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Abstract: This paper is concerned with the problem of discretization of linear uncertain systems with external delay.
The parameter uncertainties are assumed to be norm bounded and appear in the state matrices and the time delay is
assumed to be constant. For obtaining discrete-time approximations of multivariable continuous uncertain system
with time delay, three different methods for is discussed based on the Euler’s and Tustin’s approximations. The
proposed methods are dependent on the size of the delay and the selected sampling period also the uncertainties
values. An illustrative example is simulated to demonstrate the efficiency of the developed methods.
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1. INTRODUCTION

Delays phenomena appear naturally in modelling many processes encountered in physics, mechanics, biology
etc. Moreover, even if the process itself contains no delay, the closed loop system can cause significant delays
from the sensors, actuators, computation time, etc. However the presence of the delay in a dynamic system is a
cause of instability and performance degradation. So in the last years, the study of systems with delays has
received special attention and many basic researches depending on the type of considered systems and application
domain were conducted in the literature [1, 2, 3].

Therefore, the analysis and control of either continuous or discrete time-delay systems have long been a
focused topic of theoretical as well as practical importance.However, the discretization of continuous systems
with time delay has not been extensively studied [4].

With the rapid progress of the large scale integration of semiconductor devices and the resulting availability
of cheap computers, there is a renewed interest in the approximation of continuous time multivariable systems in
discrete time [5]. Such of models have applications in computer simulation, as well as the identification of the
system through the data samples the input-output. Other applications of these methods are possible in the digital
adaptive control and computer control of complex processes.Consequently the problem of discrete time
approximation of multivariable continuous-time systems has been considered in [5] by using five different
methods. In [11] the problem of discretization for uncertain linear systems with time-delay, which contains a
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norm bounded uncertainty parameter, was studied, by using two different methods: the state transition method
and the method based on the trapezoidal rule for integration. In [9] an approximation of linear system with time-
delay using two different methods: the Euler’s and Tustin’s method of discretization has been proposed.

Regarding this concept, however, the exciting papers were restricted to discretize the linear regular system
with delay using the Euler and Tustin methods, or they have been restricted to discretizing uncertain systems
with constant delay by using other approximation techniques.

All of these approaches require a very small sampling period to be considered accurate. But, in control
applications where large sampling periods are inevitably introduced,this may not be the case due to physical and
technical limitations [6, 7]. Given that the uncertain system have attracted a lot of researches from mathematics
and control communities due to the fact that uncertain systems can better describe the behaviour of some physical
systems than other systems [8].

Motivated by the satisfying aforementioned results, we propose in this paper to extend those results
obtained in [6, 10, 12] to discretize an uncertain linear continuous system with constant delay in the state by
using the Euler and Tustin methods of approximation [9,10,11,12]. But, it is interesting to remember that the
problems of discretization of this class of systems are more complicated than those for regular
systems.Therefore, in this paper we consider three different methods for obtaining the discrete-time
approximation. These are:

i) The Forward Euler method 

ii) The Backward Euler method

iii) Tustin’s method

Our goal is to propose a new idea of approximation of uncertain linear systems with external delay, using
three different methods of discretization in order to conclude the superiority or the inferiority of each in terms of
stability. On the one hand, our aim is to conclude on the effect of choice of the sampling period on the stability
of the system and on the other hand to conclude on the effect of the uncertainty parameter about the digitization
of the system with delay. Some recent control methods are described in [20-25].

The rest of this paper is organized as follows. In section2, the three proposed methods of discretization are
represented for discrete-approximation of uncertain continuous system with external delay.

In section 3, numerical examples are given to illustrate the effectiveness and merits of our methods and,
furthermore, the effects of the variation of the uncertainty parameter on the efficiency of those.Finally, the last
section includes a comparison between the three proposed techniques of discretization as well as the study of the
effect of the variation of uncertainty parameters on the discretization of the continuous uncertain system with
delay, and at the end of the paper a conclusion is derived.

2. DISCRETIZATION OF UNCERTAIN CONTINUOUS SYSTEM WITH EXTERNAL
DELAY

In modern control systems, information is digitally processed which requires a sampling of the signals. One
speaks in this case of sampled or discrete systems [5, 10]. In practice it is difficult to characterize a physical
system, somodelling is a tool increasingly used to configure or analyze systems. The purpose of a model is the
quantitative and qualitative evaluation of the description of the behaviour and the proper functioning of a system.
In reality, the systems are often a coupling between the discrete and continuous. It is therefore necessary to
switch between continuous to discrete and vice versa [10, 12]. Therefore, we focus on the discretization class
continuous systems uncertain with constant delay on the state [13, 14].Thus, the state representation of an uncertain
linear system with external delay is given, in the continuous case, by:
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where nx( t ) R�  is the state, ( ) mu t R�  is the control input and the scalar 0� �  is the delay of the system. ( )t�  is

the initial condition of the system. 0, 1A A  and B are known real constant matrices of suitable dimensions. 0 ( )A t�

and 1( )A t� are the time-varying parameter uncertainties, and are assumed to be of the form:

 ( ) ( )i i iA t D F t E� � (2)

where 0 1 0, ,D D E  and 1E are constant matrices, and ( ) ixjF t R� is the time-varying system, which is assumed to

be of the form:

 � �1( ) ( ),..., ( )rF t diag F t F t� (3)

where

 ( ) ( ) , 1,...,T
i iF t xF t I i r� � (4)

A (t)0� and A (t)1� are said to be admissible if the both (2) and (4) are hold.

