l+m-p} \in N^{\otimes(l+m-p)}, p \leq l+m$, the contractions $z_{p} \otimes_{p} \kappa_{l, m}$ and $\kappa_{l, m} \otimes^{p} z_{p}$ are defined by

$$
\begin{aligned}
& \left\langle z_{p} \otimes^{p} \kappa_{l, m}, \xi_{l-p+m}\right\rangle=\left\langle\kappa_{l, m}, z_{p} \otimes \xi_{l-p+m}\right\rangle \\
& \left\langle\kappa_{l, m} \otimes_{p} z_{p}, \xi_{l+m-p}\right\rangle=\left\langle\kappa_{l, m}, \xi_{l+m-p} \otimes z_{p}\right\rangle .
\end{aligned}
$$

Similarly, $\partial_{1, z}^{*}$ and $\partial_{2, z}^{*}$, the adjoint operators of $\partial_{1, z}$ and $\partial_{2, z}$ respectively, are given by

$$
\begin{align*}
& \partial_{1, z}^{*} \sigma\left(\Xi_{l, m}\left(\kappa_{l, m}\right)\right)(\xi, \eta)=\sigma\left(\Xi_{l, m+1}\left(\kappa_{l, m} \otimes z\right)\right)(\xi, \eta) \tag{3.2}\\
& \partial_{2, z}^{*} \sigma\left(\Xi_{l, m}\left(\kappa_{l, m}\right)\right)(\xi, \eta)=\sigma\left(\Xi_{l+1, m}\left(z \otimes \kappa_{l, m}\right)\right)(\xi, \eta) \tag{3.3}
\end{align*}
$$

Then using Proposition 2.2, we get

$$
\sigma\left(N_{\alpha_{1}, \alpha_{2}}^{Q} \Xi^{a, b}\right)(\xi, \eta)=\left(\alpha_{1}\langle a, a\rangle+\alpha_{2}\langle b, b\rangle\right) \sigma\left(\Xi^{a, b}\right)(\xi, \eta) .
$$

On the other hand, we denote the right hand side of (3.1) by A^{Q}, then we get

$$
\begin{aligned}
\sigma\left(A^{Q} \Xi^{a, b}\right)(\xi, \eta) & =\sum_{l, m} \alpha_{1} l \frac{\langle a, \eta\rangle^{l}}{l!} \frac{\langle a, \xi\rangle^{m}}{m!}+\sum_{l, m} \alpha_{2} m \frac{\langle a, \eta\rangle^{l}}{l!} \frac{\langle b, \xi\rangle^{m}}{m!} \\
& =\left(\alpha_{1}\langle a, \eta\rangle+\alpha_{2}\langle b, \xi\rangle\right) \sigma\left(\Xi^{a, b}\right)(\xi, \eta) .
\end{aligned}
$$

Hence by a density argument we complete the proof.
Motivated by Lemma 3.1, we get

$$
\begin{equation*}
\left(N_{\alpha_{1}, \alpha_{2}}^{Q}\right)^{\rho} \Xi=\sum_{l, m=0}^{\infty}\left(\alpha_{1} l+\alpha_{2} m\right)^{\rho} \Xi_{l, m}\left(\kappa_{l, m}\right) \tag{3.4}
\end{equation*}
$$

for all $\Xi=\sum_{l, m=0}^{\infty} \Xi_{l, m}\left(\kappa_{l, m}\right)$ and $\rho \in \mathbb{N}$. We observe that $\left(N_{\alpha_{1}, \alpha_{2}}^{Q}\right)^{\rho}$ is a linear continuous operator from $\mathcal{L}\left(\mathcal{F}_{\theta}^{*}, \mathcal{F}_{\theta}\right)$ into itself.

Recall that, (see [11] and [3]), the QWN-Fourier-Gauss transform $G_{K_{1}, K_{2} ; B_{1}, B_{2}}^{Q}$ is defined by

$$
\begin{equation*}
G_{K_{1}, K_{2} ; B_{1}, B_{2}}^{Q} \Xi=\sum_{l, m}^{\infty} \Xi_{l, m}\left(g_{l, m}\right) \tag{3.5}
\end{equation*}
$$

where $g_{l, m}$ is given by

$$
g_{l, m}=\sum_{j, k=0}^{\infty} \frac{(l+2 k)!(m+2 j)!}{l!m!k!j!}\left(B_{1}^{\otimes l} \otimes B_{2}^{\otimes m}\right)\left(\tau_{K_{1}}^{\otimes k} \otimes^{2 k} \kappa_{l+2 k, m+2 j} \otimes_{2 j} \tau_{K_{2}}^{\otimes j}\right) .
$$

Note that $G_{K_{1}, K_{2} ; B_{1}, B_{2}}^{Q}$ is a continuous linear operator from $\mathcal{L}\left(\mathcal{F}_{\theta}^{*}, \mathcal{F}_{\theta}\right)$ into itself. In the following we use the notation \mathcal{G}^{Q} for

$$
\mathcal{G}^{Q}:=G_{-\frac{1}{2} I,-\frac{1}{2} I ;-i I,-i I}^{Q} .
$$

Motivated by the classical case (see [19]), we can show that \mathcal{G}^{Q} is a topological isomorphism from $\mathcal{L}\left(\mathcal{F}_{\theta}^{*}, \mathcal{F}_{\theta}\right)$ into itself. Moreover,

$$
\begin{equation*}
\left(\mathcal{G}^{Q}\right)^{-1} \Xi=G_{-\frac{1}{2} I,-\frac{1}{2} I ; i I, i I}^{Q} \Xi, \quad \forall \Xi \in \mathcal{L}\left(\mathcal{F}_{\theta}^{*}, \mathcal{F}_{\theta}\right) \tag{3.6}
\end{equation*}
$$

