# P. Arul Paul Sudhahar and V. K. Kalai Vani

# THE FORCING TOTAL MONOPHONIC NUMBER OF A GRAPH

Abstract: For a connected graph G = (V, E) of order at least two. A total monophonic set of a graph G is a monophonic set M such that the subgraph induced by M has no isolated vertices. The minimum cardinality of a total monophonic set of G is the total monophonic number of G and is denoted by  $m_t(G)$ . A subset T of a minimum total monophonic set M of G is a forcing total monophonic subset for M if M is the unique minimum total monophonic set containing T. A forcing total monophonic subset for M of minimum cardinality is a minimum forcing total monophonic subset of M. The forcing total monophonic number  $fm_t(M)$  in G is the cardinality of a minimum forcing total monophonic subset of M. The forcing total monophonic number of G is  $fm_t(G) = min\{fm_t(M), where the minimum is taken over all minimum$ total monophonic sets M in G. It is shown that forevery pair a, b of positive integers $with <math>0 \le a < b$  and b > 2a + 1, there exists a connected graph G such that  $fm_t(G)$ = a and  $m_t(G) = b$ 

**Keywords:** forcing monophonic number, forcing monophonic set, forcing total monophonic number, Monophonic set, monophonic number, total monophonic set, total monophonic number.

AMS Subject classification: 05C12.

## I. INTRODUTION

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple edges. The order and size of *G* are denoted by *p* and *q* respectively. For basic graph theoretic terminology we refer to Harary[2]. The distance d(u, v) between two vertices *u*and*v* in a connected graph *G* is the length of a shortest *u*-*v* path of length d(u,v) is called a *u*-*v* geodesic. A vertex *v* is said to lie on an *x*-*y* geodesic *P* if *v* is a vertex of *P* including the vertices *x* and *y*. *A* set *S* of vertices is a geodetic set if I[S] = V, and the minimum cardinality of a geodetic set is the geodetic number g(G). A geodetic set of cardinality g(G) is called *a g*-set. The geodetic number of a graph was introduced in [3]. The neighborhood of a vertex v is the set N(v) consisting of all vertices u which are adjacent with v. The closed neighbourhood of a vertex v is the set  $N(v) = N(v) \cup \{v\}$ . A vertex v is an extreme vertex if the subgraph induced by its neighbours is complete. Avertex v is a semi-extreme vertex of G if  $\Delta(\langle N(v) \rangle) =$ |N(v)| - 1. In particular, every extreme vertex is a semi - extreme vertex and a semi - extreme vertex need not be an extreme vertex.

A chord of a path  $u_1, u_2, \dots, u_k$  in G is an edge  $u_i u_j$  with  $j \ge i + 2$ . A path P is called a monophonic path if it is a chordless path. A set M of vertices is a monophonic set if every vertex of G lies on a monophonic path joining some pair of vertices in M, and the minimum cardinality of a monophonic set is the monophonic number m(G). The monophonic number of a graph G was studied in [6]. A set S of vertices of a graph G is an edge monophonic set if every edge of G lies on an x-y monophonic for some elements x and y in S. The minimum cardinality of an edge monophonic set of G is the edge monophonic number of G, denoted by em(G). The edge monophonic number of a graph G was studied in [5].

A total monophonic set of a graph G is a monophonic set M such that the subgraph induced by M has no isolated vertices. The minimum cardinality of a total monophonic set of G is the total monophonic number of G and is denoted by m(G). A total edge monophonic set of a graph G is an edge monophonic set M such that the subgraph induced by M has no isolated vertices. The minimum cardinality of a total edge monophonic set of G is the total edge monophonic number of G and is denoted by em(G). The total edge monophonic number of a graph was introduced and studied in [1].

**Example 1.1.** For the graph G given in Figure 1.1,  $M_1 = \{v_1, v_2, v_4, v_5\}, M_2 = \{v_1, v_2, v_3, v_4, v_5\}$  $v_2, v_5, v_6$ ,  $M_3 = \{v_1, v_2, v_3, v_6\}, M_4 = \{v_1, v_3, v_4, v_5\}$  are the minimum total monophonic sets of G and so  $m_t(G) = 4$ .



