
159 International Journal of Control Theory and Applications

A New Multi Pattern Multi Processor Parallel String Matching Algorithm with While Shift

A New Multi Pattern Multi Processor Parallel String Matching
Algorithm with While Shift

1K. Butchi Raju and 2Chinta Someswara Rao
1 Department of CSE, GRIET, Hyderabad, India, E-mail: butchiraju.katari@gmail.co
2 Department of CSE, S R K R Engineering College, Bhimavaram, W. G. District, A.P. India
E-mail: chinta.someswararao@gmail.com

Abstract: In present days a huge volume of digital data is observed because of increasing usage of internet by so
many people. Extraction of relevant information from these huge digital data is a difficult task, therefore information
retrieval systems (IRS) need the high performance algorithms for searching. The information retrieval systems
basically use the string matching algorithms, once the efficiency of the string matching algorithms is improved;
the relevant retrieval efficiency of the information retrieval systems automatically increases. For this purpose in
this paper, we propose multi pattern multi-processor parallel string matching algorithms for sequential and concurrent
environments.

Index Terms: Digital data, IRS, String matching, Multi pattern, parallel string matching

1. INTRODUCTION

String matching is one of the dominant concepts in computer science areas like text editors, text mining, data
mining, forensics, intrusion detection systems, plagiarism, DNA sequence analysis and many more. Due to its
wide range of application areas a number of algorithms were developed since 1970 [1, 2, 3, 4, 5, 6, 7]. String
matching algorithms can be divided into single pattern and multi pattern algorithms. Based on the searching
nature single pattern string matching can be classified as prefix, suffix and substring matching algorithms. In
single pattern matching various string matching algorithms are proposed by different researchers. Brute force[1]
is the first string matching algorithm, in which characters of the pattern are compared with text, if mismatch/
complete match occurs then it shifts exactly one position. Later Knuth-Moms-Pratt (KMP) [8] proposed
another prefix based string matching algorithm, it also compares the first character of the pattern with first
character of the text, if mismatch/complete match occurs then shift position decision is taken based on correctly
matched characters. Boyer-Moore(BM)[9] is another single pattern matching algorithm, in which the
right most character of the pattern is compared with the corresponding character of the text, if mismatch/
complete match occurs then it shifts the pattern based on good suffix and bad character rule. The BM has
advantages and disadvantages, with these advantages and disadvantages many variants of BM have been
developed.

International Journal of Control Theory and Applications 160

K. Butchi Raju and Chinta Someswara Rao

Multi pattern string matching algorithms are somewhat different from single pattern string matching algorithms.
In single pattern string matching algorithms searching is performed for single pattern whereas in multi pattern
string matching algorithms the searching is performed for multiple patterns concurrently. Aho-corasick (AC)[10]
and We Manber (WM)[11]are the very starting multiple pattern string matching algorithms. Aho-corasick[10] has
two phases called preprocessing and searching. In preprocessing it uses TRIE (text retrieval) for pre-treatment of
the patterns whereas it uses the automaton concept in searching. WM [11] is the invariant of BM[9]and Rabin
Karp[12] algorithms, in searching it compares the pattern’s right most character with corresponding character of
the text, if mismatch/complete match occurs then it shifts the position based on good suffix and bad character rules.

Many improved WM[11] are found in the literature from Quick Wu Manber to B-LAyered bad character
Shift Tables (BLAST).

Yang et al. proposed Quick Wu Manber (QWM)[13] which is invariant of quick search[14] algorithm. It
consists of preprocessing and searching. In preprocessing the head table is constructed with the first two characters
of the pattern. In searching the position from head table is read, the pattern and text are fixed then the right most
character of the pattern is compared with the corresponding character of the text, if complete match/mismatch
occurs then the next position from head table is read.