Theorem 3.2. For any $\Xi \in \mathcal{L}\left(\mathcal{F}_{\theta}^{*}, \mathcal{F}_{\theta}\right)$, we have

$$
\left(\Delta_{E}^{Q}\left(\alpha_{1}, \alpha_{2}\right)\right)^{\rho} \Xi=\left(\mathcal{G}^{Q}\right)^{-1} \circ\left(N_{\alpha_{1}, \alpha_{2}}^{Q}\right)^{\rho} \circ \mathcal{G}^{Q} \Xi
$$

Proof. It suffices to prove the fact:

$$
\begin{equation*}
\Delta_{E}^{Q}\left(\alpha_{1}, \alpha_{2}\right)=\left(\mathcal{G}^{Q}\right)^{-1} \circ\left(N_{\alpha_{1}, \alpha_{2}}^{Q}\right) \circ \mathcal{G}^{Q} \tag{3.7}
\end{equation*}
$$

To prove (3.7) we need to prove the following identities

$$
\begin{gather*}
\mathcal{G}^{Q}\left(\Delta_{G}^{Q}\left(\alpha_{1}, \alpha_{2}\right) \Xi\right)=-\Delta_{G}^{Q}\left(\alpha_{1}, \alpha_{2}\right)\left(\mathcal{G}^{Q} \Xi\right) \tag{3.8}\\
\mathcal{G}^{Q}\left(N_{\alpha_{1}, \alpha_{2}}^{Q} \Xi\right)=\left(\Delta_{G}^{Q}\left(\alpha_{1}, \alpha_{2}\right)+N_{\alpha_{1}, \alpha_{2}}^{Q}\right) \mathcal{G}^{Q} \Xi \tag{3.9}
\end{gather*}
$$

Let us start by the proof of (3.8). Let a, $b \in N$, then we have

$$
\begin{aligned}
& \sigma\left(\mathcal{G}^{Q}\left(\Delta_{G}^{Q}\left(\alpha_{1}, \alpha_{2}\right) \Xi^{a, b}\right)\right)(\xi, \eta) \\
& \quad=\left(\alpha_{1}\langle a, a\rangle+\alpha_{2}\langle b, b\rangle\right) \exp \left\{-\frac{1}{2}\langle a, a\rangle-\frac{1}{2}\langle b, b\rangle-i\langle a, \eta\rangle-i\langle b, \xi\rangle\right\} \\
& \quad=\left(\alpha_{1}\langle a, a\rangle+\alpha_{2}\langle b, b\rangle\right) e^{-\frac{1}{2}\langle a, a\rangle-\frac{1}{2}\langle b, b\rangle} \sigma\left(\Xi^{-i a,-i b}\right)(\xi, \eta)
\end{aligned}
$$

So that, we get

$$
\mathcal{G}^{Q}\left(\Delta_{G}^{Q}\left(\alpha_{1}, \alpha_{2}\right) \Xi^{a, b}\right)=\left(\alpha_{1}\langle a, a\rangle+\alpha_{2}\langle b, b\rangle\right) e^{-\frac{1}{2}\langle a, a\rangle-\frac{1}{2}\langle b, b\rangle} \Xi^{-i a,-i b}
$$

On the other hand,

$$
\begin{aligned}
& \sigma\left(-\Delta_{G}^{Q}\left(\alpha_{1}, \alpha_{2}\right)\left(\mathcal{G}^{Q} \Xi^{a, b}\right)\right)(\xi, \eta) \\
& \quad=-\sigma\left(e^{-\frac{1}{2}\langle a, a\rangle-\frac{1}{2}\langle b, b\rangle}\left(\Delta_{G}^{Q}\left(\alpha_{1}, \alpha_{2}\right) \Xi^{-i a,-i b}\right)\right)(\xi, \eta) \\
& \quad=-\left(\alpha_{1}\langle-i a,-i a\rangle+\alpha_{2}\langle-i b,-i b\rangle\right) e^{-\frac{1}{2}\langle a, a\rangle-\frac{1}{2}\langle b, b\rangle} \sigma\left(\Xi^{-i a,-i b}\right)(\xi, \eta)
\end{aligned}
$$

which is equivalent to

$$
\begin{equation*}
-\Delta_{G}^{Q}\left(\alpha_{1}, \alpha_{2}\right)\left(\mathcal{G}^{Q} \Xi^{a, b}\right)=\left(\alpha_{1}\langle a, a\rangle+\alpha_{2}\langle b, b\rangle\right) e^{-\frac{1}{2}\langle a, a\rangle-\frac{1}{2}\langle b, b\rangle} \Xi^{-i a,-i b} \tag{3.10}
\end{equation*}
$$