Let *G* be a connected graph and *M* be a minimum monophonic set of *G*. A subset  $T \subseteq M$  is called a forcing subset for *M* if *M* is the unique minimum monophonic set containing *T*. A forcing subset for *M* of minimum cardinality is a minimum forcing subset of *M*. The forcing monophonic number of *G*, denoted by  $f_m(G)$ , is  $(G) = \min$  {where the minimum is taken over all minimum monophonic sets *M* in *G*. The forcing monophonic number of a graph was introduced and studied in [4].

A connected graph G may contain more than one minimum total monophonic sets. For example, the graph G given in Figure 1.1 contains four minimum total monophonic sets. Foreach minimum total monophonic set M in G there is always some subset T of M that uniquely determines M as the minimum total monophonic set containing T. Such sets are called forcing total monophonic subsets.

The following theorems used in the sequel.

**Theorem 1.1** [1]. Each extreme vertex and each support vertex of a connected graph G belongs to every total edge monophonic set of G. If the set M of all extreme vertices and support vertices form a total edgemonophonic set, then M is the unique minimum total edge monophonic set of G.

**Theorem 1.2[1].** For the complete graph Kp(p 2),  $em_i(Kp) = p$ .

**Theorem 1.3 [1].** For any non trivial tree T, the set of all end vertices and support vertices of T is the unique minimum total edge monophonic set of G.

**Theorem 1.4 [1].** For any connected graph G,  $em_i(G) = 2$  if and only if  $G = K_2$ .

**Theorem 1.5 [1].** No cutvertex of a connected graph G belongs to any minimum of G and G.

**Theorem 1.6[4].** For the complete graph Kp(p 2),

Throughout this paper G denotes a connected graph with atleast two vertices.

## 2. FORCING TOTAL MONOPHONIC NUMBER OF A GRAPH

**Definition 2.1.** Let *G* be a connected graph and let *M* be a minimum total monophonic set of *G*. A subset *T* of a minimum total monophonic set *M* of *G* is a forcing total monophonic subset for *M* if *M* is the unique minimum total monophonic set containing *T*. A forcing total monophonic subset for *M* of minimum cardinality is a minimum forcing total monophonic subset of *M*. The forcing total monophonic number  $fm_i(M)$ 

in G is the cardinality of a minimum forcing total monophonic subset of M. The forcing total monophonic number of G is  $fm_{\ell}(G) = \min\{fm_{\ell}(M)\}$ , where the minimum is taken over all minimum total monophonic sets in G.

**Example 2.2.** For the graph G given in Figure 2.1,  $M_1 = \{u_1, u_3, u_6, u_7\}, M_2 = \{u_1, u_3, u_6, u_7\}$  $u_2, u_6, u_7$ ,  $M_3 = \{u_1, u_2, u_5, u_6\}$ ,  $M_4 = \{u_1, u_3, u_5, u_6\}$  are the minimum total monophonic sets of G. It is clear that  $fm_t(M_1) = 2$ ,  $fm_t(M_2) = 2$ ,  $fm_t(M_3) = 2$ ,  $fm_t(M_4) = 2$ , so that  $fm_t(G) = 2.$ 



Figure 2.1

**Theorem 2.3.** For a connected graph  $G, 0 \le fm_i(G) \le m_i(G) p$ .

**Proof.** It is clear from the definition of  $fm_{\ell}(G)$  that  $fm_{\ell}(G) \ge 0$ . Let M be a minimum total monophonic set of G. Since  $fm_i(M) \le m_i(G)$  and since  $fm_i(G) = \min\{fm_i(M): M\}$ is a minimum total monophonic set in G}, it follows that  $fm_{\ell}(G) \le m_{\ell}(G)$ . Thus  $0 \le 1$  $fm_t(G) \le m_t(G) \le p$ .

Remark 2.4. The bounds in Theorem 2.3 are sharp. By Theorems 1.2 and 1.6, for the complete graph  $Kp(p \ge 2)$ ,  $m_t(Kp) = p$ , also V(Kp) is the unique total monophonic set of Kp and so fm(Kp) = 0. The inequalities in Theorem 2.3 are strict.