Chen Zhen et.al., proposed Improved WM algorithm[15], it also invariant of basic WM[11]. It also has two
phases called preprocessing and searching. In preprocessing two shift tables good suffix table and hash table are
built. In searching, the entry from hash table is read, the pattern and text is fixed then the right most character of
the pattern is compared with the corresponding character of the text, if complete match/mismatch then the
entries from hash and good suffix tables is read.

Liuling Dai et.al. proposed Quick Multiple Matching (QMM)[16] string matching algorithm, which also
consists of preprocessing and searching. In preprocessing shift table and hash table are computed. Shift table
consists of two grams of given pattern and hash table consists of hash value each of two gram. In searching the entry
from hash table is read, the pattern and text is fixed then the right most character of the pattern is compared with the
corresponding character of the text, if complete match/mismatch then the entries from hash and shift tables are read.

Xiaoping Chen et al., proposed High Concurrence Wu Manber (HCWM) [17] string matching algorithm, it
also one variant of the WM. HCWM reads multiple patterns, groups them basing on their length and also splits
input text and assigns it to different threads. In searching each thread compares the right most character of the
pattern from group, if complete match/mismatch occurs then bad character and good suffix rules are used to shift.

Baojun Zhang et al. proposed Addressing Filtering Wu Manber (AFWM)[18] Algorithm, in which pre-fix
table is built for multiple patterns with pointer values. The pre-fix table values are sorted in ascending order and
a hash table is prepared with them. In searching the entry from hash table is read, the pattern and the text are
fixed then the right most character of the pattern is compared with the corresponding character of the text, if
complete match/mismatch occurs then the other entries from hash tables are read.

Yoon-Ho et al. proposed B-LAyered bad character Shift Table (BLAST)[19]string matching algorithm. It
has preprocessing and searching phases. In preprocessing bad character shift table is build that consists of
B(length of the search window)-layered characters. In searching, the entry from shift table is read, the pattern
and the text are fixed then the right most character of the pattern is compared with the corresponding character of
the text, if complete match/mismatch occurs then the other entries from shift tables is read.

2. MULTI PATTERN MULTI-PROCESSOR PARALLEL STRING MATCHING
ALGORITHM

The multi pattern multi-processor parallel string matching algorithm reads the directory and pattern set. Reads
one file from the directory, opens the file, reads the file line by line, appends the line to string buffer. Reads one

161 International Journal of Control Theory and Applications

A New Multi Pattern Multi Processor Parallel String Matching Algorithm with While Shift

pattern from the multi patterns, builds the group with right most character of the pattern. Reads the string from
the string buffer, splits it into multiple parts based on the overlapping principle (overlapping principle is
sizeof(string buffer)/p+m-1 where p is number of processors and m is length of the pattern). Splitting is done
basing on the available processors in the interconnected computers.

On completion of reading, grouping and splitting processes the search process is called for searching the
patterns in text. The same reading, splitting and searching processes are continued for all files in the directory.
This algorithm searches the multi patterns in different directions in multiple parts of the text concurrently. The
actual process is shown in algorithm 1.

Algorithm 1: Multi pattern Multi-processors parallel string matching algorithm

Input : Directory that contain files (T) and pattern_set (P1 , P2, …)

Output : The number of occurrence and the positions of each pattern

/* Initialization */
pattern_set={P1,P2, …}, n � T.length, m1 � P1.length, m2 � P2.length,…, i � 0, i1 � 0, j � m1-1, T= “”,
count�0, match_position�0, shift_value�0;

/* main function */
1 while pattern_set != NULL do
2 begin
3 if P1[m1-1]==P2[m2-1] then
4 pattern_set1={P1,P2}
5 else if P1[m1-1]==P3[m2-1] then
6 pattern_set1={P1,P3}
7 else if …..
8 end if
9 end while
10 for File F : Directory do
11 begin
12 while T = F.ReadLine() != NULL
13 T.append(T);
14 parts = T/p+m-1
15 for i2�0 to number of parts do
16 begin
17 search(part, pattern_set, match_position,count)
18 end for;
19 end for;

