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Abstract. In this paper we give the integral representation of the power of

the quantum white noise (QWN) Euler operator (∆Q
E
)ρ, for ρ ∈ N, in terms of

the QWN-derivatives {D−

t , D
+

t ; t ∈ R} as a kind of functional integral acting
on nuclear algebra of white noise operators. The solution of the Cauchy

problem associated to (∆Q
E
)ρ is worked out in the basis of the QWN coordinate

system.

1. Introduction

As an infinite dimensional analogue of the Euler operator defined on Rd by
∑d

k=1 xk
∂

∂xk
, the operator

∆E := ∆G +N =

∞
∑

k=1

〈·, ek〉∂ek , (1.1)

was investigated in [4, 5], where ∆G and N are the infinite dimensional Laplacians
initiated by Gross [8] and Piech [25], respectively, {en; n ≥ 0} is an arbitrary or-
thonormal basis for L2(R), ∂ek denotes the holomorphic derivative in the direction
ek acting on the test function space Fθ(S

′
C
(Rd)). For details see [20].

In our previous paper [2], the existence of a solution of the Cauchy problem
associated with the Euler operator ∆E in the basis of nuclear algebra of entire
functions is investigated. More precisely, for two linear continuous operators K1

and K2 from the complexification of some nuclear space into its topological dual
space, the (infinite dimensional) Euler operator is defined as follows

∆E(K1, K2) = ∆G(K1) +N(K2). (1.2)

It is shown that under some appropriate conditions, ∆E(K1, K2) is the generator
of a one-parameter group transformation. Furthermore, by using the GK1,K2-
transform studied in [10, 4], the solution of the Euler Cauchy Problem was worked
out.
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Using the Hermite functions one can easily show that

(x
d

dx
)ρ =

∞
∑

m=0

(−1)m

m!





m
∑

j=0

(

m
j

)

(−1)jjρ



 xm(
d

dx
)m (1.3)

and the solution of the Cauchy problem ∂
∂t
ut = (x d

dx
)ρut with u0 ∈ S(R) is given

by

ut(x) =

∞
∑

m=0

(−1)m

m!





m
∑

j=0

(

m
j

)

(−1)jetj
ρ



xm(
d

dx
)mu0(x). (1.4)

As a generalization of (1.3), the operator (α∆G + βN)ρ, α, β ∈ C, ρ ∈ N is
studied in [6] in the space of test and generalized white noise functionals. For each
positive integer ρ, the explicitly one-parameter semigroup and cosine family of
operators is given on an appropriate test space of which infinitesimal generator is
(α∆G + βN)ρ. As an application, the existence and uniqueness of solutions of the
Cauchy problems for the first and second order differential equations associated
with the operator (α∆G + βN)ρ are studied.

In [3], by using the new idea of QWN-derivatives pointed out by Ji-Obata in

[15, 14], the quantum analogous ∆Q
E of (1.2) is defined as the sum ∆Q

G + NQ,

where ∆Q
G and NQ stand for appropriate quantum counterparts of the Laplace

operators. The functional integral representations of ∆Q
E in terms of the QWN-

derivatives {D−
t , D

+
t ; t ∈ R} on the class of white noise operators is given by

∆Q
E(K1, K2) =

∞
∑

j=1

MQ+
〈·,K1ej〉

D+
ej

+
∞
∑

j=1

MQ−
〈·,K2ej〉

D−
ej

=

∫

R2

τ
K1

(s, t)MQ+
〈·,δs〉

D+
t dsdt+

∫

R2

τ
K2

(s, t)MQ−
〈·,δs〉

D−
t dsdt

where, for z ∈ N ′,

MQ−
〈·,z〉 = σ−1(M〈·,z〉 ⊗ I)σ, MQ+

〈·,z〉 = σ−1(I ⊗M〈·,z〉)σ,

M〈·,z〉 is the classical multiplication operator by the distribution 〈·, z〉 and σ is the
Wick symbol defined in (2.5).