Hence by density argument we complete the proof of (3.8). To prove (3.9), let a, $b \in N$. Then by Lemma 3.1 we get

$$
\begin{align*}
\sigma\left(\mathcal{G}^{Q}\left(N_{\alpha_{1}, \alpha_{2}}^{Q} \Xi^{a, b}\right)\right)(\xi, \eta)= & \sum_{l, m, j, k=0}^{\infty} \frac{\left(\alpha_{1}(l+2 k)+\alpha_{2}(m+2 j)\right)}{j!k!}(-i)^{l}(-i)^{m} \\
& \times\left(-\frac{1}{2}\langle a, a\rangle\right)^{k}\left(-\frac{1}{2}\langle b, b\rangle\right)^{j}\left\langle\frac{a^{\otimes l}}{l!} \otimes \frac{b^{\otimes m}}{m!}, \eta^{\otimes l} \otimes \xi^{\otimes m}\right\rangle \\
= & \left\{-i \alpha_{1}\langle a, \eta\rangle-i \alpha_{2}\langle b, \xi\rangle-\alpha_{1}\langle a, a\rangle-\alpha_{2}\langle b, b\rangle\right\} \\
& \times e^{-\frac{1}{2}\langle a, a\rangle-\frac{1}{2}\langle b, b\rangle} \sigma\left(\Xi^{-i a,-i b}\right)(\xi, \eta) . \tag{3.11}
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
& \sigma\left(N_{\alpha_{1}, \alpha_{2}}^{Q}\left(\mathcal{G}^{Q} \Xi^{a, b}\right)\right)(\xi, \eta) \\
& \quad=\left\{-i \alpha_{1}\langle a, \eta\rangle-i \alpha_{2}\langle b, \xi\rangle\right\} e^{-\frac{1}{2}\langle a, a\rangle-\frac{1}{2}\langle b, b\rangle} \sigma\left(\Xi^{-i a,-i b}\right)(\xi, \eta)
\end{aligned}
$$

Therefore, using (3.10), we obtain

$$
\begin{aligned}
& \sigma\left(\left(N_{\alpha_{1}, \alpha_{2}}^{Q}+\Delta_{G}^{Q}\left(K_{1}, K_{2}\right)\right) \mathcal{G}^{Q} \Xi^{a, b}\right)(\xi, \eta) \\
& =\left\{-i \alpha_{1}\langle a, \eta\rangle-i \alpha_{2}\langle b, \xi\rangle-\alpha_{1}\langle a, a\rangle-\alpha_{2}\langle b, b\rangle\right\} \\
& \quad \times e^{-\frac{1}{2}\langle a, a\rangle-\frac{1}{2}\langle b, b\rangle} \sigma\left(\Xi^{-i a,-i b}\right)(\xi, \eta) .
\end{aligned}
$$

Hence by a density argument we complete the proof.
Theorem 3.3. The power of the $Q W N-E u l e r$ operator admits on $\mathcal{L}\left(\mathcal{F}_{\theta}^{*}, \mathcal{F}_{\theta}\right)$ the following representation

$$
\begin{align*}
& \left(\Delta_{E}^{Q}\left(\alpha_{1}, \alpha_{2}\right)\right)^{\rho} \\
& =\sum_{j, k, l, m=0}^{\infty} \frac{(-1)^{l+m+j+k}}{j!k!l!m!2^{l+m}}\left(\sum_{0 \leq r \leq l, 0 \leq s \leq m} \sum_{0 \leq i \leq j, 0 \leq n \leq k}\binom{l}{r}\binom{m}{s}\right. \tag{3.12}\\
& \left.\binom{j}{i}\binom{k}{n}(-1)^{r+s+i+n}\left(2 \alpha_{1} r+2 \alpha_{2} s+\alpha_{1} i+\alpha_{2} n\right)^{\rho}\right) \\
& \int_{\mathbb{R}^{2}(l+j+k+m)} \tau\left(u_{1}, u_{2}\right) \cdots \tau\left(u_{2 l-1}, u_{2 l}\right) \tau\left(v_{1}, v_{2}\right) \cdots \tau\left(v_{2 m-1}, v_{2 m}\right) \\
& \tau\left(s_{1}, u_{2 l+1}\right) \cdots \tau\left(s_{j}, u_{2 l+j}\right) \tau\left(t_{1}, v_{2 m+1}\right) \cdots \tau\left(t_{k}, v_{2 m+k}\right) \\
& \left(D_{s_{1}}^{+}\right)^{*} \cdots\left(D_{s_{j}}^{+}\right)^{*}\left(D_{t_{1}}^{-}\right)^{*} \cdots\left(D_{t_{k}}^{-}\right)^{*} D_{u_{1}}^{+} \cdots D_{u_{2 l+j}^{+}}^{+} D_{v_{1}}^{-} \cdots D_{v_{2 m+k}}^{-} \\
& d s_{1} \cdots d s_{j} d t_{1} \cdots d t_{k} d u_{1} \cdots d u_{2 l+j} d v_{1} \cdots d v_{2 m+k} . \tag{3.13}
\end{align*}
$$

Proof. Using (3.4) and (3.5), we can show that

$$
\begin{aligned}
\left(N_{\alpha_{1}, \alpha_{2}}^{Q}\right)^{\rho} \mathcal{G} \Xi^{a, b}= & \sum_{j, k, l, m=0}^{\infty} \frac{(l+2 k)!(m+2 j)!}{l!m!j!k!2^{k+j}}(-1)^{j+k}(-i)^{l+m} \\
& \times\left(\alpha_{1} l+\alpha_{2} m\right)^{\rho} \Xi_{l, m}\left(\tau^{\otimes k} \otimes^{2 k} \kappa_{l+2 k, m+2 j} \otimes_{2 j} \tau^{\otimes j}\right)
\end{aligned}
$$

Then by (3.6) and (3.5), we get

$$
\begin{aligned}
& \left(\mathcal{G}^{Q}\right)^{-1}\left(N_{\alpha_{1}, \alpha_{2}}^{Q}\right)^{\rho} \mathcal{G}^{Q} \Xi \\
& =\sum_{i, j, k, l, m, n=0}^{\infty} \frac{(l+2 k+2 i)!(m+2 j)!}{j!k!l!m!i!n!} \\
& \quad \times \frac{(-1)^{j+k}}{2^{j+k+l+m}}\left\{\alpha_{1}(l+2 i)+\alpha_{2}(m+2 n)\right\}^{\rho} \\
& \quad \times \Xi_{l, m}\left(\tau^{\otimes(i+k)} \otimes^{2(i+k)} \kappa_{l+2 i+2 k, m+2 j+2 n} \otimes_{2(j+n)} \tau^{\otimes 2(j+n)}\right)
\end{aligned}
$$