Figure 2.2

For the graph G given in Figure 2.2,  $M_1 = \{v_1, v_2, v_3\}, M_2 = \{v_1, v_3, v_4\}$  are the minimum total monophonic sets of G so that  $m_t(G) = 3$ . It is clear that  $fm_t(M_1) = 1$  and  $fm_t(M_2) = 1$  so that  $fm_t(G) = 1$ . Thus  $0 fm_t(G) < m_t(G) < p$ .

**Theorem 2.5.** Let *G* be a connected graph. Then

- (i)  $fm_t(G) = 0$  if and only if G has a unique minimum total monophonic set.
- (ii)  $fm_t(G) = 1$  if and only if *G* has at least two minimum total monophonic sets, one of which is a unique minimum total monophonic set containing one of its elements, and
- (iii)  $fm_t(G) = m_t(G)$  if and only if no minimum total monophonic set of G is the unique minimum total monophonic set containing any of its proper subsets.

**Proof.**(i) Let  $fm_t(G) = 0$ . Then by definition,  $fm_t(M) = 0$  for some minimum total monophonic set M of G, so that the empty set  $\emptyset$  is the minimum forcing subset for M. Since the empty set  $\emptyset$  is a subset of every set, it follows that M is the unique minimum total monophonic set of G. The converse is clear.

(ii) Let  $fm_t(G) = 1$ . Then by Theorem 2.5 (i), *G* has atleast two minimum total monophonic sets. Since  $fm_t(G) = 1$ , there is a singleton subset *T* of a minimum total monophonic set *M* of *G* such that *T* is not a subset of any other minimum total monophonic set of *G*. Thus *M* is the unique minimum total monophonic set containing one of its elements. The converse is clear.

(iii) Let  $fm_t(G) = m_t(G)$ . Then  $fm_t(M) = m_t(G)$  for every minimum total monophonic set in *G*. By Theorem 2.3,  $m_t(G) \ge 2$ ,  $fm_t(G) \ge 2$ . Then by Theorem 2.5(i), *G* has at least two minimum total monophonic set of *G*. Since  $fm_t(M) = m_t(G)$ , no proper subset of *M* is a forcing subset of *M*. Thus no minimum total monophonic set of *G* is the unique minimum total monophonic set containing any of its proper subsets. Conversely, *G* contains more than one minimum total monophonic set and no subset of any minimum total monophonic set *M* other than *M* is a subset for *M*. Hence it follows that  $fm_t(G) = m_t(G)$ .

**Definition 2.6.** A vertex v of a connected graph G is said to be a total monophonic vertex of G if vbelongs to every minimum total monophonic set of G.

**Example 2.7.** For the graph G given in Figure 2.3,  $M_1 = \{v_1, v_4, v_5, v_8\}, M_2 = \{v_1, v_2, v_4, v_5\}$  are the only two total monophonic sets of G. It is clear that  $v_1, v_5$  are total monophonic vertices of G.



Figure 2.3

**Corollary 2.8.** Let G be a connected graph and let M be a minimum total monophonic set of G. Then no total monophonic vertex of G belongs to any minimum forcing total monophonic subset of M.

**Theorem 2.9.** Let *G* be a connected graph and let *S* be the set of all total monophonic vertices of *G*. Then  $fm_i(G) \le m_i(G) - |S|$ .

**Proof.** Let *M* be any minimum total monophonic set of *G*. Then  $m_t(G) = |M|$ ,  $S \subseteq M$  and *M* is the unique minimum total monophonic set containing *M*–*S*.

Thus  $fm_t(G) \le |M-S| = |M| - |S| = m_t(G) - |S|$ .

**Corollary 2.10.** If *G* is a connected graph with *l* extreme vertices and *k* support vertices, then  $fm_t(G) \le m_t(G) - (l+k)$ . **Proof.** This follows from Theorem 1.1 and Theorem 2.9.

**Remark 2.11**. The bound in Theorem 2.9 is sharp. For the graph G given in Figure 2.2, $m_i(G) = 3$  and  $fm_i(G) = 1$ .