In the present paper, by using the QWN-derivatives and their adjoints, the power

of the QWN-Euler operator (∆Q
E)

ρ, for ρ ∈ N, is studied. The first main result

is the functional integral representation of (∆Q
E)

ρ in terms of the QWN-derivatives

{D−
t , D

+
t ; t ∈ R} on the class of white noise operators. The second remarkable

feature is to solve the Cauchy problem associated to (∆Q
E)

ρ.
The paper is organized as follows. In Section 2, we briefly recall well-known

results on nuclear algebra of entire holomorphic functions, then we recall the cre-
ation derivative and annihilation derivative as well as their adjoints. In Section
3, we give an integral representation of the power of the QWN-Euler operator. In
Section 4, we solve the Cauchy problem associated to the power of the QWN-Euler
operator and we give an integral representation of the solution.
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2. Preliminaries

Let H be the real Hilbert space of square integrable functions on R with norm
| · |0, E ≡ S(R) and E′ ≡ S ′(R) be the Schwartz space consisting of rapidly
decreasing C∞-functions and the space of the tempered distributions, respectively.
Then the Gel’fand triple

E ⊂ H ⊂ E′ (2.1)

can be reconstructed in a standard way (see Ref. [20]) by the harmonic oscillator
A = 1 + t2 − d2/dt2 and H . The eigenvalues of A are 2n+ 2, n = 0, 1, 2, · · · , the
corresponding eigenfunctions {en; n ≥ 0} form an orthonormal basis for L2(R)
and each en is an element of E. In fact E is a nuclear space equipped with the
Hilbertian norms

|ξ|p = |Apξ|0 , ξ ∈ E, p ∈ R

and we have
E = proj lim

p→∞
Ep , E′ = ind lim

p→∞
E−p,

where, for p ≥ 0, Ep is the completion of E with respect to the norm | · |p and E−p

is the topological dual space of Ep. We denote by N = E+ iE and Np = Ep+ iEp,
p ∈ Z, the complexifications of E and Ep, respectively.

2.1. Spaces of holomorphic functions. Throughout the paper, we fix a Young
function θ, i.e. a continuous, convex and increasing function defined on R+ and
satisfies the two conditions: θ(0) = 0 and limx→∞ θ(x)/x = +∞. The polar
function θ∗ of θ, defined by

θ∗(x) = sup
t≥0

(tx− θ(t)), x ≥ 0,

is also a Young function (see Refs. [7] and [21]). For a complex Banach space
(B, ‖ · ‖), let H(B) denotes the space of all entire functions on B, i.e. of all
continuous C-valued functions on B whose restrictions to all affine lines of B are
entire on C. For each m > 0 we denote by Exp(B, θ,m) the space of all entire
functions on B with θ−exponential growth of finite type m, i.e.

Exp(B, θ,m) =
{

f ∈ H(B); ‖f‖θ,m := sup
z∈B

|f(z)|e−θ(m‖z‖) <∞
}

.

The projective system {Exp(N−p, θ,m); p ∈ N, m > 0} gives the space

Fθ(N
′) = proj lim

p→∞;m↓0
Exp(N−p, θ,m) . (2.2)

It is noteworthy that, for each ξ ∈ N , the exponential function eξ(z) := e〈z,ξ〉,
where z ∈ N ′, belongs to Fθ(N

′) and the set of such test functions spans a
dense subspace of Fθ(N

′). In the remainder of this paper we use the natation
Fθ to denote Fθ(N

′). We are interested in continuous operators from Fθ into its
topological dual space F∗

θ . The space of such operators is denoted by L(Fθ,F
∗
θ )

and assumed to carry the bounded convergence topology. For z ∈ N ′ and ϕ(x)
with Taylor expansions

∑∞
n=0〈x

⊗n, fn〉 in Fθ, the holomorphic derivative of ϕ at
x ∈ N ′ in the direction z is defined by

(a(z)ϕ)(x) := lim
λ→0

ϕ(x + λz)− ϕ(x)

λ
. (2.3)
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We can check that the limit always exists, a(z) ∈ L(Fθ,Fθ) and a
∗(z) ∈ L(F∗

θ ,F
∗
θ ),

where a∗(z) is the adjoint of a(z), i.e., for Φ ∈ F∗
θ and φ ∈ Fθ, 〈〈a

∗(z)Φ, φ〉〉 =
〈〈Φ, a(z)φ〉〉. If z = δt ∈ E′ we simply write at instead of a(δt). By a straightfor-
ward computation we have

ateξ = ξ(t) eξ , ξ ∈ N. (2.4)

Similarly as above, for ψ ∈ Gθ∗(N) with Taylor expansion ψ(ξ) =
∑

n〈ψn, ξ
⊗n〉

where ψn ∈ N ′⊗n, we use the common notation a(z)ψ for the derivative (2.3).
The Wick symbol of Ξ ∈ L(Fθ,F

∗
θ ) is by definition [20] a C-valued function on

N ×N defined by

σ(Ξ)(ξ, η) = 〈〈Ξeξ, eη〉〉e
−〈ξ,η〉, ξ, η ∈ N. (2.5)

By a density argument, every operator in L(Fθ,F
∗
θ ) is uniquely determined by its

Wick symbol.
Let Hθ(N ⊕N) denotes the restriction of the space Fθ(N

′ ⊕N ′) over N , i.e.,

Hθ(N ⊕N) =
⋂

p≥0,γ1,γ2>0

Exp(Np ×Np, θ, γ1, γ2),

where Exp(Np ⊕Np, θ, γ1, γ2) denotes the space of all entire functions on Np ×Np

such that
sup

(x1,x2)∈(Np×Np)

|g(x1, x2)|e
−θ(γ1|x1|p)−θ(γ2|x2|p) <∞.

