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Abstract: First, this paper announces a six-term novel 3-D conservative chaotic system with a sinusoidal nonlinearity.
The conservative chaotic systems are characterized by the important property that they are volume-conserving. The
phase portraits of the novel conservative chaotic system are displayed and the mathematical properties are discussed.
The proposed novel conservative chaotic system has infinitely many equilibrium points along the x

1
 axis, which are

all unstable. The Lyapunov exponents of the novel conservative chaotic system are obtained as L
1
 = 1.1444,

L
2
 = 0 and L

3
 = –1.1444. Thus, the Maximal Lyapunov Exponent (MLE) of the novel conservative chaotic system

is obtained asL
1
 = 1.1444. Also, the Kaplan-Yorke dimension of the novel conservative chaotic system is derived as

D
KY

 = 3. Thus, the novel conservative system exhibits high level of complexity and it is suitable for applications like
cryptosystems, secure communications, etc. Next, an adaptive controller is designed to globally stabilize the novel
conservative chaotic system with unknown parameters. Moreover, an adaptive controller is also designed to achieve
global and exponential synchronization of the identical novel conservative chaotic systems with unknown parameters.
The main adaptive results for stabilization and synchronization are established using Lyapunov
stability theory.
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1. INTRODUCTION

Chaos theory describes the qualitative study of unstable aperiodic behaviour in deterministic nonlinear
dynamical systems. A dynamical system is called chaotic if it satisfies the three properties: boundedness,
infinite recurrence and sensitive dependence on initial conditions [1]. Chaos theory has applications in
several areas in Science and Engineering.

A significant development in chaos theory occurred when Lorenz discovered a 3-D chaotic system of a
weather model [2]. Subsequently, Rössler found a 3-D chaotic system [3], which is algebraically simpler
than the Lorenz system. Indeed, Lorenz’s system is a seven-term chaotic system with two quadratic
nonlinearities, while Rössler’s system is a seven-term chaotic system with just one quadratic nonlinearity.

Some well-known paradigms of 3-D chaotic systems are Arneodo system [4], Sprott systems [5], Chen
system [6], Lü-Chen system [7], Liu system [8], Cai system [9], Tigan system [10], etc.

In the last two decades, many new chaotic systems have been also discovered like Li system [11],
Sundarapandian systems [12-13], Vaidyanathan systems [14-33], Pehlivan systems [34-35], Pham systems
[36-37], Jafari system [38], etc.

Chaos theory has applications in several fields of science and engineering such as lasers [39], oscillators
[40], chemical reactions [41-50], biology [51-66], ecology [67], artificial neural networks [68-69], robotics
[70-71], fuzzy logic [72], electrical circuits [73-76], cryptosystems [77-78], memristors [79-81], etc.

In the chaos literature, there is an active interest in the discovery of conservative chaotic systems [82],
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which have the special property that the volume of the flow is conserved. If the sum of the Lyapunov
exponents of a chaotic system is zero, then the system is called a conservative chaotic system. Classical
examples of conservative chaotic systems are Nosé-Hoover system [83], Hénon-Heiles system [84], etc.
Vaidyanathan-Pakiriswamy system [29] is a recent example of a 3-D conservative chaotic system.

In this paper, we announce a novel 3-D conservative chaotic system with a sinusoidal nonlinearity. We
discuss the qualitative properties of the novel conservative chaotic system and display the phase portraits
of the novel conservative chaotic system. The proposed novel conservative chaotic system has infinitely

many equilibrium points along the 1x axis, which are all unstable. The Lyapunov exponents of the novel

conservative chaotic system are obtained as L
1
 = 1.1444, L

2
 = 0 and L

3
 = –1.1444. Thus, the Maximal

Lyapunov Exponent (MLE) of the novel conservative chaotic system is obtained as L
1
 = 1.1444. Also, the

Kaplan-Yorke dimension of the novel conservative chaotic system is derived as D
KY

 = 3. Thus, the novel
conservative system exhibits high level of complexity and it is suitable for applications like cryptosystems,
secure communications, etc.