Also  $S = \{v_1, v_3\}$  is the set of all total monophonic vertices of G and  $fm_t(G) = m_t(G) - |S|$ . Also the inequality in Theorem 2.9 can be strict.



For the graph *G* given in Figure 2.4,  $M_1 = \{u, v, w\}, M_2 = \{x, y, w\}$  are the minimum total monophonic sets of *G* and so that  $m_t(G) = 3$ . Since  $M_1$  is the unique minimum total monophonic set contains the subset  $\{u\}$  so that  $fm_t(M_1) = 1$  and  $M_2$  is the unique minimum total monophonic set contains the subset  $\{x\}$  so that  $fm_t(M_2) = .1$  Hence, we have  $fm_t(G) = 1$ . Also, the vertex *w* is the unique total monophonic vertex of *G*, we have  $fm_t(G) < m_t(G) |S|$ .

**Theorem 2.12.** Let G be a connected graph and let M be a minimum total monophonic set of G. Then no cut vertex of G belongs to any minimum forcing total monophonic subset of M.

Proof: Let v be a cut vertex of G which is not a support vertex. By Theorems 1.1 and 1.5, v does not belong to any minimum total monophonic set of G. Since any minimum forcing total monophonic subset of M is a subset of minimum total monophonic set. It follows that, no cut vertex of G belongs to any minimum forcing total monophonic subset of M.

**Theorem 2.13:** For any complete graph  $G = Kp(p \ge 2)$  or any non trivial tree G = T,  $fm_r(G) = 0$ .

**Proof:** For G = Kp, it follows from Theorem 1.6 that the set of all vertices of *G* is the unique minimum total monophonic set of *G*. Now, it follows from Theorem 2.5 (i) that  $fm_i(G) = 0$ . If *G* is a non trivial tree, then by Theorem 1.3, the set of all end vertices and support vertices of *G* is the unique minimum total monophonic set of *G* and by Thorem 2.5(i)  $fm_i(G) = 0$ .

**Theorem 2.14:** If G is a connected graph with  $m_t(G) = 2$ , then  $fm_t(G) = 0$ .

**Proof:** This follows from Theorem 1.4 and Theorem 2.13.

**Theorem 2.15**: For the complete bipartite graph  $G = (m, n \ge 2)$ ,  $fm_i(G) =$ 

$$\begin{cases}
1 if 2 = m = n \\
4 if 3 \le m \le n \\
1 if 2 = m < n \\
0 if m = 1 and n = 2
\end{cases}$$

**Proof:** We prove this theorem by considering four cases.

Case 1: If m = 1 and n = 2. Let  $U = \{u_1, u_2, \dots, u_m\}$  and  $W = \{w_1, w_2, \dots, w_n\}$  be the bipartition of G. If m = 1, then G is a tree and its forcing total monophonic number is 0.

Case 2: If 2 = m = n, then  $U = \{u_1, u_2\}$  and  $W = \{w_1, w_2\}$  and any minimum total monophonic set of G is of the following forms: (i)  $U \cup \{w_i\}$  or (ii)  $W \cup \{u_i\}$ . Hence in both cases  $fm_i(G) = 1$ .

Case 3: If 2 = m < n, then for any  $j(1 \le j \le n)$ ,  $S_j = U \cup \{w_j\}$  is a minimum total monophonic set of G. Since  $n \ge 3$ , then by Theorem 2.5 (ii), we have  $fm_i(G) = 1$ .

Case 4: If 3 = m = n, then any minimum total monophonic set of *G* is of the following forms: (i)  $U \cup \{w_j\}$  for some  $j (1 \le j \le n)$ . (ii)  $W \cup \{u_i\}$  for some  $i (1 \le i \le m)$ , or (iii) any set got by chossing any two elements from each of *U* and *W*. If 3 = m < n, then any minimum total monophonic set of *G* is either  $U \cup \{w_j\}$  for some  $j (1 \le j \le n)$  or any set got by chossing any two elements from each of *U* and *W*. If 3 = m < n, then any minimum total monophonic set of *G* is either  $U \cup \{w_j\}$  for some  $j (1 \le j \le n)$  or any set got by chossing any two elements from each of *U* and *W*. Hence in both cases , we have  $m_i(G) = 4$ . Clearly, no minimum total monophonic set of *G* is the unique minimum total monophonic set containing any of its proper subsets. Then by Theorem 2.5 (iii), we have  $fm_i(G) = m_i(G) = 4$ .