In other words, all holomorphic functions g in Hθ(N ⊕ N) admit the Taylor

expansions g(x1, x2) =
∑

l,m〈gl,m, x
⊗l
2 ⊗ x⊗m

1 〉 for x1, x2 ∈ N , where gl,m ∈

(N⊗l ⊗N⊗m)sym(l,m) such that for all p ∈ N and γ1, γ2 > 0

‖
−−→
σ(Ξ)‖2θ,p,(γ1,γ2)

:=
∞
∑

l,m=0

(θlθm)−2γ−l
1 γ−m

2 |gl,m|2p <∞,

where θn = infr>0
eθ(r)

rn
, for n ∈ N. Then using the kernel theorem and the

reflexivity of the space Fθ, we obtain the following characterization Theorem.

Theorem 2.1. [3] The Wick symbol map realizes a topological isomorphism be-
tween the space L(F∗

θ ,Fθ) and the space Hθ(N ⊕N).

2.2. QWN-Derivatives. It is a fundamental fact in QWN theory [20] (see, also Ref.
[16]) that every white noise operator Ξ ∈ L(Fθ,F

∗
θ ) admits a unique Fock expan-

sion

Ξ =

∞
∑

l,m=0

Ξl,m(κl,m), (2.6)

where, for each pairing l,m ≥ 0, κl,m ∈ (N⊗(l+m))′
sym(l,m) and Ξl,m(κl,m) is the

integral kernel operator characterized via the Wick symbol transform by

σ(Ξl,m(κl,m))(ξ, η) = 〈κl,m, η
⊗l ⊗ ξ⊗m〉, ξ, η ∈ N. (2.7)

It is noteworthy that {Ξa,b; a, b ∈ N} spans a dense subspace of L(F∗
θ ,Fθ), where

Ξa,b ≡

∞
∑

l,m=0

Ξl,m(
1

l!m!
a⊗l ⊗ b⊗m) ∈ L(F∗

θ ,Fθ).
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From Refs. [13] and [14], (see also Refs. [15] and [1]), we summarize the novel
formalism of QWN-derivatives. For ζ ∈ N , then a(ζ) extends to a continuous linear
operator from F∗

θ into itself (denoted by the same symbol) and a∗(ζ) (restricted
to Fθ) is a continuous linear operator from Fθ into itself. Thus for any white noise
operator Ξ ∈ L(Fθ,F

∗
θ ), the commutators

[a(ζ),Ξ] = a(ζ)Ξ − Ξ a(ζ), [a∗(ζ),Ξ] = a∗(ζ)Ξ − Ξ a∗(ζ),

are well defined white noise operators in L(Fθ,F
∗
θ ). The QWN-derivatives are de-

fined by

D+
ζ Ξ = [a(ζ),Ξ] , D−

ζ Ξ = −[a∗(ζ),Ξ]. (2.8)

These are called the creation derivative and annihilation derivative of Ξ, respec-
tively.

The QWN-derivativesD±
z are natural QWN counterparts of the holomorphic partial

derivatives ∂1 ≡ ∂
∂x1

and ∂2 ≡ ∂
∂x2

on the space of entire functions with two

variables Hθ(N ⊕N), for more details see [3].

Proposition 2.2. [3] Let be given z ∈ N . The creation derivative and annihilation
derivative of Ξ ∈ L(F∗

θ ,Fθ) are given by

D−
z Ξ = σ−1∂1,zσ(Ξ) and D+

z Ξ = σ−1∂2,zσ(Ξ).

Moreover, their dual adjoints are given by

(D−
z )

∗Ξ = σ−1∂∗1,zσ(Ξ) and (D+
z )

∗Ξ = σ−1∂∗2,zσ(Ξ).

