P. Arul Paul Sudhahar and V. K. Kalai Vani THE FORCING TOTAL MONOPHONIC NUMBER OF A GRAPH

Abstract

For a connected graph $G=(V, E)$ of order at least two. A total monophonic set of a graph G is a monophonic set M such that the subgraph induced by M has no isolated vertices. The minimum cardinality of a total monophonic set of Gis the total monophonic number of G and is denoted by $m_{t}(G)$. A subset T of a minimum total monophonic set M of G is a forcing total monophonic subset for M if M is the unique minimum total monophonic set containing T. A forcing total monophonic subset for M of minimum cardinality is a minimum forcing total monophonic subset of M. The forcing total monophonic number $f m_{t}(M)$ in G is the cardinality of a minimum forcing total monophonic subset of M.The forcing total monophonic number of G is $\operatorname{fm}_{t}(G)=\min \left\{f m_{t}(M)\right.$, where the minimum is taken over all minimum total monophonic sets M in G. It is shown that forevery pair a, b of positive integers with $0 \leq a<b$ and $b>2 a+1$, there exists a connected graph G such that $f m_{t}(G)$ $=a$ and $m_{t}(G)=b$

Keywords: forcing monophonic number,forcing monophonic set,forcing total monophonic number,Monophonic set, monophonic number, total monophonic set, total monophonic number.
AMS Subject classification: 05C12.

I. INTRODUTION

By a graph $G=(V, E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic terminology we refer to Harary[2]. The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest u-v path of length $d(u, v)$ is called a $u-v$ geodesic. A vertex v is said to lie on an $x-y$ geodesic P if v is a vertex of P including the vertices x and $y . A$ set S of vertices is a geodetic set if $I[S]=\mathrm{V}$, and the minimum cardinality of a geodetic set is the geodetic number $g(G)$. A geodetic set of cardinality $g(G)$ is called $a g$-set. The geodetic number of a
graph was introduced in [3]. The neighborhood of a vertex v is the set $N(v)$ consisting of all vertices u which are adjacent with v. The closed neighbourhood of a vertex v is the set $N(v)=N(v) \cup\{v\}$. A vertex v is an extreme vertex if the subgraph induced by its neighbours is complete.Avertex v is a semi-extreme vertex of G if $\Delta(\langle N(v)\rangle)=$ $|N(v)|-1$. In particular, every extreme vertex is a semi - extreme vertex and a semi - extreme vertex need not be an extreme vertex.

A chord of a path $u_{1}, u_{2}, \ldots, u_{\mathrm{k}}$ in G is an edge $u_{i} u_{j}$ with $j \geq i+2$. A path P is called a monophonic path if it is a chordless path. A set M of vertices is a monophonic set if every vertex of G lies on a monophonic path joining some pair of vertices in M, and the minimum cardinality of a monophonic set is the monophonic number $m(G)$. The monophonic number of a graph G was studied in [6]. A set S of vertices of a graph G is an edge monophonic set if every edge of G lies on an x - y monophonic for some elements x and y in S. The minimum cardinality of an edge monophonic set of G is the edge monophonic number of G, denoted by $\operatorname{em}(G)$. The edge monophonic number of a graph G was studied in [5].

A total monophonic set of a graph G is a monophonic set M such that the subgraph induced by M has no isolated vertices. The minimum cardinality of a total monophonic set of G is the total monophonic number of G and is denoted by $m_{t}(G)$. A total edge monophonic set of a graph G is an edge monophonic set M such that the subgraph induced by M has no isolated vertices. The minimum cardinality of a total edge monophonic set of G is the total edge monophonic number of G and is denoted by $e m_{t}(G)$. The total edge monophonic number of a graph was introduced and studied in [1].

Example 1.1. For the graph G given in Figure 1.1, $M_{1}=\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}, M_{2}=\left\{v_{1}\right.$, $\left.v_{2}, v_{5}, v_{6}\right\}, M_{3}=\left\{v_{1}, v_{2}, v_{3}, v_{6}\right\}, M_{4}=\left\{v_{1}, v_{3}, v_{4}, v_{5}\right\}$ are the minimum total monophonic sets of G and so $m_{t}(G)=4$.