Next, this paper derives an adaptive control law that stabilizes the novel conservative chaotic system
with unknown system parameters. This paper also derives an adaptive control law that achieves global
chaos synchronization of identical conservative chaotic systems with unknown parameters.

Synchronization of chaotic systems is a phenomenon that may occur when a chaotic oscillator drives
another chaotic oscillator. Because of the butterfly effect which causes the exponential divergence of the
trajectories of two identical chaotic systems started with nearly the same initial conditions, synchronizing
two chaotic systems is seemingly a very challenging problem.

In most of the synchronization approaches, the master-slave or drive-response formalism is used. If a
particular chaotic system is called the master or drive system, and another chaotic system is called the slave
or response system, then the idea of synchronization is to use the output of the master system to control the
response of the slave system so that the slave system tracks the output of the master system asymptotically.

In the chaos literature, a variety of techniques have been proposed to solve the problem of chaos
synchronization such as PC method [85], active control method [86-92], adaptive control method [93-
122], backstepping control method [123-132], fuzzy control method [133], sliding mode control method
[134-143], etc.

This paper is organized as follows. In Section 2, we describe the novel conservative chaotic system
with a sinusoidal nonlinearity. In Section 3, we describe the qualitative properties of the novel conservative
chaotic system. In Section 4, we detail the adaptive control design for the global chaos stabilization of the
novel conservative chaotic system with unknown parameters. In Section 5, we detail the adaptive control
design for the global and exponential synchronization of the identical novel conservative chaotic systems.
In Section 6, we give a summary of the main results obtained in this research work.

2. A NOVEL 3-D CONSERVATIVE CHAOTIC SYSTEM

In this section, we describe a six-term novel conservative chaotic system with a sinusoidal nonlinearity,
which is modeled by the 3-D dynamics

1 2

2 1 2 3

3 2 3

sin

x x

x a x x bx

x x x

��
� � � ��
� � ��

�

�

�
(1)

where x
1
, x

2
, x

3 
are state variables and a, b are constant, positive, parameters of the system.

The system (1) exhibits conservative chaotic behaviour for the values
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600,   2a b� � (2)

For numerical simulations, we take the initial conditions of the state as

1 2 3(0) 0,   (0) 1,   (0) 0x x x� � � (3)

The Lyapunov exponents of the conservative chaotic system (1) for the parameter values (2) and the
initial conditions (3) are numerically calculated as

1 2 31.1444,   0,   1.1444L L L� � � � (4)

We note that the sum of the Lyapunov exponents of the conservative system (1) is zero.

The Kaplan-Yorke dimension of the conservative chaotic system (1) is derived as

1 2

3

1.1444 0
2 2 2 1 3

| | 1.1444KY

L L
D

L

� �
� � � � � � � (5)

Figure 1 shows the 3-D phase portrait of the conservative chaotic system (1). Figures 2-4 show the 2-D
projection of the conservative chaotic system (1) on the (x

1
, x

2
), (x

2
, x

3
),and (x

1
, x

3
) planes, respectively.

Figure 1: Phase portrait of the conservative
chaotic system

Figure 2: 2-D projection of the conservative chaotic system on
the (x

1
, x

2
) plane

Figure 3: 2-D projection of the conservative chaotic
system on the (x

2
, x

3
)plane

Figure 4: 2-D projection of the conservative chaotic
system on the (x

1
, x

3
)plane
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3. PROPERTIES OF THE CONSERVATIVE CHAOTIC SYSTEM

In this section, we discuss the qualitative properties of the conservative chaotic system (1) introduced in
Section 2. We suppose that the parameter values of the system (1) are as in the chaotic case, i.e. a = 600and
b = 2.