By a change of variables $i+k=r$ and $j+n=s$, we obtain

$$
\begin{aligned}
\left(\Delta_{E}^{Q}\left(\alpha_{1}, \alpha_{2}\right)\right)^{\rho} \Xi= & \sum_{r, s, l, m=0}^{\infty} \frac{(l+2 r)!(m+2 s)!(-1)^{r+s}}{l!m!r!s!2^{r+s}} \\
& \times\left(\sum_{0 \leq i \leq r, 0 \leq n \leq s}\binom{r}{i}\binom{s}{n}\left\{\alpha_{1}(l+2 i)+\alpha_{2}(m+2 n)\right\}^{\rho}(-1)^{i+n}\right) \\
& \times \Xi_{l, m}\left(\tau^{\otimes r} \otimes^{2 r} \kappa_{l+2 r, m+2 s} \otimes_{2 s} \tau^{\otimes s}\right)
\end{aligned}
$$

Then for a,b $\in N$, the Wick symbol of $\left(\Delta_{E}^{Q}\left(\alpha_{1}, \alpha_{2}\right)\right)^{\rho} \Xi^{a, b}$ is given by

$$
\begin{aligned}
& \sigma\left(\left(\Delta_{E}^{Q}\left(\alpha_{1}, \alpha_{2}\right)\right)^{\rho} \Xi^{a, b}\right)(\xi, \eta) \\
& =\sum_{r, s, l, m=0}^{\infty} \frac{(-1)^{r+s}\langle a, a\rangle^{r}\langle b, b\rangle^{s}\langle a, \eta\rangle^{l}\langle b, \xi\rangle^{m}}{l!m!r!s!2^{r+s}} \\
& \times\left(\sum_{0 \leq i \leq r, 0 \leq n \leq s}\binom{r}{i}\binom{s}{n}\left\{\alpha_{1} l+2 \alpha_{1} i+\alpha_{2} m+2 \alpha_{2} n\right\}^{\rho}(-1)^{i+n}\right) .
\end{aligned}
$$

Therefore, using the fact that

$$
\begin{equation*}
z^{\rho}=\left.\frac{d^{\rho}}{d t^{\rho}}\right|_{t=0} e^{t z} \quad \text { for } \quad z \in \mathbb{C} \tag{3.14}
\end{equation*}
$$

we get the following equality

$$
\begin{gathered}
\sigma\left(\left(\Delta_{E}^{Q}\left(\alpha_{1}, \alpha_{2}\right)\right)^{\rho} \Xi^{a, b}\right)(\xi, \eta)= \\
\left.\frac{d^{\rho}}{d t^{\rho}}\right|_{t=0} \exp \left\{\frac{1}{2}\left(e^{2 \alpha_{1} t}-1\right)\langle a, a\rangle+\frac{1}{2}\left(e^{2 \alpha_{2} t}-1\right)\langle b, b\rangle+e^{\alpha_{1} t}\langle a, \eta\rangle+e^{\alpha_{2} t}\langle b, \xi\rangle\right\}
\end{gathered}
$$

On the other hand, denoting the right hand side of (3.13) by I^{Q}, then we have

$$
\begin{aligned}
\sigma\left(I^{Q} \Xi^{a, b}\right)(\xi, \eta)= & \sum_{j, k, l, m=0}^{\infty} \frac{(-1)^{j+k+l+m}}{j!k!l!m!2^{l+m}} \\
& \times \sum_{\substack{0 \leq r \leq l, 0 \leq s \leq n}} \sum_{0 \leq i \leq j, 0 \leq n \leq k}\binom{l}{r}\binom{m}{s}\binom{j}{i}\binom{k}{n} \\
& (-1)^{r+s+i+n}\left(2 \alpha_{1} r+2 \alpha_{2} s+\alpha_{1} i+\alpha_{2} n\right)^{\rho} \\
& \times\langle a, a\rangle^{l}\langle b, b\rangle^{m}\langle a, \eta\rangle^{j}\langle b, \xi\rangle^{k} \sigma\left(\Xi^{a, b}\right)(\xi, \eta) .
\end{aligned}
$$

Therefore, using (3.14), we get

$$
\begin{aligned}
\sigma\left(I^{Q} \Xi^{a, b}\right)(\xi, \eta) & =\left.\frac{d^{\rho}}{d t^{\rho}}\right|_{t=0} \exp \left\{\frac{1}{2}\left(e^{2 \alpha_{1} t}-1\right)\langle a, a\rangle+\frac{1}{2}\left(e^{2 \alpha_{2} t}-1\right)\langle b, b\rangle\right. \\
& \left.+\left(e^{\alpha_{1} t}-1\right)\langle a, \eta\rangle+\left(e^{\alpha_{2} t}-1\right)\langle b, \xi\rangle\right\} \sigma\left(\Xi^{a, b}\right)(\xi, \eta)
\end{aligned}
$$