Figure 1.1

Let G be a connected graph and M be a minimum monophonic set of G. A subset $T \subseteq M$ is called a forcing subset for M if M is the unique minimum monophonic set containing T. A forcing subset for M of minimum cardinality is a minimum forcing subset of M. The forcing monophonic number of G, denoted by $f_{m}(G)$, is $(G)=\min$ \{where the minimum is taken over all minimum monophonic sets M in G. The forcing monophonic number of a graph was introduced and studied in [4].

A connected graph G may contain more than one minimum total monophonic sets. For example, the graph G given in Figure 1.1 contains four minimum total monophonic sets. Foreach minimum total monophonic set M in G there is always some subset T of M that uniquely determines M as the minimum total monophonic set containing T. Such sets are called forcing total monophonic subsets.

The following theorems used in the sequel.
Theorem 1.1 [1]. Each extreme vertex and each support vertex of a connected graph G belongs to every total edge monophonic set of G. If the set M of all extreme vertices and support vertices form a total edgemonophonic set, then M is the unique minimum total edge monophonic set of G.

Theorem 1.2[1]. For the complete graph $K p(p 2), e m_{t}(K p)=p$.
Theorem 1.3 [1]. For any non trivial tree T, the set of all end vertices and support vertices of T is the unique minimum total edge monophonic set of G.

Theorem 1.4 [1]. For any connected graph $G, e m_{t}(G)=2$ if and only if $G=K_{2}$.
Theorem 1.5 [1]. No cutvertex of a connected graph G belongs to any minimumtotal edge monophonic set of G.

Theorem 1.6[4]. For the complete graph $K p(p 2)$,
Throughout this paper G denotes a connected graph with atleast two vertices.

2. FORCING TOTAL MONOPHONIC NUMBER OF A GRAPH

Definition 2.1. Let G be a connected graph and let M be a minimum total monophonic set of G. A subset T of a minimum total monophonic set M of G is a forcing total monophonic subset for M if M is the unique minimum total monophonic set containing T. A forcing total monophonic subset for M of minimum cardinality is a minimum forcing total monophonic subset of M. The forcing total monophonic number $f m_{t}(M)$
in G is the cardinality of a minimum forcing total monophonic subset of M. The forcing total monophonic number of G is $f m_{t}(G)=\min \left\{f m_{t}(M)\right\}$, where the minimum is taken over all minimum total monophonic sets in G.

Example 2.2. For the graph G given in Figure 2.1, $M_{1}=\left\{u_{1}, u_{3}, u_{6}, u_{7}\right\}, M_{2}=\left\{u_{1}\right.$, $\left.u_{2}, u_{6}, u_{7}\right\}, M_{3}=\left\{u_{1}, u_{2}, u_{5}, u_{6}\right\}, M_{4}=\left\{u_{1}, u_{3}, u_{5}, u_{6}\right\}$ are the minimum total monophonic sets of G. It is clear that $f m_{t}\left(M_{1}\right)=2, f m_{t}\left(M_{2}\right)=2, f m_{t}\left(M_{3}\right)=2, f m_{t}\left(M_{4}\right)=2$, so that $f m_{t}(G)=2$.

Figure 2.1
Theorem 2.3.For a connected graph $G, 0 \leq f m_{t}(G) \leq m_{t}(G) p$.
Proof. It is clear from the definition of $f m_{t}(G)$ that $f m_{t}(G) \geq 0$. Let M be a minimum total monophonic set of G. Since $f m_{t}(M) \leq m_{t}(G)$ and since $f m_{t}(G)=\min \left\{f m_{t}(M): M\right.$ is a minimum total monophonic set in $G\}$, it follows that $f m_{t}(G) \leq m_{t}(G)$. Thus $0 \leq$ $f m_{t}(G) \leq m_{t}(G) \leq p$.

Remark 2.4.The bounds in Theorem 2.3 are sharp. By Theorems 1.2 and 1.6, for the complete graph $K p(p \geq 2), m_{t}(K p)=p$, also $V(K p)$ is the unique total monophonic set of $K p$ and so $f m_{t}(K p)=0$. The inequalities in Theorem 2.3 are strict.

