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ABSTRACT

Numerical solutions of the system of non-linear differential equations which describe the peristaltic transport of
non-Newtonian fluid through porous medium in a symmetric two-dimension vertical channel with heat and mass
transfer are obtained. The fluid under consideration obeying the Herschel-Bulkley model and the wall properties
are taken in consideration. The equations of momentum, energy and concentration are solved numerically using
the finite difference method. The computations are carried out for wide range of the various physical parameters
associated with the Herschel-Bulkley fluid.The effects of various parameters on the velocity, temperature and
concentration are illustrated graphically.

1. INTRODUCTION

Peristaltic transport is a form of material transport induced by a progressive wave of area contraction or
expansion along the length of a distensible tube, mixing and transporting the fluid in the direction of the wave
propagation. This phenomenon is known as peristalsis. The mechanics of peristalsis has been examined by a
number of investigators. Sankad and Radhakrishnamacharya [1] investigate the influence of wall properties
on the peristaltic motion of aHerschel-Bulkley fluid in channel. Flow ofHerschel-Bulkley fluid in an inclined
flexible channel lined with porous material under peristalsis was done by Sreenadh et al., [2]. The effect of
heat transfer on peristaltic transport of a Newtonian fluid through a porous medium in an asymmetric vertical
channel was studied by Vasudev [3]. Peristaltic flow of a Newtonian fluid through a porous medium in a
vertical tube under the effect of magnetic field was studied by Vasudev et al., [4]. Eldabe et al., [5] discussed
the thermal-diffusion and diffusion-thermo effects on mixed free-forced convection and mass transfer boundary
layer flow for non-Newtonian fluid with temperature dependent viscosity. The flow separation through peristaltic
motion for Power-law fluid in uniform tubestudied and reported by Abd El-Naby and Abd El Kareem [6].
Hayat and Javed [7] considered the exact solutions to peristaltic transport of Power-law fluid in asymmetric
channel with compliant walls. Peristaltic flow of Williamson fluid in an asymmetric channel through porous
medium analyzed by Kavitha et al., [8]. Hayat et al., [9] discussed the heat transfer analysis for peristaltic
mechanism in variable viscosity fluid.Peristaltic pumping of Williamson fluid through a porous medium in a
horizontal channel with heat transfer was investigated by Casudeu et al., [10].The peristaltic pumping of a
non-Newtonian fluid analyzed by Medhavi [11].

The objective of the present paper is to investigate the effects ofthe wall properties on peristaltic transport
of Herschel-Bulkley fluid through porous medium in a symmetric two-dimension vertical channel with
heat and mass transfer. The equations of momentum, energy and concentration which govern the fluid field
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The traveling waves are represented by:

2
sin ( )d a x ct
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. (1)

Where d is the half width of the channel, a is the amplitude of the wave, � is the wavelength, t is the
time and c is the wave velocity.

The governing equations used in this problem can be written in the forms:

The continuity equation:
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The momentum equation:
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The temperature equation:

2 2
0( ) m T

p
s

D kT
c T k T Q

t C

� � ��
� � �� � � � � � �� ��� �

V . (4)

The concentration equation:
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are solved numerically by using finite difference scheme. The effects of the fluid parameters on the velocity,
temperature and concentration distributions have been studied with the help of graphs.

2. MATHEMATICAL ANALYSIS

Let us consider the flow of Herschel-Bulkley fluid through a porous medium in a symmetric twodimensional
vertical channel with flexible walls on which are imposed traveling sinusoidal waves of long wave length.
The coordinate system used is given in Fig. (1).

Figure 1: Geometry of Peristaltic Transport of Fluid in a Symmetric Porous Channel
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Where V
 
(u, v), T and � are the velocity vector, temperature and concentration, �, c

p
, p, �, g, �, �*, k, k

0
,

k
T
, T

m
, C

s
, Q

0
 and D

m
 are the density of the fluid, specific heat, pressure,viscosity, acceleration due to

gravity, coefficient of thermal expansion, coefficient of expansion with concentration, thermal conductivity,
permeability of a porous medium, thermal diffusion ratio, mean fluid temperature, concentration
susceptibility, constant heat addition/absorption and coefficient of mass diffusivity.