Hence from the fact that

$$
\sigma\left(\Xi^{a, b}\right)(\xi, \eta)=\exp \{\langle a, \eta\rangle+\langle b, \xi\rangle\}
$$

we get the desired statement by a density argument.
Remark 3.4. For $\rho=1$ we find the integral representation of Δ_{E}^{Q} appeared in [3]. The representation (3.13) is the QWN analogue of the following classical integral representation on the nuclear space \mathcal{F}_{θ}

$$
\begin{aligned}
\left(\Delta_{E}\right)^{\rho}= & \sum_{l, m=0}^{\infty} \frac{(-1)^{l+m}}{l!m!2^{l}}\left(\sum_{0 \leq j \leq l, 0 \leq i \leq m}\binom{l}{j}\binom{m}{i}(-1)^{j+i}(2 j+i)^{\rho}\right) \\
& \int_{\mathbb{R}^{2}(l+m)} \tau\left(u_{1}, u_{2}\right) \cdots \tau\left(u_{2 l-1}, u_{2 l}\right) \tau\left(s_{1}, u_{2 l+1}\right) \cdots \tau\left(s_{m}, u_{2 l+m}\right) \\
& a_{s_{1}}^{*} \cdots a_{s_{m}}^{*} a_{u_{1}} \cdots a_{u_{2 l+m}} d s_{1} \cdots d s_{m} d u_{1} \cdots d u_{2 l+m}
\end{aligned}
$$

Which gives for $\rho=1$

$$
\Delta_{E}=\int_{\mathbb{R}^{2}} \tau\left(u_{1}, u_{2}\right) a_{u_{1}} a_{u_{2}} d u_{1} d u_{2}+\int_{\mathbb{R}^{2}} \tau\left(s_{1}, u_{1}\right) a_{s_{1}}^{*} a_{u_{1}} d s_{1} d u_{1}=\Delta_{G}+N
$$

4. Cauchy Problem Associated to the Power of the QWN-Euler Operator

Motivated by the classical Cauchy problem associated to the power of the Euler operator studied in [6], we fix two non-zero complex numbers α_{1} and α_{2} such that $\Re\left(\alpha_{1}^{i} \alpha_{2}^{\rho-i}\right) \leq 0$ for all $1 \leq i \leq \rho$. For $\Xi \in \mathcal{L}\left(\mathcal{F}_{\theta}^{*}, \mathcal{F}_{\theta}\right)$ with $\Xi=\sum_{l, m=0}^{\infty} \Xi_{l, m}\left(\kappa_{l, m}\right)$, let

$$
\begin{equation*}
X_{\alpha_{1}, \alpha_{2}, \rho ; t} \Xi=G_{0,0 ; e^{\alpha_{1} t} I, e^{\alpha_{2} t} I}^{Q} \Xi=\sum_{l, m=0}^{\infty} e^{t\left(\alpha_{1} l+\alpha_{2} m\right)^{\rho}} \Xi_{l, m}\left(\kappa_{l, m}\right), \quad t \geq 0 \tag{4.1}
\end{equation*}
$$

The Wick symbol of $X_{\alpha_{1}, \alpha_{2}, \rho ; t} \Xi$ is given by

$$
\sigma\left(X_{\alpha_{1}, \alpha_{2}, \rho ; t} \Xi\right)(\xi, \eta)=\sum_{l, m=0}^{\infty} e^{t\left(\alpha_{1} l+\alpha_{2} m\right)^{\rho}}\left\langle\kappa_{l, m}, \eta^{\otimes l} \otimes \xi^{\otimes m}\right\rangle
$$

Lemma 4.1. The following properties hold true:
(1) $X_{\alpha_{1}, \alpha_{2}, \rho ; t} \in \mathcal{L}\left(\mathcal{F}_{\theta}^{*}, \mathcal{F}_{\theta}\right)$ for any $t \geq 0$.
(2) $X_{\alpha_{1}, \alpha_{2}, \rho ; t}=e^{t\left(N_{\alpha_{1}, \alpha_{2}}^{Q}\right)^{\rho}}$ for any $t \geq 0$.
(3) $\left\{X_{\alpha_{1}, \alpha_{2}, \rho ; t}\right\}_{t \geq 0}$ is a differentiable one-parameter semigroup of operators on $\mathcal{L}\left(\mathcal{F}_{\theta}^{*}, \mathcal{F}_{\theta}\right)$ with infinitesimal generator $\left(N_{\alpha_{1}, \alpha_{2}}^{Q}\right)^{\rho}$.
Proof. 1. For $\Xi \in \mathcal{L}\left(\mathcal{F}_{\theta}^{*}, \mathcal{F}_{\theta}\right)$ with $\Xi=\sum_{l, m=0}^{\infty} \Xi_{l, m}\left(\kappa_{l, m}\right)$, any $\gamma_{1}, \gamma_{2}>0$ and any $q \geq 0$, we have

$$
\begin{aligned}
\left\|\overrightarrow{\sigma\left(X_{\alpha_{1}, \alpha_{2}, \rho ; t} \Xi\right)}\right\|_{\theta ; q ;\left(\gamma_{1}, \gamma_{2}\right)}^{2} & :=\sum_{l, m=0}^{\infty}\left(\theta_{l} \theta_{m}\right)^{-2} \gamma_{1}^{-l} \gamma_{2}^{-m}\left|e^{t\left(\alpha_{1} l+\alpha_{2} m\right)^{\rho}}\right|^{2}\left|\kappa_{l, m}\right|_{q}^{2} \\
& =\sum_{l, m=0}^{\infty}\left(\theta_{l} \theta_{m}\right)^{-2} \gamma_{1}^{-l} \gamma_{2}^{-m} e^{2 \operatorname{Re}\left(t\left(\alpha_{1} l+\alpha_{2} m\right)^{\rho}\right)}\left|\kappa_{l, m}\right|_{q}^{2} \\
& \leq\|\overrightarrow{\sigma(\Xi)}\|_{\theta ; q ;\left(\gamma_{1}, \gamma_{2}\right)}^{2}, \quad t \geq 0
\end{aligned}
$$

