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Abstract: A convolutional deep neural network was used to create a fl ower classifi er which classifi es 5 different 
types of fl owers. The model used is built on top of Google Inception which provides an architecture for improved 
utilization of the computing resources inside the network. This model aims at reducing the training time while 
delivering the same results as that of Inception. This is achieved by reprogramming the bottleneck layer (layer just 
before the output) of the Inception model, and dockerizing the entire application so that it can run on any Linux 
machine without any issues. This model is very modular and one only needs to change labels (fi le names) and images 
inside fi les. The model deduces the features on its own and then returns scores for each possibility.
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1. INTRODUCTION
In the modern era, dependence of mankind on machines has increased exponentially with the advent of machine 
learning and artifi cial intelligence. Machine Learning is a branch of Artifi cial Intelligence, which enables 
computers to make decisions without being explicitly programmed. It focuses on development of computer 
programs that can teach themselves to grow and change their decisions whenever new data is encountered. 
Artifi cial Neural Network tries to replicate the neural network present inside a human brain and tries to generate 
similar results as the brain for a given problem. Deep learning has many advantages over other conventional 
machine learning algorithms like statistical training, detecting relationships between dependent and independent 
variables, detection of possible interactions between predictor variables, pattern recognition and many more. 
There are limitless applications of neural networks, to name a few – colorization of black and white images, 
adding sound to silent movies, automatic machine translation, emotion analysis, character text generation, 
image captioning and many more.

This model uses a type of artifi cial neural network known as the Convolutional Neural Network. In this 
model, the connectivity of neurons is inspired by the organization of the animal visual cortex. When compared 
to regular feed-forward networks with similar sized layers, CNNs have much fewer connections and parameters. 
The reason being, the local connectivity and shared fi lter architecture in convolutional layers, this makes them 
far less prone to over-fi tting which is one of the most common problem in training models. Another noteworthy 
property of CNN is that the pooling operation provides a form of translation invariance and thus benefi ts 
generalization[1].
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Each neuron receives some inputs, performs a dot product and optionally follows it with a non-linearity. 
Finally, the whole network expresses a single differentiable score function: from raw data on one end and scores 
on the other end. It still has a loss function(eg. SVM/Softmax) on the last layer. These traits make the forward 
function effi cient and immensely reduce the amount of time required to train the network.

2. ARCHITECTURE

2.1. Convolutional Neural Network(CNN)
A Neural Network[2] receives an input (a single vector), and passes it through a series of hidden layers. Every 
hidden layer is made up of a set of neurons, where each neuron is connected to other neurons in the previous 
layer, and where neurons in a single layer function completely independently and do not share any connections 
with others. The last layer is called the output layer and it contains the class scores.

Figure 1: A regular 3-layer Neural Network

Figure 2: A ConvNet arranges its neurons in 3-D as visualized in one of the layers

Every fi lter hi is reproduced covering the complete visual fi eld in CNNs. A feature map is formed by 
sharing parametrization among replicated units.
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Figure 3: Hidden layer and weights

In the above fi gure, hidden units belong to the same feature map. Weights of the same colour are shared—
constrained to be identical. For learning such parameters, gradient descent should be used, with only a small 
change to the original algorithm. The gradient of a shared weight is the sum of the gradients of the parameters 
being shared. Replicating units in this way allows the features to be detected regardless of their position 
inthevisualfi eld. Furthermore, weight sharing increases learning effi ciency by vastly reducing the number of 
free parameters to learn. Thus,  CNNs achieve better generalization on vision patterns using these constraints.

2.2. Regularization
With limited training data, however, many of the complicated relationships will be the result of sampling noise, 
so they will exist in the training set but not in real test data even if it is drawn from the same distribution. This 
leads to over-fi tting and many methods have been developed for reducing it. One of the method is to stop the 
training as soon as performance on a validation set starts getting worse, and to introduce weight penalties such 
as L1 and L2 regularization.

L2 Regularization[3] is one of the most common form of regularization. It is implemented by penalizing 
the squared magnitude of all parameters directly in the objective, i.e., for every weight W in the network, the 
term 1/2λW2 is added tothe objective, where λ is the regularization strength. It is common to see the factor 
of ½ in front because then the gradient of this term with respect to the parameterW is simply λW instead 
of 2λW. Whenever peaky weight vectors are encountered, the L2 regularization imposes a penalty on it, on the 
other hand it prefers diffuse weights. Due to multiplicative interactions between weights and inputs, it has the 
appealing property of encouraging the network to use all of its inputs a little rather than some of its inputs a lot. 
Every weight is decayed linearly when using  the L2 regularization technique:

 W+ = -lambda*W towards zero.
Every weight is penalized in L1 Regularization[4], where for each weight W a term λ |W| is added 

to the minimizing function. It is also possible to combine the L1 regularization technique with that of L2 
regularization: 

 λ1|W| + λ2W
2 

The L1 regularization has the property that it leads the weight vectors to become sparse during optimization 
i.e. very close to exactly zero. That is, neurons with L1 regularization end up using only sparse subset of 
their most important inputs and become nearly invariant to the “noisy” inputs. The fi nal weight vectors that 
come out of L2 regularization are generally found to be diffuse and very small numbers. It is expected by L2 
regularization to give a better performance than L1.

Dropout[4] is another proposed technique to fi ght against over-fi tting. It is a regularization method that 
sets to zero the activations of hidden units for each training case at training time. The term “dropout” refers to 
dropping out units (hidden and visible) in a network temporarily. The choice of which units to drop is random. 
This breaks up co-adaptions of feature detectors since the dropped-out units cannot infl uence other retained 
units. Another way to interpret dropout is that it yields a very effi cient form of model averaging where the 
number of trained models is exponential in that of units, and these models share the same parameters .
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Figure 4: Standard v/s Dropout

The dropout can be imagined as a sample neural network inside a fully connected neural network (while 
training) which only updates their parameters based on the input data. Since they share the parameters, the 
exponential number of possible sampled networks are not independent of each other. During testing there is 
no dropout applied, with the interpretation of evaluating an averaged prediction across the exponentially-sized 
ensemble of all sub-networks [4].