3. Power of the QWN-Euler Operator

Recall from [3] that the QWN-Euler operator ∆Q
E(K1, K2) ∈ L(L(F∗

θ ,Fθ)) is
defined by

∆Q
E(K1, K2) = ∆Q

G(K1, K2) +NQ
K1,K2

, K1, K2 ∈ L(N ′, N ′),

where ∆Q
G(K1, K2) and N

Q
K1,K2

stand for the QWN-(K1, K2)−Gross Laplacian and
the QWN-conservation operator, respectively, given by

∆Q
G(K1, K2) =

∞
∑

j=1

D+
ej
D+

K∗

1 ej
+

∞
∑

j=1

D−
ej
D−

K∗

2 ej
,

NQ
K1,K2

=

∞
∑

j=1

(D+
ej
)∗(DK∗

1 ej
)+ +

∞
∑

j=1

(D−
ej
)∗D−

K∗

2 ej
.

Throughout, for α1 and α2 non-zero complex numbers, we denote

∆Q
E(α1, α2) = ∆Q

E(α1I, α2I), NQ
α1,α2

= NQ
α1I,α2I

.

Lemma 3.1. For any Ξ ∈ L(F∗
θ ,Fθ) with Ξ =

∑∞
l,m=0 Ξl,m(κl,m), we have

NQ
α1,α2

Ξ =

∞
∑

l,m=0

(α1l + α2m)Ξl,m(κl,m). (3.1)
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Proof. For z ∈ N , by direct computation, the partial derivatives of the identity
(2.7) in the direction z are given by

∂1,zσ(Ξl,m(κl,m))(ξ, η) = σ(mΞl,m−1(κl,m ⊗1 z))(ξ, η)

and

∂2,zσ(Ξl,m(κl,m))(ξ, η) = σ(lΞl−1,m(z ⊗1 κl,m))(ξ, η),

where, for zp ∈ (N⊗p)′, and ξl+m−p ∈ N⊗(l+m−p), p ≤ l + m, the contractions
zp ⊗p κl,m and κl,m ⊗p zp are defined by

〈zp ⊗
p κl,m, ξl−p+m〉 = 〈κl,m, zp ⊗ ξl−p+m〉

〈κl,m ⊗p zp, ξl+m−p〉 = 〈κl,m, ξl+m−p ⊗ zp〉.

Similarly, ∂∗1,z and ∂∗2,z, the adjoint operators of ∂1,z and ∂2,z respectively, are
given by

∂∗1,zσ(Ξl,m(κl,m))(ξ, η) = σ(Ξl,m+1(κl,m ⊗ z))(ξ, η) (3.2)

∂∗2,zσ(Ξl,m(κl,m))(ξ, η) = σ(Ξl+1,m(z ⊗ κl,m))(ξ, η). (3.3)

Then using Proposition 2.2, we get

σ(NQ
α1,α2

Ξa,b)(ξ, η) = (α1〈a, a〉+ α2〈b, b〉)σ(Ξ
a,b)(ξ, η).

On the other hand, we denote the right hand side of (3.1) by AQ, then we get

σ(AQΞa,b)(ξ, η) =
∑

l,m

α1l
〈a, η〉l

l!

〈a, ξ〉m

m!
+
∑

l,m

α2m
〈a, η〉l

l!

〈b, ξ〉m

m!

= (α1〈a, η〉+ α2〈b, ξ〉)σ(Ξ
a,b)(ξ, η).

Hence by a density argument we complete the proof. �

Motivated by Lemma 3.1, we get

(NQ
α1,α2

)ρΞ =

∞
∑

l,m=0

(α1l + α2m)ρΞl,m(κl,m) (3.4)

for all Ξ =
∑∞

l,m=0 Ξl,m(κl,m) and ρ ∈ N. We observe that (NQ
α1,α2

)ρ is a linear

continuous operator from L(F∗
θ ,Fθ) into itself.

Recall that, (see [11] and [3]), the QWN-Fourier-Gauss transform GQ
K1,K2;B1,B2

is
defined by

GQ
K1,K2;B1,B2

Ξ =
∞
∑

l,m

Ξl,m(gl,m) (3.5)

where gl,m is given by

gl,m =

∞
∑

j,k=0

(l + 2k)!(m+ 2j)!

l!m!k!j!

(

B⊗l
1 ⊗B⊗m

2

)

(

τ⊗k
K1

⊗2k κl+2k,m+2j ⊗2j τ
⊗j
K2

)

.

Note that GQ
K1,K2;B1,B2

is a continuous linear operator from L(F∗
θ ,Fθ) into itself.

In the following we use the notation GQ for

GQ := GQ

− 1
2 I,−

1
2 I;−iI,−iI

.
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Motivated by the classical case (see [19]), we can show that GQ is a topological
isomorphism from L(F∗

θ ,Fθ) into itself. Moreover,

(GQ)−1Ξ = GQ

− 1
2 I,−

1
2 I;iI,iI

Ξ, ∀Ξ ∈ L(F∗
θ ,Fθ). (3.6)

Theorem 3.2. For any Ξ ∈ L(F∗
θ ,Fθ), we have

(∆Q
E(α1, α2))

ρΞ = (GQ)−1 ◦ (NQ
α1,α2

)ρ ◦ GQΞ.