Hence $X_{\alpha_{1}, \alpha_{2}, \rho ; t} \in \mathcal{L}\left(\mathcal{L}\left(\mathcal{F}_{\theta}^{*}, \mathcal{F}_{\theta}\right)\right)$.
2. For $\Xi \in \mathcal{L}\left(\mathcal{F}_{\theta}^{*}, \mathcal{F}_{\theta}\right)$ with $\Xi=\sum_{l, m=0}^{\infty} \Xi_{l, m}\left(\kappa_{l, m}\right)$, we have

$$
\sum_{n=0}^{\infty} \frac{t^{n}}{n!}\left(N_{\alpha_{1}, \alpha_{2}}^{Q}\right)^{\rho n} \Xi=\sum_{l, m=0}^{\infty} e^{t\left(\alpha_{1} l+\alpha_{2} m\right)^{\rho}} \Xi_{l, m}\left(\kappa_{l, m}\right)
$$

3. Obviously $\left\{e^{t\left(N_{\alpha_{1}, \alpha_{2}}^{Q}\right)^{\rho}}\right\}_{t \geq 0}$ is an one-parameter semigroup of operators on $\mathcal{L}\left(\mathcal{F}_{\theta}^{*}, \mathcal{F}_{\theta}\right)$. By direct computation, we can easily show that

$$
\lim _{t \rightarrow 0^{+}} \sup _{\| \overrightarrow{\sigma(\Xi) \|, t \leq 1}}\left\|\frac{\sigma\left(e^{\left.t\left(N_{\alpha_{1}, \alpha_{2}}\right)^{\rho} \Xi\right)-\sigma(\Xi)}\right.}{t}-\sigma\left(\left(N_{\alpha_{1}, \alpha_{2}}^{Q}\right)^{\rho} \Xi\right)\right\|_{\theta ; q ;\left(\gamma_{1}, \gamma_{2}\right)}^{2}=0
$$

Thus $\left\{X_{\alpha_{1}, \alpha_{2}, \rho ; t}\right\}_{t \geq 0}$ is a differentiable semigroup with infinitesimal generator $\left(N_{\alpha_{1}, \alpha_{2}}^{Q}\right)^{\rho}$.

Let α_{1} and α_{2} be two non-zero complex numbers with $\Re\left(\alpha_{1}^{i} \alpha_{2}^{\rho-i}\right) \leq 0$ for all $1 \leq i \leq \rho$. For $t \geq 0$, let $Y_{\alpha_{1}, \alpha_{2}, \rho ; t}$ be given by

$$
Y_{\alpha_{1}, \alpha_{2}, \rho ; t}=\left(\mathcal{G}^{Q}\right)^{-1} \circ X_{\alpha_{1}, \alpha_{2}, \rho ; t} \circ \mathcal{G}^{Q}
$$

It is obvious that $Y_{\alpha_{1}, \alpha_{2}, \rho ; t} \in \mathcal{L}\left(\mathcal{L}\left(\mathcal{F}_{\theta}^{*}, \mathcal{F}_{\theta}\right)\right)$.
Theorem 4.2. Let α_{1} and α_{2} be two non-zero complex numbers with $\Re\left(\alpha_{1}^{i} \alpha_{2}^{\rho-i}\right) \leq$ 0 for all $1 \leq i \leq \rho$. For $\Xi=\sum_{l, m=0}^{\infty} \Xi_{l, m}\left(\kappa_{l, m}\right) \in \mathcal{L}\left(\mathcal{F}_{\theta}^{*}, \mathcal{F}_{\theta}\right)$, the following Cauchy problem

$$
\begin{equation*}
\frac{\partial}{\partial t} U_{t}=\left(\Delta_{E}^{Q}\left(\alpha_{1}, \alpha_{2}\right)\right)^{\rho} U_{t}, \quad U_{0}=\Xi \tag{4.2}
\end{equation*}
$$

has a unique solution in $\mathcal{L}\left(\mathcal{F}_{\theta}^{*}, \mathcal{F}_{\theta}\right)$ given by

$$
\begin{align*}
U_{t}= & Y_{\alpha_{1}, \alpha_{2}, \rho ; t} \Xi \\
= & \sum_{j, k, l, m=0}^{\infty} \frac{(l+2 k)!(m+2 j)!}{j!k!l!m!2^{j+k}}(-1)^{j+k+l+m} \\
& \times\left(\sum_{0 \leq r \leq k, 0 \leq s \leq j}\binom{k}{r}\binom{j}{s} e^{t\left\{\alpha_{1}(l+2 r)+\alpha_{2}(m+2 s)\right\}^{\rho}}(-1)^{r+s}\right) \\
& \times \Xi_{l, m}\left(\tau^{\otimes k} \otimes^{2 k} \kappa_{l+2 k, m+2 j} \otimes_{2 j} \tau^{\otimes j}\right) \tag{4.3}
\end{align*}
$$

Remark 4.3. Note that the solution (4.3) is the QWN analogue of the solution of the classical Cauchy problem studied in [6].

Proof. From the continuity of \mathcal{G}^{Q} and Lemma 4.1, we deduce that $\left\{Y_{\alpha_{1}, \alpha_{2}, \rho ; t}\right\}_{t \geq 0}$ is a differentiable one-parameter semigroup of operators on $\mathcal{L}\left(\mathcal{F}_{\theta}^{*}, \mathcal{F}_{\theta}\right)$ with infinitesimal generator $\left(\mathcal{G}^{Q}\right)^{-1} \circ\left(N_{\alpha_{1}, \alpha_{2}}^{Q}\right)^{\rho} \circ \mathcal{G}^{Q}$ which is equal to $\left(\Delta_{E}^{Q}\left(\alpha_{1}, \alpha_{2}\right)\right)^{\rho}$ by Theorem 4.2. Then we deduce that $Y_{\alpha_{1}, \alpha_{2}, \rho ; t} \Xi$ is the unique solution of (4.2).