/* search function */
20 for i �m-1 to part.length do
21 begin
22 for i1�0 to pattern_set.length() do
23 begin
24 while T[i]!=Pi1[m1-1]
25 i++;
26 shift_value=i;
27 while j >=0 AND T[shift_value] == Pi1[j]
28 begin
29 j—;

International Journal of Control Theory and Applications 162

K. Butchi Raju and Chinta Someswara Rao

30 shift_value—;
31 end while
32 if j == -1 then
33 begin
34 match_postion= i-(m1-2);
35 count=count+1;
36 return match_position& count
37 end if;
38 end for;
39 end for;

3. CASE STUDY

For testing the proposed algorithms, we will take all the chromosomes (23 pairs) of gorilla gorilla sequence from
NCBI website in FASTA(Fast All) format[20]. The gorilla gorilla chromosomes contain 10 complex DNA
index strictures (CODI)[21] namely TAGA, AGAA, GATA, TCTA, TCAT, GAAT, AGAT,CTTT, TATC,
TCTG. These 10 CODIs are considered as search patterns.

To assess the efficiency of the proposed algorithms, we consider gorilla gorilla chromosome sequence of
size 2.87Gb and also take the existing algorithms WM, QWM, QMM, HCWM, AFWM string matching algorithms
and implement them. Table 1 shows the execution results of existing and multi pattern multi-processor parallel
string matching algorithms. From these results we draw the graphs which are shown in Fig 1,2 and 3.

Table I
Search times of multi pattern multi-processor parallel string matching algorithm and existing algorithms

(WM, QWM, QMM, HCWM, AFWM)

Single Processor Two Processor Four Processor

WM 966219 473215 240562
QWM 943419 472317 236718
QMM 922314 470453 308761
HCWM 911321 456678 308127
AFWM 891254 445989 297991
Multi pattern Multi-processor 442386 223000 147900

From the fig 3, it is observed that, multi pattern multi processors string matching algorithm takes 442386
milli seconds to search 2.87Gb of data for all ten CODIs, it is two times less compared to existing WM,QWM,
QMM, HCWM, AFWM string matching algorithms.

Similar performance from the proposed algorithm is observed from the figs 2 and 3. From the Fig 1,2, and
3, it is also observed that four processors take four times less time than single processor, two processors take two
times less time than single processor and so on. From these observations, we conclude that multi pattern multi-
processor parallel string matching algorithm can perform very well when compared with existing WM, QWM,
QMM, HCWM, AFWM string matching algorithms.

4. CONCLUSIONS

In this paper, we have presented multi pattern multi-processor parallel string matching algorithm involving multi
way search with while shift. The proposed parallel string matching algorithm is able to count each occurrence of
the patterns. For measuring efficiency of our algorithm, we have conducted experiments by taking gorilla gorilla
genome sequence as the data set. We conclude from the results that multi pattern four(multi) processors string

163 International Journal of Control Theory and Applications

A New Multi Pattern Multi Processor Parallel String Matching Algorithm with While Shift

Figure 1: Search times of different algorithms for single processor

Figure 3: Search times of different algorithms for four processors

Figure 2: Search times of different algorithms for two processors

International Journal of Control Theory and Applications 164

K. Butchi Raju and Chinta Someswara Rao

matching algorithm reduces the search time by a factor of 6when compared with the WM pattern string matching
algorithm running with a single processor.

REFERENCES

[1] Aho, Alfred V., and John E. Hopcroft., “Design & Analysis of Computer Algorithms”, Pearson Education India, 1974.

[2] Chinta Someswara Rao, Dr S Viswanadha Raju, “Next Generation Sequencing (NGS) Database for Tandem Repeats with
Multiple Pattern 20-shaft Multicore String Matching”, Genomics Data, Elsevier, Vol.7, 2016, PP.307–317, ISSN:2213-5960.

[3] Chinta Someswara rao, S Viswanadha Raju, “A Novel Multi Pattern String Matching Algorithm with While Shift”,
Proceedings of the Second International Conference on Information and Communication Technology for Competitive
Strategies, ACM, pp.1-5, 2016.