We choose a Herschel-Bulkley model [1] to describe the non-Newtonian fluid, which is in the usual
notation:

� = �
0
 + ���

.�n (� > �
0
). (6)

Where � and �. are the stress and strain rate, �
0
 is the constant yield stress above which the substance

starts to flow and n the flow behavior index of the fluid. The Herschel-Bulkley model reduces to the
Power-low when �

0
 = 0, to the Bingham plastic when n = 1, and to Newtonian’s law for viscous fluids when

both these conditions are satisfied.

The equation of motion of the flexible wall is given by:

L
 
(�) = P – P

0
. (7)

Where L is an operator that is used to represnt the motion of the stretched membrance with damping
forces such that:
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Where T
2
 the tension in the membrane is, M

1
 is the mass per unit area, C

1
 is the coefficient of the

damping force and P
0
 is the pressure on the outside of the wall due to tension in the muscles.

If we assume that P
0
 = 0, then equations (3-5) in two-dimensional form can be written as:
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Let us introduce the following dimensionless quantities as:

2
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After substituting from (14), Equations (9-12) can be written in dimensionless form after dropping the
star mark as:
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For long wavelength(i.e., � << 1) and low Reynolds number (i.e., Re � 0) the system of our equations
can be reduced to:
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From equation (20), it is clear that p is independent of y. Therefore equation (19) can be written as:
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By using equations (7) and (8) with the help of the wall equation (1) we can write:
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3. NUMERICAL TREATMENT

We can expand equations (21-23) with the boundary conditions (25) as follows:
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Where:
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To have the solution of equations (26-28) under the boundary conditions (29), a standard explicit finite
difference technique is used to determine the velocity, temperature and concentration. The effects of various
parameters entering the problem are discussed with the help of graphs. Actually, due to the big size of the
detailed solution we’ll only show the graphical representations of these solutions here.
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4. NUMERICAL RESULTS AND DISCUSSION

This study considers the effects of wall properties on peristaltic transport of Herschel-Bulkley fluid through
porous medium in a symmetric two-dimensional vertical channel with heat and mass transfer. The equations
of momentum, energy and concentration have been solved numerically by using explicit finite difference
technique. The velocity, temperature and concentration distributions are calculated for different values of
the tension parameter E

1
, the mass parameter E

2
, the damping parameter E

3
, Prandtl number P

r
, Schmidt

number S
c
 and Soret number S

r
, the local temperature Grashof number G

rT
 and the local mass Grashof

number G
rm

.

The effect of physical parameters on the velocity distribution is indicated through Figs. (2-8). In these
figures the velocity distribution u is plotted against the coordinate y. Figs. (2) and (3) illustrate the effects
of the tension parameter E

1
 and the mass parameter E

2
. It is found that the velocity at fixed values of y

increases with increasing both E
1
 and E

2
. The effects of the damping parameter E

3
 are to decrease the

velocity which is shown in Fig. (4). It’s found from Figs. (5-8) that the velocity u at fixed values of y
increases by increasing the Darcy number D

a
, the local temperature Grashof number G

rT
, the local mass

Figure 2: The Velocity Distribution u is Plotted Against y for Different Values of E
1
 when � = 0.5, D

a
 = 0.1, G

rT
 = 6,

G
rm

 = 10, D
f
 = 0.3,  = 2, P

r
 = 0.71, S

c
 = 0.15, S

r
 = 0.5, E

2
 = 1, E

3
 = 0.1, x = 0.2, t = 0.1

Figure 3: The Velocity Distribution u is Plotted Against y for Different Values of E
2
 when � = 0.5, D

a
 = 0.1, G

r T
 = 6,

G
rm

 = 10, D
f
 = 0.3,  = 2, P

r
 = 0.71, S

c
 = 0.15, S

r
 = 0.5, E

2
 = 1, E

3
 = 0.1, x = 0.2, t = 0.1
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Figure 4: The Velocity Distribution u is Plotted Against y for Different Values of E
3
 when � = 0.5, D

a
 = 0.1, G
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Figure 5: The Velocity Distribution u is Plotted Against y for Different Values of D
a
 when � = 0.5, E