3.1. Volume Conservation of The Flow

In vector notation, we may express the system (1) as

1 1 2 3

2 1 2 3

3 1 2 3

( , , )

( ) ( , , )

( , , )

f x x x

x f x f x x x

f x x x

� �
� �� � � �
� �� �

�
(6)

where

1 1 2 3 2

2 1 2 3 1 2 3

3 1 2 3 2 3

( , , )

( , , ) sin

( , , )

f x x x x

f x x x a x x bx

f x x x x x

��
� � � ��
� � ��

(7)

Let � be any region in R3 with a smooth boundary and also �(t) = �
t
(�), where �

t 
is the flow of the

vector field f. Furthermore, let V(t) denote the volume of �(t).

By Liouville’s theorem, we have

� � 1 2 3

( )

   
t

V f dx dx dx
�

� � ���
(8)

The divergence of the novel chaotic system (1) is easily found as

31 2

1 2 3

0 1 1 0
ff f

f
x x x

�� �
� � � � � � � � �

� � � (9)

Substituting (9) into (8), we obtain the first order ODE

0V �� (10)

Integrating (10), we obtain the unique solution as

( ) (0)V t V� for all 0t � (11)

This shows that the 3-D novel chaotic system (1) is volume-conserving. Hence, the system (1) is a
conservative chaotic system.

3.2. Symmetry

It is easy to see that the system (1) is invariant under the coordinates transformation

1 2 3 1 2 3( , , ) ( , , )x x x x x x� � � � (12)

Thus, the system (1) exhibits point reflection symmetry about the origin in R3.

3.3. Equilibrium Points

The equilibrium points of the system (1) are obtained by solving the system of equations
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2

1 2 3

2 3

                       0

sin 0

                0

x

a x x bx

x x

��
� � � ��
� � ��

(13)

Solving the system (13), we obtain an infinite set of equilibrium points given by

0 ,

0

E�

��� �
� �� � �
� �� �

where 0,  1,  2,  3,� � � � � � (14)

The Jacobian of the system (1) at any point x�R3 is given by

1 1

0 1 0 0 1 0

( ) cos 1 600cos 1 2

0 1 1 0 1 1

J x a x b x

� � � �
� � � �� � � �� � � �
� � � �� �� � � �

(15)

Case A: When  is an even integer

In this case, the Jacobian matrix of the system (1) at E� is obtained as

0 1 0

( ) 600 1 2

0 1 1

J J E� �

� �
� �� � �� �
� ��� �

(16)

The matrix J��has the eigenvalues

1 2 31.0034,   23.9574,   24.9607� � �� � � � � (17)

This shows that the equilibrium point E��is a saddle point, when � is an even integer.

Case B: When  is an odd integer

In this case, the Jacobian matrix of the system (1) at E��is obtained as

0 1 0

( ) 600 1 2

0 1 1

J J E� �

� �
� �� � � �� �
� ��� �

(18)

The matrix J��has the eigenvalues

1 2,30.9967,   0.4983 24.5305i� �� � � � (19)

This shows that the equilibrium point E��is a saddle-focus point, when � is an odd integer.

3.4. Lyapunov Exponents And Kaplan-yorke Dimension

We take the parameter values of the novel system (1) as in the chaotic case, i.e. a = 600 and b = 2.

We choose the initial values of the state as x
1
(0) = 0, x

2
(0) = 1 and x

3
(0) = 0.

Then we obtain the Lyapunov exponents of the system (1) as



120 Sundarapandian Vaidyanathan

1 2 31.1444,   0,   1.1444.L L L� � � � (20)

Figure 5 shows the Lyapunov exponents of the system (1) as determined by MATLAB.

We note that the sum of the Lyapunov exponents of the system (1) is zero.

Also, the Maximal Lyapunov Exponent of the system (1) is L
1
 = 1.1444.

The Kaplan-Yorke dimension of the conservative chaotic system (1) is derived as

1 2

3

1.1444 0
2 2 2 1 3

| | 1.1444KY

L L
D

L

� �
� � � � � � � (21)

Figure 5: Lyapunov exponents of the conservative chaotic system

4. ADAPTIVE CONTROL DESIGN FOR THE STABILIZATION OF THE CONSERVATIVE
CHAOTIC SYSTEM

In this section, we use adaptive control method to derive an adaptive feedback control law for globally and
exponentially stabilizing the novel 3-D conservative chaotic system with unknown parameters.