On each presentation of a training example, if layer l is followed by a pooling layer, this forward propagation 
(without dropout) can be described as

 aj 
(l+1) = Pool(a1

(l),…,ai 
(l),.. an 

(l)),iÎRj
(l)

 The pooling region at j at layer 1 is Rj [l] and is the activity of each neuron within it. n= |Rj
(l)| is the number 

of units in (l) Rj . Pool ( ) denotes the pooling function.

With dropout, the forward propagation becomes :

 a’(1)~m(l)*a(l),Aj
(l+1) = Pool(a’(l),….,a’(l),…,a’n

(l)),iÎRj
(l).

2.3. Activation Function - ReLU

An activation function is used to determine whether or not a signal in a neural network will go to the next layer 
or not depending upon the input. It can be seen as either “ON” (1) or “OFF” (0). The non-linear activation 
functions are used to compute non-trivial problems using small number of nodes. This type of function is also 
called a transfer function.

One such activation function is ReLU i.e. Rectifi ed Linear Unit which has been used in this mode of neural 
network. The function can be approximately given by: 

 F(x) = ln (1 + ex)

The use of the rectifi er as a non-linearity has helped the training of deep-supervised neural networks without 
requiring unsupervised pre-training. The biggest advantage of using ReLU over other activation functions is 
that it is faster and gives a better range. It is also very functional when training on deep neural networks.
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Figure 5: ReLU Graph

2.4. Google Inception
The Inception model is an architectural case study performed by Google for assessing the hypothetical output of 
a network constructed algorithm that tries to give out sparse structure implied for vision networks. All we need 
is to find the optimal local construction and to repeat it spatially for our model.

The clusters form the units of the next layer and are connected to the units of the previous given layer. We 
assume that each unit from an earlier layer corresponds to some region of the input image and these units are 
grouped into filter banks. In the lower layers (the ones close to the input), correlated units would concentrate 
in local regions. Thus, we would end up with a lot of clusters concentrated in a single region and they can be 
covered by a layer of 1×1 convolutions in the next layer.

For the residual versions of the Inception networks, cheaper Inception blocks are used than the original 
Inception. A fi lter expansion layer which is used to scale the dimensions of the fi lter bank occurs after each and 
every Inception block, before the addition is performed to match the depth of the input. It has to be done to 
reimburse the reduction which was induced.

Figure 6: Google inception, naive version
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A decision was made to conlove in restricted fi lter sizes of 1x1 3x3 5x5 to avoid patching problems in 
the model. It was based more on convenience than the necessity. Hence it must be noticed that all the layers of 
different convolutions are concatenated and these outputs are in turn fed as inputs to the next layer.

3. DOCKER
Docker is a tool which is designed to make it easier to create, deploy and run applications by using different 
containers.Containers package up an application with all of the parts it needs, including libraries, dependencies, etc. 
by doing so the developer is given an assurance that their application will work on any other Linux machine 
regardless of the customized settings that the machine may have.

Unlike a virtual machine, which creates a complete virtual operating system, the tool Docker allows the 
applications to use the same Linux kernel as the system that the user is running on and it only requires shipping 
the host computer running the application.

4. TRAINING METHODOLOGY
In this model we have used transfer learning. Training a deep neural network can take days to do, however 
transfer learning can be done in a shorter period of time.

This model doesn’t train a whole neural network, rather it retrains an already trained one. Google Inception 
is a CNN which is trained on millions of images. A script was written to remove the old fi nal layer, and train a 
new one on the fl owers.

The inception v3 model is made up of many layers stacked on top of each other. These layers are pre 
trained and are very valuable for summarizing the information that will help classify images.

Bottleneck is an informal term given to the layer just before the output layer that actually does the 
classifi cation. Every image is used multiple times during training. The bottlenecks are saved in a temporary fi le, 
so they can be reused.

While training, each step shows training accuracy, validation accuracy and cross entropy. Training 
accuracy shows the percentage of the images used in the current training batch that were labeled correctly with 
the correct class. Validation accuracy is the precision (percentage of correctly labeled images) on a randomly-
selected group of images from a different set. Cross entropy is a loss function that gives an idea of how well the 
learning process is progressing. 

The training’s objective is to make the cross entropy as small as possible. The script runs 4000 times, each 
step chooses 10 images at random from the training set, fi nds their bottlenecks from the cache, and feeds them 
into the fi nal layer of prediction.

In the output, you will see a list of fl ower labels, with the most confi dent prediction on the top. You can also train 
the network to recognize categories you want. All one needs to do is run this software, specifying a particular set of 
sub folders. Each sub folder is named after one of your categories and contains only images from that category.

The script than uses the folder names as the label names, and the images inside each folder should be 
corresponding. 

5. RESULTS AND CONCLUSIONS
Rose, Dandelion and Daisy got exceptional accuracy scores, i.e. more than 99.5%. Therefore, this shows that 
the given model is very fl exible. It can be used to classify any given set of images as per requirement taking 
comparatively very less time to train.
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Table 1
Score of different fl owers

Flower Score

Rose 99.72%

Dandelion 99.96%

Sunfl ower 95.55%

Daisy 99.84%

Tulips 95.20%

The aforementioned results were obtained after the training of the given model of Convolutional Neural 
Network. Hence, it can be concluded that transfer learning is a very viable, as well as time bound method for 
image classifi cation.
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