Figure 2.2

For the graph G given in Figure 2.2, $M_{1}=\left\{v_{1}, v_{2}, v_{3}\right\}, M_{2}=\left\{v_{1}, v_{3}, v_{4}\right\}$ are the minimum total monophonic sets of G so that $m_{t}(G)=3$. It is clear that $f m_{t}\left(M_{1}\right)=1$ and $f m_{t}\left(M_{2}\right)=1$ so that $f m_{t}(G)=1$. Thus $0 f m_{t}(G)<m_{t}(G)<p$.

Theorem 2.5. Let G be a connected graph. Then
(i) $f m_{t}(G)=0$ if and only if G has a unique minimum total monophonic set.
(ii) $\operatorname{fm}_{t}(G)=1$ if and only if G has at least two minimum total monophonic sets, one of which is a unique minimum total monophonic set containing one of its elements, and
(iii) $f m_{t}(G)=m_{t}(G)$ if and only if no minimum total monophonic set of G is the unique minimum total monophonic set containing any of its proper subsets.
Proof.(i) Let $f m_{t}(G)=0$. Then by definition, $f m_{t}(M)=0$ for some minimum total monophonic set M of G, so that the empty set \emptyset is the minimum forcing subset for M. Since the empty set \emptyset is a subset of every set, it follows that M is the unique minimum total monophonic set of G. The converse is clear.
(ii) Let $\operatorname{fm}_{t}(G)=1$. Then by Theorem 2.5 (i), G has atleast two minimum total monophonic sets. Since $f m_{t}(G)=1$, there is a singleton subset T of a minimum total monophonic set M of G such that T is not a subset of any other minimum total monophonic set of G. Thus M is the unique minimum total monophonic set containing one of its elements. The converse is clear.
(iii) Let $f m_{t}(G)=m_{t}(G)$. Then $f m_{t}(M)=m_{t}(G)$ for every minimum total monophonic set in G. By Theorem 2.3, $m_{t}(G) \geq 2, f m_{t}(G) \geq 2$. Then by Theorem 2.5(i), G has at least two minimum total monophonic set of G. Since $f m_{t}(M)=m_{t}(G)$, no proper subset of M is a forcing subset of M. Thus no minimum total monophonic set of G is the unique minimum total monophonic set containing any of its proper subsets. Conversely, G contains more than one minimum total monophonic set and no subset of any minimum total monophonic set M other than M is a subset for M. Hence it follows that $f m_{t}(G)=m_{t}(G)$.

Definition 2.6. A vertex v of a connected graph G is said to be a total monophonic vertex of G if v belongs to every minimum total monophonic set of G.

Example 2.7. For the graph G given in Figure 2.3, $M_{1}=\left\{v_{1}, v_{4}, v_{5}, v_{8}\right\}, M_{2}=\left\{v_{1}\right.$, $\left.v_{2}, v_{4}, v_{5}\right\}$ are the only two total monophonic sets of G. It is clear that v_{1}, v_{5} are total monophonic vertices of G.

Figure 2.3
Corollary 2.8. Let G be a connected graph and let M be a minimum total monophonic set of G. Then no total monophonic vertex of G belongs to any minimum forcing total monophonic subset of M.

Theorem 2.9. Let G be a connected graph and let S be the set of all total monophonic vertices of G. Then $f m_{t}(G) \leq m_{t}(G)-|S|$.

Proof. Let M be any minimum total monophonic set of G. Then $m_{t}(G)=|M|$, $S \subseteq M$ and M is the unique minimum total monophonic set containing $M-S$.

Thus $f m_{t}(G) \leq|M-S|=|M|-|S|=m_{t}(G)-|S|$.
Corollary 2.10. If G is a connected graph with l extreme vertices and k support vertices, then $f m_{t}(G) \leq m_{t}(G)-(l+k)$. Proof. This follows from Theorem 1.1 and Theorem 2.9.

Remark 2.11. The bound in Theorem 2.9 is sharp. For the graph G given in Figure 2.2, $m_{t}(G)=3$ and $f m_{t}(G)=1$.