Proof. It suffices to prove the fact:

∆Q
E(α1, α2) = (GQ)−1 ◦ (NQ

α1,α2
) ◦ GQ. (3.7)

To prove (3.7) we need to prove the following identities

GQ(∆Q
G(α1, α2)Ξ) = −∆Q

G(α1, α2)(G
QΞ), (3.8)

GQ(NQ
α1,α2

Ξ) = (∆Q
G(α1, α2) +NQ

α1,α2
)GQΞ. (3.9)

Let us start by the proof of (3.8). Let a, b ∈ N , then we have

σ(GQ(∆Q
G(α1, α2)Ξ

a,b))(ξ, η)

= (α1〈a, a〉+ α2〈b, b〉) exp{−
1

2
〈a, a〉 −

1

2
〈b, b〉 − i〈a, η〉 − i〈b, ξ〉}

= (α1〈a, a〉+ α2〈b, b〉)e
− 1

2 〈a,a〉−
1
2 〈b,b〉σ(Ξ−ia,−ib)(ξ, η).

So that, we get

GQ(∆Q
G(α1, α2)Ξ

a,b) = (α1〈a, a〉+ α2〈b, b〉)e
− 1

2 〈a,a〉−
1
2 〈b,b〉Ξ−ia,−ib.

On the other hand,

σ(−∆Q
G(α1, α2)(G

QΞa,b))(ξ, η)

= −σ(e−
1
2 〈a,a〉−

1
2 〈b,b〉(∆Q

G(α1, α2)Ξ
−ia,−ib))(ξ, η)

= −(α1〈−ia,−ia〉+ α2〈−ib,−ib〉)e
−1

2 〈a,a〉−
1
2 〈b,b〉σ(Ξ−ia,−ib)(ξ, η)

which is equivalent to

−∆Q
G(α1, α2)(G

QΞa,b) = (α1〈a, a〉+ α2〈b, b〉)e
− 1

2 〈a,a〉−
1
2 〈b,b〉Ξ−ia,−ib. (3.10)

Hence by density argument we complete the proof of (3.8). To prove (3.9), let a,
b ∈ N . Then by Lemma 3.1 we get

σ(GQ(NQ
α1,α2

Ξa,b))(ξ, η) =

∞
∑

l,m,j,k=0

(α1(l + 2k) + α2(m+ 2j))

j!k!
(−i)l(−i)m

×(−
1

2
〈a, a〉)k(−

1

2
〈b, b〉)j〈

a⊗l

l!
⊗
b⊗m

m!
, η⊗l ⊗ ξ⊗m〉

= {−iα1〈a, η〉 − iα2〈b, ξ〉 − α1〈a, a〉 − α2〈b, b〉}

×e−
1
2 〈a,a〉−

1
2 〈b,b〉σ(Ξ−ia,−ib)(ξ, η). (3.11)

On the other hand,

σ(NQ
α1,α2

(GQΞa,b))(ξ, η)

= {−iα1〈a, η〉 − iα2〈b, ξ〉}e
− 1

2 〈a,a〉−
1
2 〈b,b〉σ(Ξ−ia,−ib)(ξ, η).
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Therefore, using (3.10), we obtain

σ((NQ
α1,α2

+∆Q
G(K1, K2))G

QΞa,b)(ξ, η)

= {−iα1〈a, η〉 − iα2〈b, ξ〉 − α1〈a, a〉 − α2〈b, b〉}

×e−
1
2 〈a,a〉−

1
2 〈b,b〉σ(Ξ−ia,−ib)(ξ, η).

Hence by a density argument we complete the proof. �

Theorem 3.3. The power of the QWN-Euler operator admits on L(F∗
θ ,Fθ) the

following representation

(∆Q
E(α1, α2))

ρ

=

∞
∑

j,k,l,m=0

(−1)l+m+j+k

j!k!l!m!2l+m

(

∑

0≤r≤l,0≤s≤m

∑

0≤i≤j,0≤n≤k

(l

r

)(m

s

)

(3.12)

(j

i

)(k

n

)

(−1)r+s+i+n(2α1r + 2α2s+ α1i+ α2n)
ρ
)

∫

R2(l+j+k+m)

τ(u1, u2) · · · τ(u2l−1, u2l)τ(v1, v2) · · · τ(v2m−1, v2m)

τ(s1, u2l+1) · · · τ(sj , u2l+j)τ(t1, v2m+1) · · · τ(tk, v2m+k)