Thus, we consider the novel 3-D conservative system given by

1 2 1

2 1 2 3 2

3 2 3 3

sin

x x u

x a x x bx u

x x x u

� ��
� � � � ��
� � � ��

�

�

�
(22)

In (22), x
1
, x

2
, x

3
 are the states and u

1
, u

2
, u

3
 are adaptive controls to be determined using estimates ˆ( )a t and

ˆ( )b t for the unknown parameters a and b, respectively..
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We consider the adaptive control law defined by

1 2 1 1

2 1 2 3 2 2

3 2 3 3 3

ˆˆ( )sin ( )

u x k x

u a t x x b t x k x

u x x k x

� � ��
�

� � � � ��
� � � � ��

(23)

where k
1
, k

2
, k

3
 are positive gain constants.

Substituting (23) into (22), we get the closed-loop plant dynamics as

1 1 1

2 1 3 2 2

3 3 3

ˆˆ[ ( )]sin [ ( )]

x k x

x a a t x b b t x k x

x k x

� ��
�

� � � � ��
� � ��

�

�

�
(24)

The parameter estimation errors are defined as

ˆ( ) ( )

ˆ( ) ( )

a

b

e t a a t

e t b b t

� ���
�

� ���
(25)

Using (25), we can simplify the plant dynamics (24) as

1 1 1

2 1 3 2 2

3 3 3

sina b

x k x

x e x e x k x

x k x

� ��
� � � ��
� � ��

�

�

�
(26)

Differentiating (25) with respect to t, we obtain

ˆ( ) ( )

ˆ( ) ( )

a

b

e t a t

e t b t

� � ��
�

� ���

��

��
(27)

We use adaptive control theory to find an update law for the parameter estimates.

We consider the quadratic candidate Lyapunov function defined by

� �2 2 2 2 2
1 2 3

1
( , , )

2a b a bV e e x x x e e� � � � �x (28)

Clearly, V is a positive definite function on R5.

Differentiating V along the trajectories of (26) and (27), we obtain

2 2 2
1 1 2 2 3 3 2 1 2 3

ˆˆsina bV k x k x k x e x x a e x x b� �� �� � � � � � � � �� � � �� �
��� (29)

In view of (29), we take the parameter update law as follows:

2 1

2 3

ˆ sin

ˆ

a x x

b x x

� ��
�

� ���

�

� (30)
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Theorem 1. The novel 3-D conservative chaotic system (22) with unknown system parameters is globally
and exponentially stabilized for all initial conditions x(0)�R3 by the adaptive control law (23) and the
parameter update law (30), where k

1
, k

2
, k

3
 are positive gain constants.

Proof. We prove this result by using Lyapunov stability theory [144]. We consider the quadratic Lyapunov
function defined by (28), which is positive definite on R5.

By substituting the parameter update law (30) into (29), we obtain the time derivative of V as

2 2 2
1 1 2 2 3 3V k x k x k x� � � �� (31)

From (31), it is clearV� that is a negative semi-definite function on R5.

Thus, we can conclude that the state vector x(t) and the parameter estimation error are globally bounded, i.e.

� �1 2 3( ) ( ) ( ) ( ) ( )
T

a bx t x t x t e t e t L��

We define k = min {k
1
, k

2
, k

3
}. Thus, it follows from (31) that

2
( )V k t� �� x (32)

Thus, we have

2
( )k t V� � �x (33)

Integrating the inequality (33) from 0 to t, we get

2

0

( ) (0) ( )
t

k d V V t� � � �� x (34)

From (34), it follows that x�L
2
. Using (26), we can conclude that .x L���

Using Barbalat’s lemma [144], we can conclude that x(t) � 0 exponentially as t � � for all initial
conditions x(0)�R3. This completes the proof. �

For numerical simulations, the classical fourth-order Runge-Kutta method with step size h = 10–8 is
used to solve the systems (22) and (30), when the adaptive control law (23) is applied.