Also $S=\left\{v_{1}, v_{3}\right\}$ is the set of all total monophonic vertices of G and $f m_{t}(G)=$ $m_{t}(G)-|S|$. Also the inequality in Theorem 2.9 can be strict.

Figure 2.4

For the graph G given in Figure 2.4, $M_{1}=\{u, v, w\}, M_{2}=\{x, y, w\}$ are the minimum total monophonic sets of G and so that $m_{t}(G)=3$. Since M_{1} is the unique minimum total monophonic set contains the subset $\{u\}$ so that $f m_{t}\left(M_{1}\right)=1$ and M_{2} is the unique minimum total monophonic set contains the subset $\{x\}$ so that $f m_{t}\left(M_{2}\right)=.1$ Hence, we have $f m_{t}(G)=1$. Also, the vertex w is the unique total monophonic vertex of G, we have $f m_{t}(G)<m_{t}(G)|S|$.

Theorem 2.12. Let G be a connected graph and let M be a minimum total monophonic set of G. Then no cut vertex of G belongs to any minimum forcing total monophonic subset of M.

Proof: Let v be a cut vertex of G which is not a support vertex. By Theorems 1.1 and $1.5, v$ does not belong to any minimum total monophonic set of G. Since any minimum forcing total monophonic subset of Mis a subset of minimum total monophonic set. It follows that, no cut vertex of G belongs to any minimum forcing total monophonic subset of M.

Theorem 2.13: For any complete graph $G=K p(p \geq 2)$ or any non trivial tree $G=T, f m_{t}(G)=0$.

Proof: For $G=K p$, it follows from Theorem 1.6 that the set of all vertices of G is the unique minimum total monophonic set of G. Now, it follows from Theorem 2.5 (i) that $f m_{t}(G)=0$. If G is a non trivial tree, then by Theorem 1.3, the set of all end vertices and support vertices of G is the unique minimum total monophonic set of G and by Thorem 2.5(i) $f m_{t}(G)=0$.

Theorem 2.14: If G is a connected graph with $m_{t}(G)=2$, then $f m_{t}(G)=0$.
Proof: This follows from Theorem 1.4 and Theorem 2.13.
Theorem 2.15: For the complete bipartite graph $G=(m, n \geq 2), f m_{t}(G)=$

$$
\left\{\begin{array}{c}
1 \text { if } 2=m=n \\
4 \text { if } 3 \leq m \leq n \\
1 \text { if } 2=m<n \\
0 \text { if } m=1 \text { and } n=2
\end{array}\right\}
$$

Proof: We prove this theorem by considering four cases.

Case 1: If $m=1$ and $n=2$. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ be the bipartition of G. If $m=1$, then G is a tree and its forcing total monophonic number is 0 .

Case 2: If $2=m=n$, then $U=\left\{u_{1}, u_{2}\right\}$ and $W=\left\{w_{1}, w_{2}\right\}$ and any minimum total monophonic set of G is of the following forms: (i) $U \cup\left\{w_{i}\right\}$ or (ii) $W \cup\left\{u_{i}\right\}$. Hence in both cases $f m_{t}(G)=1$.

Case 3: If $2=m<n$, then for any $j(1 \leq j \leq n), S_{j}=U \cup\left\{w_{j}\right\}$ is a minimum total monophonic set of G. Since $n \geq 3$, then by Theorem 2.5 (ii), we have $f m_{t}(G)=1$.

Case 4: If $3=m=n$, then any minimum total monophonic set of G is of the following forms: (i) $U \cup\left\{w_{j}\right\}$ for some $j(1 \leq j \leq n)$. (ii) $W \cup\left\{u_{i}\right\}$ for some $i(1 \leq i \leq$ m), or (iii) any set got by chossing any two elements from each of U and W. If $3=$ $m<n$, then any minimum total monophonic set of G is either $U \cup\left\{w_{j}\right\}$ for some $j(1 \leq j \leq n)$ or any set got by chossing any two elements from each of U and W. Hence in both cases, we have $m_{t}(G)=4$. Clearly, no minimum total monophonic set of G is the unique minimum total monophonic set containing any of its proper subsets. Then by Theorem 2.5 (iii), we have $f m_{t}(G)=m_{t}(G)=4$.