#### **3. REALIZATION RESULTS**

**Theorem 3.1:** For every pair *a*, *b* of positive integers with and , there exists a connected graph *G* such that  $fm_i(G) = a$  and  $m_i(G) = b$ .

**Proof:** If a = 0, let  $G = K_b$ . Then by Theorem 2.13,  $fm_t(G) = 0$  and by Theorem 1.2,  $m_t(G) = b$ . Thus we assume that 0 < a < b.

For each *i* with  $1 \le i \le a$ , let  $C_i : u_{i,1}, u_{i,2}, u_{i,3}, u_{i,4}, u_{i,1}$  be a cycle of order 4. Let  $K_{1,b-2a-1}$  be a star with the cutvertex *x* and  $V(K_{1,b-2a-1}) = \{x, v_1, v_2 \dots v_{b-2a-1}\}$ . The graph *G* is obtained from  $C_i$   $(1 \le i \le a)$  and  $K_{1,b-2a-1}$  by joining the vertices *x* and  $u_{i,1}$  and by joining the vertices  $u_{i,2}$  and  $u_{i,4}$   $(1 \le i \le a)$ . The graph *G* is given in Figure 3.1.

Let  $S = \{v_1, v_2, \dots, v_{b-2a-1}, u_{1,3}, u_{2,3}, \dots, u_{a,3}, x\}$  be the set of all extreme vertices and support vertex of *G*. By Theorem 1.1, every total monophonic set of *G* contains *S*. It is easily verified that *S* is not a total monophonic set of *G*. Hence  $M' = S \cup \{u_{1,2}, u_{2,2}, \dots, u_{a,2}\}$  is a total monophonic set of *G*. Thus  $m_t(G) = b$ .



Figure 3.1

Next we show that  $fm_i(G) = a$ . It is observed that *S* is the set of all total monophonic vertices of *G*. Then by Theorem 2.9,  $fm_i(G) \le m_i(G) - b - (b - a) = a$ .

Now, since  $m_i(G) = b$  and every total monophonic set of G contains S, it is easily seen that every minimum total monophonic set  $M_1$  of G is of the form  $S \cup \{x_1, x_2, ..., x_a\}$ , where  $x_i \in \{u_{i,2}, u_{i,4}\}$  for every  $i(1 \le i \le a)$  Let T be any proper subset of  $M_1$ with |T| < a. Then there is a vertex  $x \in M_1 - S$  such that  $x \notin T$ . If  $x = u_{i,2}$   $(1 \le i \le a)$ , then  $M_2 = (M_1 - \{u_{i,2}\} \cup \{u_{i,4}\})$  is a minimum total monophonic set of G containing T.

Similarly, if  $x = u_{i,4}$   $(1 \le i \le a)$ , then  $M_3 = (M_1 - \{u_{i,4}\} \cup \{u_{i,2}\})$  is a minimum total monophonic set of *G* containing *T*. Thus  $M_1$  is not the unique minimum total monophonic set of *G* containing *T* and so *T* is not a forcing total monophonic subset of  $M_1$ . Since this is true for all minimum total monophonic set of *G*, it follows that  $fm_i(G) \ge a$  and so  $fm_i(G) = a$ .

**Theorem 3.2:** For every integers *a* and *b* with a < b, and b - 2a - 2 > 0, there exists a connected graph *G* such that,  $fm_t(G) = a$  and  $m_t(G) = b$ .