[4] Chinta Someswara Rao, Dr S Viswanadha Raju, “Concurrent Information Retrieval System (IRS) for large volume of data
with multiple pattern multiple (2N) shaft parallel string matching”, Annals of Data Science, Springer, Vol.3, Issue.2, 2016,
PP.175-203, ISSN: 2198-5804.

[5] Chinta Someswara Rao, Dr S Viswanadha Raju, “A Frame Work for XML Ontology to STEP-PDM from Express Entities:
A String Matching Approach”, Annals of Data Science, Springer, Vol.3, Issue.4, 2016, PP.469-507, ISSN: 2198-5804.

[6] Chinta Someswara Rao, Dr S Viswanadha Raju, “Recent Advancements in Parallel Algorithms for string matching on
computing models-a Survey and Experimental Results”, ADCONS, Proceedings in LNCS Springer, 2012, pp. 270-278,ISBN:
978-3-642-29280-4.

[7] Chinta Someswara Rao, Dr S Viswanadha Raju, “Parallel String Matching with Multi Core Processors-A Comparative
Study for Gene Sequences”, Global Journal of Computer Science and Technology, Vol.13, Issue.1, 2013, PP.27-41, ISSN:
0975-4172.

[8] D. E. Knuth, J. H. Morris and V. R. Pratt, “Fast Pattern Matching in Strings”, SIAM Journal on Computer, vol. 6, no. 2, pp.
323-350, 1977.

[9] R. S. Boyer and J. S. Moore, “A fast string searching algorithm”, Communications of the ACM, vol. 20, no. 10, pp. 762-
772, 1977.

[10] V. Ahoa and J. Corasickm, “Efficient string matching: an aid to bibliographic search”, Communications of the ACM, vol.
18, no. 6, pp. 333-340.1975.

[11] S. Wu and U. Manber, “A fast algorithm for multi-pattern searching”, TR 94-1 7. Tucson, AZ: Department of Computer
Science, 1994.

[12] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching algorithms,” In: (2nd ed.), Tech. Rept. 31-81, Aiken
Computer Lab, Harvard University, 1981.

[13] Yang and Shunli Ding, “An Improved Pattern Matching Algorithm Based on BMHS”, In the proc. Of 11th International
Symposium on Distributed Computing and Applications to Business, Engineering & Science, 2012.

[14] Lecroq, Thierry, “Experimental results on string matching algorithms”, Software: Practice and Experience, pp.727-765,1995

[15] Chen Zhen and Wu Di, “Improving Wu-Manber: A Multi-pattern Matching Algorithm”, In the proc. of 2008 IEEE
International Conference on Networking, Sensing and control (ICNSC), pp. 812 –817, 2008.

[16] Liuling Dai, “An aggressive algorithm for multiple string matching” Information Processing Letters, Volume 109, pp.
553–559, 2009.

[17] Baojun Zhang, Xiaoping Chen, Xuezeng Pan, and Zhaohui Wu “Highconcurrence Wu-Manber Multiple Patterns Matching
Algorithm”, Proceedings of the International Symposium on Information Proces, pp. 404, 2009.

[18] Baojun Zhang , XiaoPing Chen , Lingdi Ping , Wu, Zhaohui, “Address Filtering Based Wu-Manber Multiple Patterns Matching
Algorithm”, International Workshop on Computer Science and Engineering, Qingdao, Vol.1, pp. 408 – 412, 2009.

[19] Yoon-Ho, Seung-Woo, “BLAST: B-LAyered bad-character SHIFT tables for high-speed pattern matching”, Journal of
Information Security, Institution of Engineering and Technology (IET), Volume 7, pp.195-202, 2013.

[20] http://www.ncbi.nlm.nih.gov

[21] Norrgard, Karen, “Forensics, DNA fingerprinting, and CODIS”, Nature Education , no. 1, 2008.