3. REALIZATION RESULTS

Theorem 3.1: For every pair a, b of positive integers with and, there exists a connected graph G such that $f m_{t}(G)=a$ and $m_{t}(G)=b$.

Proof: If $a=0$, let $G=K_{b}$. Then by Theorem 2.13, $f m_{t}(G)=0$ and by Theorem $1.2, m_{t}(G)=b$. Thus we assume that $0<a<b$.

For each i with $1 \leq i \leq a$, let $C_{i}: u_{i, 1}, u_{i, 2}, u_{i, 3}, u_{i, 4}, u_{i, 1}$ be a cycle of order 4. Let $\mathrm{K}_{1, b-2 a-1}$ be a star with the cutvertex x and $V\left(K_{1, b-2 a-1}\right)=\left\{x, v_{1}, v_{2} \ldots v_{b-2 a-1}\right\}$. The graph G is obtained from $C_{i}(1 \leq i \leq a)$ and $K_{1, b-2 a-1}$ by joining the vertices x and $u_{i, 1}$ and by joining the vertices $u_{i, 2}$ and $u_{i, 4}(1 \leq i \leq a)$. The graph G is given in Figure 3.1.

Let $S=\left\{v_{1}, v_{2}, \ldots, v_{b-2 a-1}, u_{1,3}, u_{2,3}, \ldots, u_{a, 3} x\right\}$ be the set of all extreme vertices and support vertex of G. By Theorem 1.1, every total monophonic set of G contains S. It is easily verified that S is not a total monophonic set of G. Hence $M^{\prime}=S \cup\left\{u_{1,2}\right.$, $\left.u_{2,2}, \ldots, u_{a, 2}\right\}$ is a total monophonic set of G. Thus $m_{t}(G)=b$.

Figure 3.1
Next we show that $f m_{t}(G)=a$. It is observed that S is the set of all total monophonic vertices of G. Then by Theorem 2.9, $f m_{t}(G) \leq m_{t}(G)-=b-(b-a)=a$.

Now, since $m_{t}(G)=b$ and every total monophonic set of G contains S, it is easily seen that every minimum total monophonic set M_{1} of G is of the form $S \cup\left\{x_{1}, x_{2}\right.$, . $\left.\ldots, x_{a}\right\}$, where $x_{i} \in\left\{u_{i, 2}, u_{i, 4}\right\}$ for every $i(1 \leq i \leq a)$ Let T be any proper subset of M_{1} with $|T|<a$. Then there is a vertex $x \in M_{1}-S$ such that $x \notin T$. If $x=u_{i, 2}(1 \leq i \leq a)$, then $M_{2}=\left(M_{1}-\left\{u_{i, 2}\right\} \cup\left\{u_{i, 4}\right\}\right.$ is a minimum total monophonic set of G containing T.

Similarly, if $x=u_{i, 4}(1 \leq i \leq a)$, then $M_{3}=\left(M_{1}-\left\{u_{i, 4}\right\} \cup\left\{u_{i, 2}\right\}\right)$ is a minimum total monophonic set of G containing T. Thus M_{1} is not the unique minimum total monophonic set of G containing T and so T is not a forcing total monophonic subset of M_{1}. Since this is true for all minimum total monophonic set of G, it follows that $f m_{t}(G) \geq a$ and $\operatorname{sof} m_{t}(G)=a$.

Theorem 3.2: For every integers a and b with $a<b$, and $b-2 a-2>0$, there exists a connected graph G such that, $f m_{t}(G)=a$ and $m_{t}(G)=b$.

Proof: Case 1. $a=0, b \geq 2$. Let $G=K_{1, b-1}$. Then by Theorem 2.13, $f m_{t}(G)=0$ and $m_{t}(G)=b$.