**Proof:** Case 1.  $a = 0, b \ge 2$ . Let  $G = K_{1,b-1}$ . Then by Theorem 2.13,  $fm_t(G) = 0$  and  $m_t(G) = b$ .

Case 2. 0 < a < b. Let  $F_i: s_i, r_i, u_i, t_i, s_i$  be a copy of  $C_4$ . Let H be a graph obtained from  $F_i$ 's by identifying  $t_{i-1}$  of  $F_{i-1}$  and  $s_i$  of  $F_i$  ( $2 \le i \le a$ ). Let G be a graph obtained from H by adding b - 2a - 1 new vertices  $x, v_1, v_2, \ldots, v_{b-2a-2}$  and joining the edges  $xs_1, t_a v_1, \ldots, t_a v_{b-2a-2}$  as shown in Figure 3.2.



#### Figure 3.2

Let  $Z = \{x, v_1, v_2, \dots, v_{b-2a-2}\}$  be the set of end vertices of *G*. It is clear that *Z* is not a total monophonic set of *G*. By Theorem 1.5,  $Z' = Z \cup \{s_1, s_2, \dots, s_a, t_a\}$  is a subset of every total monophonic set of *G*. Let  $H_i = \{u_i, r_i\}$   $(1 \le i \le a)$ . We observe that every  $m_t(G)$  must contain at least one vertex from each  $H_i$ , so that  $m_t(G) \ge b - 2a$ -1 + a + 1 + a = b. Now,  $M = Z' \cup \{r_1, r_2, \dots, r_a\}$  is a total monophonic set of *G*, so that  $m_t(G) \le b - 2a - 1 + a + 1 + a = b$ . Thus  $m_t(G) = b$ . Next, we show that  $fm_t(G) = a$ . Since every  $m_t$  – set contains Z', it follows from Theorem 2.9,  $fm_t(G) \le m_t(G) - (b - 2a - 1 + a + 1) = a$ .

It is easily seen that every  $m_i$ - set of G is of the form  $Z' \cup \{r_1, r_2, \ldots, r_a\}$ , where  $r_i \in H_i (1 \le i \le a)$ . Let T be any proper subset of M with |T| < a. Then there exists  $r_i (1 \le i \le a)$  such that  $r_i \notin T$ . Let  $e_i$  be the vertex of  $H_i$  distinct from  $r_i$ . Then  $W = (M - \{r_i\}) \cup \{e_i\}$  is  $am_i$ -set properly containing T. Thus M is not the unique  $m_i$ -set containing T, so that T is not a forcing subset of M. This is true for all  $m_i$ -sets, so that  $fm_i(G) = a$ .

### REFERENCES

- P. Arul Paul Sudhahar, V. K. Kalai Vani, The Total Edge Monophonic Number of a Graph, *International Journal of Applied Mathematics*, ISSN 1819-4966 Volume 11, Number 2 (2016) pp. 159-166.
- [2] F. Buckley and F. Harary, *Distance in Graphs*, Addison-Wesley, Redwood City, CA, (1990).
- [3] G. Chartrand, F. Harary, and P. Zhang, On the Geodetic Number of a Graph, *Networks*. 39 (2002) 1-6.
- [4] J. John, S. Panchali, The forcing Monophonic Number of a Graph, *International Journal of Mathematical Archive*-3(3), 2012, ISSN 2229 5046, pp.935-938.
- [5] J. John, P. Arul Paul Sudhahar, On the edge monophonic number of a graph, Filomat 26: 6 (2012), 1081 1089.
- [6] A. P. Santhakumaran, P. Titus, K. Ganesamoorthy, On the Monophonic Number of a Graph, J. Appl. Math. & Informatics Vol. 32 (2014), No. 1 – 2, pp. 255 – 266.

#### P. Arul Paul Sudhahar

Assistant Professor, Department of Mathematics Rani Anna Govt. College (W) Tirunelveli –627008, Tamilnadu, India *E-mail: arulpaulsudhar@gmail.com* 

#### V. K. Kalai Vani

Research Scholar, Reg No. 12445 Rani Anna Govt. College (W) Tirunelveli –627008, Tamilnadu, India Manonmaniam Sundaranar University, Tirunelveli-627012, Tamilnadu, India *E-mail: kalaivanisaji@gmail.com* 



This document was created with the Win2PDF "print to PDF" printer available at <a href="http://www.win2pdf.com">http://www.win2pdf.com</a>

This version of Win2PDF 10 is for evaluation and non-commercial use only.

This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com/purchase/