1
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 = 6,
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 = 10, D
f
 = 0.3,  = 2, P

r
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c
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Figure 6: The Velocity Distribution u is Plotted Against y for Different Values of G
rT

 when � = 0.5, D
a
 = 0.1, E

1
 = 1,

G
rm

 = 10, D
f
 = 0.3,  = 2, P

r
 = 0.71, S

c
 = 0.15, S

r
 = 0.5, E

2
 = 1, E

3
 = 0.1, x = 0.2, t = 0.1
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Figure 7: The Velocity Distribution u is Plotted Against y for Different Values of G
rm

 when � = 0.5, D
a
 = 0.1, G

rT
 = 6,

E
1
 = 1, D

f
 = 0.3,  = 2, P
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 = 0.71 , S
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 = 0.5, E
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3
 = 0.1, x = 0.2, t = 0.1

Figure 8: The Velocity Distribution u is Plotted Against y for Different Values of � when G
rm

 = 10, D
a
 = 0.1,

G
rT

 = 6, E
1
 = 1, D

f
 = 0.3,  = 2, P

r
 = 0.71, S

c
 = 0.15, S

r
 = 0.5, E

2
 = 1, E

3
 = 0.1, x = 0.2, t = 0.1

Figure 9: The Temperature Distribution T is Plotted Against y for Different Values of P
r
 when � = 0.5, for D

a
 = 0.1,

G
rT

 = 6, G
rm

 = 10, D
f
 = 0.3,  = 2, S

c
 = 0.15, S

r
 = 0.5, E

1
 = 1, E

2
 = 1, E

3
 = 0.1, x = 0.2, t = 0.1
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Figure 10: The Temperature Distribution T is Plotted Against y for Different Values of D
f
 when � = 0.5, D

a
 = 0.1,

G
rT

 = 6, G
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 = 10,  = 2, P
r
 = 0.71, S

c
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Figure 11: The Temperature Distribution T is Plotted Against y for Different Values of  when � = 0.5, D
a
 = 0.1,

G
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 = 10, D
f
 = 0.3, P
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c
 = 0.15, S

r
 = 0.5, E
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 = 1, E

3
 = 0.1, x = 0.2, t = 0.1

Figure 12: The Concentration Distribution C * is Plotted Against y for Different Values of S
c
 when � = 0.5, D

a
 = 0.1,

G
rT

 = 6, G
rm

 = 10, D
f
 = 0.3, P

r
 = 0.71,  = 2, S

r
 = 0.5, E

1
 = 1, E

2
 = 1, E

3
 = 0.1, x = 0.2, t = 0.1
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Grashof number G
rm

, the amplitude ratio �. The effects of different parameters on temperature distribution
T are indicated graphically through Figs. (9-11). In Fig. (9) we observed that the temperature distribution T
increases with the increase of the Prandtl number P

r
. The effects of the Dufour number D

f
 and the

dimensionless heat source/sink parameter � on the temperature distribution T are clearly depicted in Figs. (10)
and (11). It is seen that T increases as S

c
 and S

r
 increase. Figs (12) and (13) are graphed to illustrate the

effects of the Schmidt number S
c
 and Soret number S

r
 on the concentration distribution. It is found that �

decreases with the increases of both S
c
 and S

r
.

5. CONCLUSION

A numerical study is made to obtain the solution of the system of deferential equations which describe the
peristaltic transport of Herschel-Bulkley fluid through porous medium in a symmetric twodimensional
vertical channel under the effect of wall properties with heat and mass transfer. The equations of momentum,
energy and concentration are solved by using an explicit finite difference scheme. In the case of long
wavelength and low Reynolds number, numerical calculations are presented for the velocity, temperature,
concentration distributions and their dependence on the material parameters of the fluid. The effect of
problem’s parameters such as the tension parameter E

1
, the mass parameter E

2
, the damping parameter E

3
,

Darcy number D
a
, Dufour number D

f
, Prandtl number P

r
, Schmidt number S

c
 and Soret number S

r
, the local

temperature Grashof number G
rT

 and the local mass Grashof number G
rm

 these distributions are discussed
by a set of graphs. Peristaltic transport plays an indispensable role in transporting many physiological
fluids in the body such as urine transport from kidney to bladder and vasomotion of small blood vessels.
Also many modern mechanical devices have been designed on the principle of peristaltic pumping for
transporting fluids without internal moving parts, for example, the blood pumping in the heartlung and the
peristaltic transport of noxious fluid in nuclear industry.
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