(D+
s1
)∗ · · · (D+

sj
)∗(D−

t1
)∗ · · · (D−

tk
)∗D+

u1
· · ·D+

u2l+j
D−

v1
· · ·D−

v2m+k

ds1 · · · dsjdt1 · · · dtkdu1 · · ·du2l+jdv1 · · · dv2m+k. (3.13)

Proof. Using (3.4) and (3.5), we can show that

(NQ
α1,α2

)ρGΞa,b =

∞
∑

j,k,l,m=0

(l + 2k)!(m+ 2j)!

l!m!j!k!2k+j
(−1)j+k(−i)l+m

×(α1l + α2m)ρΞl,m(τ⊗k ⊗2k κl+2k,m+2j ⊗2j τ
⊗j).

Then by (3.6) and (3.5), we get

(GQ)−1(NQ
α1,α2

)ρGQΞ

=

∞
∑

i,j,k,l,m,n=0

(l + 2k + 2i)!(m+ 2j)!

j!k!l!m!i!n!

×
(−1)j+k

2j+k+l+m
{α1(l + 2i) + α2(m+ 2n)}ρ

×Ξl,m

(

τ⊗(i+k) ⊗2(i+k) κl+2i+2k,m+2j+2n ⊗2(j+n) τ
⊗2(j+n)

)

.

By a change of variables i+ k = r and j + n = s, we obtain

(∆Q
E(α1, α2))

ρΞ =
∞
∑

r,s,l,m=0

(l + 2r)!(m+ 2s)!(−1)r+s

l!m!r!s!2r+s

×
(

∑

0≤i≤r,0≤n≤s

(r

i

)(s

n

)

{α1(l + 2i) + α2(m+ 2n)}ρ(−1)i+n
)

×Ξl,m(τ⊗r ⊗2r κl+2r,m+2s ⊗2s τ
⊗s).
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Then for a,b ∈ N , the Wick symbol of (∆Q
E(α1, α2))

ρΞa,b is given by

σ((∆Q
E(α1, α2))

ρΞa,b)(ξ, η)

=

∞
∑

r,s,l,m=0

(−1)r+s〈a, a〉r〈b, b〉s〈a, η〉l〈b, ξ〉m

l!m!r!s!2r+s

×
(

∑

0≤i≤r,0≤n≤s

(r

i

)(s

n

)

{α1l + 2α1i+ α2m+ 2α2n}
ρ(−1)i+n

)

.

Therefore, using the fact that

zρ =
dρ

dtρ
|t=0e

tz for z ∈ C, (3.14)

we get the following equality

σ((∆Q
E(α1, α2))

ρΞa,b)(ξ, η) =

dρ

dtρ
|t=0 exp{

1

2
(e2α1t − 1)〈a, a〉+

1

2
(e2α2t − 1)〈b, b〉+ eα1t〈a, η〉+ eα2t〈b, ξ〉}.

On the other hand, denoting the right hand side of (3.13) by IQ, then we have

σ(IQΞa,b)(ξ, η) =

∞
∑

j,k,l,m=0

(−1)j+k+l+m

j!k!l!m!2l+m

×
∑

0≤r≤l,0≤s≤n

∑

0≤i≤j,0≤n≤k

(

l
r

)(

m
s

)(

j
i

)(

k
n

)

(−1)r+s+i+n(2α1r + 2α2s+ α1i+ α2n)
ρ

×〈a, a〉l〈b, b〉m〈a, η〉j〈b, ξ〉kσ(Ξa,b)(ξ, η).

Therefore, using (3.14), we get

σ(IQΞa,b)(ξ, η) =
dρ

dtρ
|t=0 exp{

1

2
(e2α1t − 1)〈a, a〉+

1

2
(e2α2t − 1)〈b, b〉

+ (eα1t − 1)〈a, η〉+ (eα2t − 1)〈b, ξ〉}σ(Ξa,b)(ξ, η).

Hence from the fact that

σ(Ξa,b)(ξ, η) = exp{〈a, η〉+ 〈b, ξ〉}

we get the desired statement by a density argument. �

Remark 3.4. For ρ = 1 we find the integral representation of ∆Q
E appeared in [3].

The representation (3.13) is the QWN analogue of the following classical integral
representation on the nuclear space Fθ

(∆E)
ρ =

∞
∑

l,m=0

(−1)l+m

l!m!2l
(

∑

0≤j≤l,0≤i≤m

(

l
j

)(

m
i

)

(−1)j+i(2j + i)ρ)

∫

R2(l+m)

τ(u1, u2) · · · τ(u2l−1, u2l)τ(s1, u2l+1) · · · τ(sm, u2l+m)

a∗s1 · · · a
∗
sm
au1 · · · au2l+m

ds1 · · · dsmdu1 · · · du2l+m.
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Which gives for ρ = 1

∆E =

∫

R2

τ(u1, u2)au1au2du1du2 +

∫

R2

τ(s1, u1)a
∗
s1
au1ds1du1 = ∆G +N.