Case $2.0<a<b$. Let $F_{i}: s_{i}, r_{i}, u_{i}, t_{i}, s_{i}$ be a copy of C_{4}. Let H be a graph obtained from $F_{i}^{\prime} s$ by identifying t_{i-1} of F_{i-1} and s_{i} of $F_{i}(2 \leq i \leq a)$. Let G be a graph obtained from H by adding $b-2 a-1$ new vertices $x, v_{1}, v_{2}, \ldots, v_{b-2 a-2}$ and joining the edges $x s_{1}, t_{a} v_{1}, \ldots, t_{a} v_{b-2 a-2}$ as shown in Figure 3.2.

Figure 3.2
Let $Z=\left\{x, v_{1}, v_{2}, \ldots, v_{b-2 a-2}\right\}$ be the set of end vertices of G. It is clear that Z is not a total monophonic set of G. By Theorem 1.5, $Z^{\prime}=Z \cup\left\{s_{1}, s_{2} \ldots, s_{a}, t_{a}\right\}$ is a subset of every total monophonic set of G. Let $H_{i}=\left\{u_{i}, r_{i}\right\}(1 \leq i \leq a)$. We observe that every $m_{t}(G)$ must contain at least one vertex from each H_{i}, so that $m_{t}(G) \geq b-2 a$ $-1+a+1+a=\mathrm{b}$. Now, $M=Z^{\prime} \cup\left\{r_{1}, r_{2}, \ldots, r_{a}\right\}$ is a total monophonic set of G, so that $m_{t}(G) \leq b-2 a-1+a+1+a=b$. Thus $m_{t}(G)=b$. Next, we show that $f m_{t}(G)=$ a. Since every m_{t} - set contains Z^{\prime}, it follows from Theorem 2.9, $f m_{t}(G) \leq m_{t}(G)-(b$ $-2 a-1+a+1)=a$.

It is easily seen that every m_{t}-set of G is of the form $Z^{\prime} \cup\left\{r_{1}, r_{2}, \ldots, r_{a}\right\}$, where $r_{i} \in H_{i}(1 \leq i \leq a)$. Let T be any proper subset of M with $|T|<a$. Then there exists $r_{i}(1 \leq i \leq a)$ such that $r_{i} \notin T$. Let e_{i} be the vertex of H_{i} distinct from r_{i}. Then $W=(M$ $\left.-\left\{r_{i}\right\}\right) \cup\left\{e_{i}\right\}$ is $a m_{t}$-set properly containing T. Thus M is not the unique m_{t}-set containing T, so that T is not a forcing subset of M. This is true for all m_{t}-sets, so that $f m_{t}(G)=a$.

REFERENCES

[1] P. Arul Paul Sudhahar, V. K. Kalai Vani, The Total Edge Monophonic Number of a Graph, International Journal of Applied Mathematics, ISSN 1819-4966 Volume 11, Number 2 (2016) pp. 159-166.
[2] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, (1990).
[3] G. Chartrand, F. Harary, and P. Zhang, On the Geodetic Number of a Graph, Networks. 39 (2002) 1-6.
[4] J. John, S. Panchali, The forcing Monophonic Number of a Graph, International Journal of Mathematical Archive-3(3), 2012, ISSN 2229-5046, pp.935-938.
[5] J. John, P. Arul Paul Sudhahar, On the edge monophonic number of a graph, Filomat 26: 6 (2012), 1081-1089.
[6] A. P. Santhakumaran, P. Titus, K. Ganesamoorthy, On the Monophonic Number of a Graph, J. Appl. Math. \& Informatics Vol. 32 (2014), No. 1 - 2, pp. 255 - 266.

P. Arul Paul Sudhahar
Assistant Professor, Department of Mathematics
Rani Anna Govt. College (W)
Tirunelveli -627008, Tamilnadu, India
E-mail: arulpaulsudhar@gmail.com
\section*{V. K. Kalai Vani}
Research Scholar, Reg No. 12445 Rani Anna Govt. College (W)
Tirunelveli -627008, Tamilnadu, India
Manonmaniam Sundaranar University,
Tirunelveli-627012, Tamilnadu, India
E-mail: kalaivanisaji@gmail.com

This document was created with the Win2PDF "print to PDF" printer available at http://www.win2pdf.com

This version of Win2PDF 10 is for evaluation and non-commercial use only.
This page will not be added after purchasing Win2PDF.
http://www.win2pdf.com/purchase/