To prove (4.3), we use (3.5) to get

$$
\begin{aligned}
X_{\alpha_{1}, \alpha_{2}, \rho ; t}\left(\mathcal{G}^{Q} \Xi\right)= & \sum_{j, k, l, m=0}^{\infty} \frac{(l+2 k)!(m+2 j)!}{j!k!l!m!2^{j+k}}(-1)^{j+k}(-i)^{l+m} \\
& \times e^{t\left(\alpha_{1} l+\alpha_{2} m\right)^{\rho}} \Xi_{l, m}\left(\tau^{\otimes^{k}} \otimes^{2 k} \kappa_{l+2 k, m+2 j} \otimes_{2 j} \tau^{\otimes j}\right)
\end{aligned}
$$

Then applying $\left(\mathcal{G}^{Q}\right)^{-1}$ we obtain

$$
\begin{aligned}
Y_{\alpha_{1}, \alpha_{2}, \rho ; t} \Xi & =\sum_{i, j, k, l, m, n=0}^{\infty} \frac{(l+2 i+2 k)!(m+2 j+2 n)!}{i!j!k!l!m!n!2^{i+j+k+n}} \\
& \times(-1)^{j+k} e^{t\left\{\alpha_{1}(l+2 k)+\alpha_{2}(m+2 j)\right\}^{\rho}} \\
& \times \Xi_{l, m}\left(\tau^{\otimes^{(k+i)}} \otimes^{2(k+i)} \kappa_{l+2 k+2 i, m+2 j+2 n} \otimes_{2(j+n)} \tau^{\otimes(j+n)}\right)
\end{aligned}
$$

By a simple change of variables $i+k=r$ and $j+n=s$, we get

$$
\begin{aligned}
Y_{\alpha_{1}, \alpha_{2}, \rho ; t} \Xi= & \sum_{j, k, l, m=0}^{\infty} \sum_{r \geq k, s \geq j} \frac{(l+2 r)!(m+2 s)!}{j!k!l!m!(r-k)!(s-j)!2^{r+s}}(-1)^{j+k} \\
= & \times e^{t\left\{\alpha_{1}(l+2 k)+\alpha_{2}(m+2 j)\right\}^{\rho}} \Xi_{l, m}\left(\tau^{\otimes^{r}} \otimes^{2 r} \kappa_{l+2 r, m+2 s} \frac{(l+2 r)!(m+2 s)!}{r!s!l!m!2^{r+s}}(-1)^{r+s+l+m} \tau^{\otimes s}\right) \\
& \times\left(\sum_{0 \leq k \leq r, 0 \leq j \leq s}\binom{r}{k}\binom{s}{j} e^{t\left\{\alpha_{1}(l+2 k)+\alpha_{2}(m+2 j)\right\}^{\rho}}(-1)^{j+k}\right) \\
& \times \Xi_{l, m}\left(\tau^{\otimes r} \otimes^{2 r} \kappa_{l+2 k+2 i, m+2 j+2 n} \otimes_{2 s} \tau^{\otimes s}\right) .
\end{aligned}
$$

Hence we get the desired statement.
Theorem 4.4. The solution of the Cauchy problem (4.2) admits the following representation

$$
\begin{align*}
U_{t}= & \sum_{j, k, l, m=0}^{\infty} \frac{(-1)^{l+m+j+k}}{j!k!l!m!2^{l+m}} \\
& \left(\sum_{0 \leq r \leq l, 0 \leq s \leq m} \sum_{0 \leq i \leq j, 0 \leq n \leq k}\binom{l}{r}\binom{m}{s}\binom{j}{i}\binom{k}{n}\right. \\
& \left.(-1)^{r+s+i+n} e^{t\left(2 \alpha_{1} r+2 \alpha_{2} s+\alpha_{1} i+\alpha_{2} n\right)^{\rho}}\right) \\
& \int_{\mathbb{R}^{2}(l+j+k+m)} \tau\left(u_{1}, u_{2}\right) \cdots \tau\left(u_{2 l-1}, u_{2 l}\right) \tau\left(v_{1}, v_{2}\right) \cdots \tau\left(v_{2 m-1}, v_{2 m}\right) \\
& \tau\left(s_{1}, u_{2 l+1}\right) \cdots \tau\left(s_{j}, u_{2 l+j}\right) \tau\left(t_{1}, v_{2 m+1}\right) \cdots \tau\left(t_{k}, v_{2 m+k}\right) \\
& \left(D_{s_{1}}^{+}\right)^{*} \cdots\left(D_{s_{j}}^{+}\right)^{*}\left(D_{t_{1}}^{-}\right)^{*} \cdots\left(D_{t_{k}}^{-}\right)^{*} D_{u_{1}}^{+} \cdots D_{u_{2 l+j}}^{+} D_{v_{1}}^{-} \cdots D_{v_{2 m+k}}^{-} \Xi \\
& d s_{1} \cdots d s_{j} d t_{1} \cdots d t_{k} d u_{1} \cdots d u_{2 l+j} d v_{1} \cdots d v_{2 m+k} . \tag{4.4}
\end{align*}
$$

on $\mathcal{L}\left(\mathcal{F}_{\theta}^{*}, \mathcal{F}_{\theta}\right)$.
Remark 4.5. Note that for $\rho=1$, the solution in (4.4) coincides with the solution of the Cauchy problem associated to the QWN-Euler operator studied in [3].