The parameter values of the novel conservative chaotic system are taken as in the chaotic case, i.e.
a = 600 and b = 2. We take the positive gain constants as k

i
 = 5 for i = 1, 2, 3.

Furthermore, as initial conditions of the novel conservative chaotic system (22), we take

x
1
 (0) = 7.4, x

2
 (0) = –10.9, x

3
 (0) = 12.3 (35)

Also, as initial conditions of the parameter estimates ˆ( )a t and ˆ( )b t we take

ˆˆ(0) 16.3,    (0) 9.4a b� � (36)

Figure 6 shows the exponential convergence of the controlled state trajectories of the 3-D novel
conservative chaotic system (22).

5. ADAPTIVE CONTROL DESIGN FOR THE SYNCHRONIZATION OF THE IDENTICAL
CONSERVATIVE CHAOTIC SYSTEMS

In this section, we use adaptive control method to derive an adaptive feedback control law for globally
synchronizing identical 3-D novel conservative chaotic systems with unknown parameters.
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As the master system, we consider the 3-D novel conservative chaotic system given by

1 2

2 1 2 3

3 2 3

sin

x x

x a x x bx

x x x

��
� � � ��
� � ��

�

�

�
(37)

where x
1
, x

2
, x

3
 are the states and a, b are unknown system parameters.

As the slave system, we consider the controlled 3-D novel conservative chaotic system given by

1 2 1

2 1 2 3 2

3 2 3 3

sin

y y u

y a y y by u

y y y u

� ��
� � � � ��
� � � ��

�

�

�
(38)

where y
1
, y

2
, y

3
 are the states and u

1
, u

2
, u

3
 are adaptive controls to be determined using estimates ˆ( )a t and

ˆ( )b t for the unknown system parameters a and b, respectively..

The synchronization error between the novel conservative chaotic systems (37) and (38) is defined by

1 1 1

2 2 2

3 3 3

e y x

e y x

e y x

� ��
� � ��
� � ��

(39)

Figure 6: Time-history of the controlled state trajectories of the conservative chaotic system
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Then the error dynamics is obtained as

1 2 1

2 1 1 2 3 2

3 2 3 3

(sin sin )

e e u

e a y x e be u

e e e u

� ��
� � � � � ��
� � � ��

�

�

�
(40)

We consider the adaptive feedback control law

1 2 1 1

2 1 1 2 3 2 2

3 2 3 3 3

ˆˆ( )(sin sin ) ( )

u e k e

u a t y x e b t e k e

u e e k e

� � ��
�

� � � � � ��
� � � � ��

(41)

where k
1
, k

2
, k

3
 are positive constants and ˆˆ( ),  ( )a t b t are estimates of the unknown parameters a, b respectively..

Substituting (41) into (40), we can simplify the error dynamics (40) as

1 1 1

2 1 1 3 2 2

3 3 3

ˆˆ[ ( )](sin sin ) [ ( )]

e k e

e a a t y x b b t e k e

e k e

� ��
�

� � � � � ��
� � ��

�

�

�
(42)

The parameter estimation errors are defined as

ˆ( )

ˆ( )

a

b

e a a t

e b b t

� ���
�

� ���
(43)

Substituting (43) into (42), the error dynamics is simplified as

1 1 1

2 1 1 3 2 2

3 3 3

(sin sin )a b

e k e

e e y x e e k e

e k e

� ��
� � � � ��
� � ��

�

�

�
(44)

Differentiating (43) with respect to t, we obtain

ˆ( )

ˆ( )

a

b

e a t

e b t

� � ��
�

� ���

��

��
(45)

We consider the quadratic candidate Lyapunov function defined by

� �2 2 2 2 2
1 2 3

1
( , , )

2a b a bV e e e e e e e� � � � �e (46)

Differentiating V along the trajectories of (44) and (45), we obtain

2 2 2
1 1 2 2 3 3 2 1 1 2 3

ˆˆ(sin sin )a bV k e k e k e e e y x a e e e b� �� �� � � � � � � � � �� � � �� �
��� (47)

In view of (47), we take the parameter update law
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� �2 1 1

2 3

ˆ sin sin

ˆ

a e y x

b e e

� � ��
�
� � ��

�

� (48)

Next, we state and prove the main result of this section.