4. Cauchy Problem Associated to the Power of the QWN-Euler Operator

Motivated by the classical Cauchy problem associated to the power of the Euler
operator studied in [6], we fix two non-zero complex numbers α1 and α2 such that

ℜ(αi
1α

ρ−i
2 ) ≤ 0 for all 1 ≤ i ≤ ρ. For Ξ ∈ L(F∗

θ ,Fθ) with Ξ =
∑∞

l,m=0 Ξl,m(κl,m),
let

Xα1,α2,ρ;tΞ = GQ

0,0;eα1tI,eα2tI
Ξ =

∞
∑

l,m=0

et(α1l+α2m)ρΞl,m(κl,m), t ≥ 0. (4.1)

The Wick symbol of Xα1,α2,ρ;tΞ is given by

σ(Xα1,α2,ρ;tΞ)(ξ, η) =

∞
∑

l,m=0

et(α1l+α2m)ρ〈κl,m, η
⊗l ⊗ ξ⊗m〉.

Lemma 4.1. The following properties hold true:

(1) Xα1,α2,ρ;t ∈ L(F∗
θ ,Fθ) for any t ≥ 0.

(2) Xα1,α2,ρ;t = et(N
Q
α1,α2

)ρ for any t ≥ 0.
(3) {Xα1,α2,ρ;t}t≥0 is a differentiable one-parameter semigroup of operators on

L(F∗
θ ,Fθ) with infinitesimal generator (NQ

α1,α2
)ρ.

Proof. 1. For Ξ ∈ L(F∗
θ ,Fθ) with Ξ =

∑∞
l,m=0 Ξl,m(κl,m), any γ1, γ2 > 0 and any

q ≥ 0, we have

‖
−−−−−−−−−−→
σ(Xα1,α2,ρ;tΞ)‖

2
θ;q;(γ1,γ2)

:=

∞
∑

l,m=0

(θlθm)−2γ−l
1 γ−m

2 |et(α1l+α2m)ρ |2|κl,m|2q

=
∞
∑

l,m=0

(θlθm)−2γ−l
1 γ−m

2 e2Re(t(α1l+α2m)ρ)|κl,m|2q

≤ ‖
−−→
σ(Ξ)‖2θ;q;(γ1,γ2)

, t ≥ 0.

Hence Xα1,α2,ρ;t ∈ L(L(F∗
θ ,Fθ)).

2. For Ξ ∈ L(F∗
θ ,Fθ) with Ξ =

∑∞
l,m=0 Ξl,m(κl,m), we have

∞
∑

n=0

tn

n!
(NQ

α1,α2
)ρnΞ =

∞
∑

l,m=0

et(α1l+α2m)ρΞl,m(κl,m).

3. Obviously {et(N
Q
α1,α2

)ρ}t≥0 is an one-parameter semigroup of operators on
L(F∗

θ ,Fθ). By direct computation, we can easily show that

lim
t→0+

sup
‖
−−→
σ(Ξ)‖,t≤1

∥

∥

∥

∥

∥

∥

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
σ(et(N

Q
α1,α2

)ρΞ) − σ(Ξ)

t
− σ((NQ

α1,α2
)ρΞ)

∥

∥

∥

∥

∥

∥

2

θ;q;(γ1,γ2)

= 0.

Thus {Xα1,α2,ρ;t}t≥0 is a differentiable semigroup with infinitesimal generator
(NQ

α1,α2
)ρ. �
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Let α1 and α2 be two non-zero complex numbers with ℜ(αi
1α

ρ−i
2 ) ≤ 0 for all

1 ≤ i ≤ ρ. For t ≥ 0, let Yα1,α2,ρ;t be given by

Yα1,α2,ρ;t = (GQ)−1 ◦Xα1,α2,ρ;t ◦ G
Q.

It is obvious that Yα1,α2,ρ;t ∈ L(L(F∗
θ ,Fθ)).