Proof. From Theorem 4.2 we get the desired statement using the same technic of calculus used in Theorem 3.3.

References

1. Accardi, L., Barhoumi, A. and Ji, U. C.: Quantum Laplacians on Generalized Operators on Boson Fock space, Probability and Mathematical Statistics 31 (2011) 1-24.
2. Barhoumi, A., Ouerdiane, H. and Rguigui, H.: Generalized Euler heat equation, Quantum Probability and White Noise Analysis 25 (2010) 99-116.
3. Barhoumi, A., Ouerdiane, H. and Rguigui, H.: QWN-Euler Operator And Associated Cauchy Problem, Infinite Dimensional Analysis Quantum Probability and Related Topics 15, No. 1 (2012) 1250004 (20 pages).
4. Chung, D. M. and Ji, U. C.: Transform on white noise functionals with their application to Cauchy problems, Nagoya Math. J. 147 (1997) 1-23.
5. Chung, D. M. and Ji, U. C.: Transformation groups on white noise functionals and their application, Appl. Math. Optim. 37, No. 2 (1998) 205-223.
6. Chung, D. M. and Ji, U. C.: Some cauchy problems in white noise analysis and associated semigroups of operators, Stochastic Analysis and Applications 17, No. 1 (1999) 1-22.
7. Gannoun, R., Hachaichi, R., Ouerdiane, H. and Rezgi, A.: un théorème de dualité entre espace de fonction holomorphes à croissance exponentielle, J. Funct. Anal. 171 (2000) 1-14.
8. Gross, L.: Abstract Wiener spaces, Proc. 5-th Berkeley Symp. Math. Stat. Probab. 2 (1967) 31-42.
9. Hida, T.: Introduction to White Noise, Lecture Notes, Nagoya University, 1990.
10. Ji, U. C.: Integral kernel operators on regular generalized white noise functions, Bull. Korean Math. Soc. 37, No. 3 (2000) 601-618.
11. Ji, U. C.: Quantum Extensions of Fourier-Gauss and Fourier-Mehler Transforms, J. Korean Math. Soc. 45, No. 6 (2008) 1785-1801.
12. Ji, U. C., and Obata, N.: Unitary of Kuo's Fourier Mehler Transform, Infinite Dimensional Analysis Quantum Probability and Related Topics 7, No. 1 (2004) 147-154.
13. Ji, U. C., and Obata, N.: Generalized white noise operator fields and quantum white noise derivatives, Séminaires \& Congrès 16 (2007) 17-33.
14. Ji, U. C., and Obata, N.: Annihilation-derivative, creation-derivative and representation of quantum martingales, Commun. Math. Phys. 286 (2009) 751-775.
15. Ji, U. C., and Obata, N.: Quantum stochastic integral representations of Fock space operators, Stochastics: An International Journal of Probability and Stochastics Processes 81, Nos. 3-4 (2009) 367-384.
16. Ji, U. C., Obata, N. and Ouerdiane, H.: Analytic characterization of generalized Fock space operators as two-variable entire function with growth condition, Infinite Dimensional Analysis Quantum Probability and Related Topics 5, No. 3 (2002) 395-407.
17. Kuo, H.-H.: Potential theory associated with Uhlenbeck Ornstein process, J. Funct. Anal 21 (1976) 63-75.
18. Kuo, H.-H.: On Laplacian operator of generalized Brownian functionals, Lect. Notes in Math 1203 (1986) 119-128.
19. Kuo, H.-H.: White noise distribution theory, CRC press, Boca Raton, 1996.
20. Obata, N.: White noise calculus and Fock spaces, Lecture notes in Mathematics 1577, Spriger-Verlag, 1994.
21. Obata, N.: Quantum white noise calculus based on nuclear algebras of entire function, Trends in Infinite Dimensional Analysis and Quantum Probability, RIMS, No. 1278 (2001) 130-157.
22. Ouerdiane, H.: Fonctionnelles analytiques avec condition de croissance, et application l'analyse gaussienne, Japan. J. Math. (N.S.) 20, No. 1 (1994) 187-198.
23. Ouerdiane, H.: Noyaux et symboles d'opérateurs sur des fonctionelles analytiques gaussiennes, Japon. J. Math. 21 (1995) 223-234.
24. Ouerdiane, H. and Rguigui, H.: QWN-Conservation Operator And Associated Differential Equation, Communication on stochastic analysis 6, No. 3 (2012) 437-450.
25. Piech, M. A.: Parabolic equations associated with the number operator, Trans. Amer. Math. Soc. 194 (1974) 213-222.

Aymen Ettaieb: Department of Mathematics, Faculty of Sciences of Tunis University of Tunis El-Manar, 1060 Tunis, Tunisia

E-mail address: ettaieb97134@gmail.com
Habib Ouerdiane: Department of Mathematics, Faculty of Sciences of Tunis University of Tunis El-Manar, 1060 Tunis, Tunisia

E-mail address: habib.ouerdiane@fst.rnu.tn
Hafedh Rguigui: Department of Mathematics, Faculty of Sciences of Tunis University of Tunis El-Manar, 1060 Tunis, Tunisia

E-mail address: hafedh.rguigui@yahoo.fr

[^0]: Received 2012-2-13; Communicated by the editors. Article is based on a lecture presented at the International Conference on Stochastic Analysis and Applications, Hammamet, Tunisia, October 10-15, 2011.

 2000 Mathematics Subject Classification. Primary 60H40; Secondary 46A32, 46F25, 46G20.
 Key words and phrases. Cauchy problem, QWN-conservation operator, QWN-Euler operator, QWN-derivatives.