Theorem 2. The novel 3-D conservative chaotic systems (37) and (38) with unknown system parameters
are globally and exponentially synchronized for all initial conditions x(0), y(0)�R3 by the adaptive control
law (41) and the parameter update law (48), where k

1
, k

2
, k

3
 are positive constants.

Proof. We prove this result by applying Lyapunov stability theory [144].

We consider the quadratic Lyapunov function defined by (46), which is positive definite in R5.

By substituting the parameter update law (48) into (47), we obtain the time-derivative of V as

2 2 2
1 1 2 2 3 3V k e k e k e� � � �� (49)

From (49), it is clear that V� is a negative semi-definite function on R5.

Thus, we can conclude that the synchronization error vector e(t) and the parameter estimation error are
globally bounded, i.e.

� �1 2 3( ) ( ) ( ) ( ) ( )
T

a be t e t e t e t e t L�� (50)

We define k = min {k
1
, k

2
, k

3
}. Then it follows from (49) that

2
( )V k t� �� e (51)

Thus, we have

2
( )k t V� � �e (52)

Integrating the inequality (52) from 0 to t, we get

2

0

( ) (0) ( )
t

k d V V t� � � �� e (53)

From (53), it follows that e�L
2
. Using (44), we can conclude that .e L���

Using Barbalat’s lemma [144], we conclude that e(t) � 0 exponentially as t � � for all initial conditions
e(0)�R3. This completes the proof. �

For numerical simulations, the classical fourth-order Runge-Kutta method with step-size h = 10–8 is
used to solve the systems (37), (38) and (48), when the adaptive control law (41) is applied.

We take the parameter values of the conservative systems (37) and (38) as in the chaotic case, i.e.
a = 600 and b = 2. We take the positive gain constants as k

i
 = 5 for i = 1, 2, 3.

As initial conditions of the master system (37), we take

1 2 3(0) 6.2,   (0) 3.9,   (0) 8.5x x x� � � � (54)

As initial conditions of the slave system (38), we take

1 2 3(0) 4.7,   (0) 7.3,  (0) 2.1y y y� � � (55)

As initial conditions of the parameter estimates, we take
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ˆˆ(0) 9.1,   (0) 3.8a b� � (56)

Figures 7-9 depict the synchronization of the novel conservative chaotic systems (37) and (38).

Figure 10 depicts the time-history of the complete synchronization errors e
1
, e

2
, e

3

Figure 7: Synchronization of the states x
1
 and y

1
Figure 8: Synchronization of the states x

2
 and y

2

Figure 9. Synchronization of the states x
3
 and y

3
Figure 10. Time-history of the synchronization errors e

1
, e

2
, e

3

6. CONCLUSIONS

In this paper, we derived new results for a six-term novel 3-D conservative chaotic system with a sinusoidal
nonlinearity. We described the dynamics and qualitative properties of the novel conservative chaotic system. We
showed that the novel 3-D conservative chaotic system has infinitely many equilibrium points along the axis,
which are all unstable. The Lyapunov exponents of the novel conservative chaotic system have been obtained as
L

1
 = 1.1444, L

2
 = 0 and L

3
 = –1.1444. Thus, the Maximal Lyapunov Exponent (MLE) of the novel conservative

chaotic system is seen as L
1
 = 1.1444. Also, the Kaplan-Yorke dimension of the novel conservative chaotic

system has been derived as D
KY

 = 3. Thus, the novel conservative system exhibits high level of complexity and it
is suitable for applications like cryptosystems, secure communications, etc. Next, we designed an adaptive
controller to globally stabilize the novel conservative chaotic system with unknown parameters. We also designed
an adaptive controller to achieve global and exponential synchronization of the identical novel conservative
chaotic systems with unknown parameters. The main adaptive results for stabilization and synchronization were
established using Lyapunov stability theory. We illustrated all main results with MATLAB simulations.
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