Theorem 4.2. Let α1 and α2 be two non-zero complex numbers with ℜ(αi
1α

ρ−i
2 ) ≤

0 for all 1 ≤ i ≤ ρ. For Ξ =
∑∞

l,m=0 Ξl,m(κl,m) ∈ L(F∗
θ ,Fθ), the following Cauchy

problem

∂

∂t
Ut = (∆Q

E(α1, α2))
ρUt, U0 = Ξ (4.2)

has a unique solution in L(F∗
θ ,Fθ) given by

Ut = Yα1,α2,ρ;tΞ

=

∞
∑

j,k,l,m=0

(l + 2k)!(m+ 2j)!

j!k!l!m!2j+k
(−1)j+k+l+m

×





∑

0≤r≤k,0≤s≤j

(

k
r

)(

j
s

)

et{α1(l+2r)+α2(m+2s)}ρ

(−1)r+s





×Ξl,m(τ⊗k ⊗2k κl+2k,m+2j ⊗2j τ
⊗j). (4.3)

Remark 4.3. Note that the solution (4.3) is the QWN analogue of the solution of
the classical Cauchy problem studied in [6].

Proof. From the continuity of GQ and Lemma 4.1, we deduce that {Yα1,α2,ρ;t}t≥0

is a differentiable one-parameter semigroup of operators on L(F∗
θ ,Fθ) with infin-

itesimal generator (GQ)−1 ◦ (NQ
α1,α2

)ρ ◦ GQ which is equal to (∆Q
E(α1, α2))

ρ by
Theorem 4.2. Then we deduce that Yα1,α2,ρ;tΞ is the unique solution of (4.2).

To prove (4.3), we use (3.5) to get

Xα1,α2,ρ;t(G
QΞ) =

∞
∑

j,k,l,m=0

(l + 2k)!(m+ 2j)!

j!k!l!m!2j+k
(−1)j+k(−i)l+m

×et(α1l+α2m)ρΞl,m(τ⊗
k

⊗2k κl+2k,m+2j ⊗2j τ
⊗j).

Then applying (GQ)−1 we obtain

Yα1,α2,ρ;tΞ =
∞
∑

i,j,k,l,m,n=0

(l + 2i+ 2k)!(m+ 2j + 2n)!

i!j!k!l!m!n!2i+j+k+n

× (−1)j+ket{α1(l+2k)+α2(m+2j)}ρ

× Ξl,m(τ⊗
(k+i)

⊗2(k+i) κl+2k+2i,m+2j+2n ⊗2(j+n) τ
⊗(j+n)).
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By a simple change of variables i+ k = r and j + n = s, we get

Yα1,α2,ρ;tΞ =

∞
∑

j,k,l,m=0

∑

r≥k,s≥j

(l + 2r)!(m+ 2s)!

j!k!l!m!(r − k)!(s− j)!2r+s
(−1)j+k

×et{α1(l+2k)+α2(m+2j)}ρ

Ξl,m(τ⊗
r

⊗2r κl+2r,m+2s ⊗2s τ
⊗s)

=
∑

r,s,l,m

(l + 2r)!(m+ 2s)!

r!s!l!m!2r+s
(−1)r+s+l+m

×





∑

0≤k≤r,0≤j≤s

(

r
k

)(

s
j

)

et{α1(l+2k)+α2(m+2j)}ρ

(−1)j+k





×Ξl,m(τ⊗r ⊗2r κl+2k+2i,m+2j+2n ⊗2s τ
⊗s).

Hence we get the desired statement. �

Theorem 4.4. The solution of the Cauchy problem (4.2) admits the following
representation

Ut =

∞
∑

j,k,l,m=0

(−1)l+m+j+k

j!k!l!m!2l+m

(
∑

0≤r≤l,0≤s≤m

∑

0≤i≤j,0≤n≤k

(

l
r

)(

m
s

)(

j
i

)(

k
n

)

(−1)r+s+i+net(2α1r+2α2s+α1i+α2n)
ρ

)
∫

R2(l+j+k+m)

τ(u1, u2) · · · τ(u2l−1, u2l)τ(v1, v2) · · · τ(v2m−1, v2m)

τ(s1, u2l+1) · · · τ(sj , u2l+j)τ(t1, v2m+1) · · · τ(tk, v2m+k)

(D+
s1
)∗ · · · (D+

sj
)∗(D−

t1
)∗ · · · (D−

tk
)∗D+

u1
· · ·D+

u2l+j
D−

v1
· · ·D−

v2m+k
Ξ

ds1 · · · dsjdt1 · · · dtkdu1 · · · du2l+jdv1 · · · dv2m+k. (4.4)

on L(F∗
θ ,Fθ).

Remark 4.5. Note that for ρ = 1, the solution in (4.4) coincides with the solution
of the Cauchy problem associated to the QWN-Euler operator studied in [3].

Proof. From Theorem 4.2 we get the desired statement using the same technic of
calculus used in Theorem 3.3. �
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