0 ( )A x t : Original Term state, 1 ( )A x t �� : Delayed Term state; with hT� � : a multiple delay the sampling

period is an integer h. C represents the system’s output matrix, T is the sampling period chosen suitably. x, u, and
y respectively are the state vector, the vector and the control vector output.

For system (1) we define the transfer matrix of the system in the Laplace domain by this report:

 ( )
( )

( )

Y p
H p

X p
� (5)

The size of this transfer matrix H(p) is linked to the size of outputs vectors y and control vectors u.

If y has a size l and u has a size m, H(p)will be sized l x m.

So the problem that may occur is the transition from an internal representation given by (1) to the external
representation given by (5) in the case where the system contains a time delay.

This passage will be done, in the case of the uncertain continuous system with time delay on the state we
are dealing with, by using the Laplace transform on the equation (1).

So we obtain this following equation:

 � � � �0 0 1 1( ) ( ) ( ) ( )

( ) ( ),
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(6)

This equation can also be written as follows:

 1

0 0 1 1( ) {( ( )) ( ( )) } ( )pX p pI A A p A A p e BU p� ��� �� � �� � ��� � (7)
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then:

 1

0 0 1 1( ) {( ( )) ( ( )) } ( )pY p C pI A A p A A p e BU p� ��� �� � �� � ��� � (8)

Hence we obtain the following transfer matrix:

 �� 1

0 0 1 1

( )
( ) =C ( ( )) ( ( ))

( )
pY p

H p pI A A p A A p e B
U p

�
�

�� �� � � � � � �� � (9)

The matrix ��
1

0 0 1 1C ( ( )) ( ( )) ppI A A p A A p e B�
�

�� �� � � � � �� � called transfer matrix, this is a transfer

function matrix, that is to say a rational function in p.

In the progress of the discrete-time models, we have toassume a suitable sampling interval, denoted by T.
A suitablecriterion for the choice of T isthat wT be less than 0.5 [5], where w is the magnitude of the eigen value
of A farthest from the origin of the s-plane [10].In order to switch between continuous to discrete domain the first
consisting of the discretization is not to lose or at least lose a minimum of information by sampling [5, 11]. For
this to be possible we have to verify the validity of Shanon theorem since in the case of non compliance with this
theorem the sampling process loses information, and frequencies above half the sampling frequency of the
signal are removed. The methods of discretization we treated can be classified as follows, and they are represented
in the following section.

2.1. The Forward Euler Method (Or Explicit Euler Method)

The forward Euler’s method is one such numerical method and is explicit [9]. Explicit methods calculate the
state of the system at a later time from the state of the system at the current time without the need to solve

algebraic equations.These approximations on the z-transform function matrix exploit this relationship: pTz e�

The idea is to approximate this relationship by a linear relationship between z and p. So the linear
approximation of the first order function exponential gives:

 1pTe pT� � (10)

that can also written as follow:

 1

1

1 1z z
p

T Tz

�

�

� �
� � (11)

this technique of discretization is the result of a derivative between two sampling period [7]:

 1 1( ) ( ) ( ) 1
( ( )) ( ( ))

dx t x t T x t z
L pX p z X z

dt T T
� �� � �

� � � (12)

To obtain the transfer function matrix we have replaced p given in (10) by: 
1

1

1 z
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�

�

�
 

So we obtain the following discrete matrix:
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The Forward Euler method is based on a truncated Taylor series expansion. So by applying an approximation

Taylor expression near 0 of the term 
1

1

1
( )

z

T ze
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�

�
�� to the first order approximation we can obtain:
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Hence the equation (13) is as follows:

 11

0 0 1 11

1 1
( ) ( ) {( ) ( )(1 )}

z z
H z C I A A A A B

Tz T
�

��

�

� �� �
� � �� � �� �� �

� �
(15)

and also can be described as follows:

 
� �

1

0 0 1 1( ) ( ) ( )(1 )
I I

H z C z A A A A hz h B
T T

�
� �� � � �� � �� � �� �� �

(16)

2.2. The Backward Euler Method (Implicit Euler Method)

This method is also called Backward rectangular rule, This method is an implicit one which contrary to explicit
methods finds the solution by solving an equation involving the current state of the system and the later one [12,
13, 18].

This method of discretization is the result from the approximation (13) of the derivative that can be calculated
between two sampling periods [9]:

 1 1( ) ( ) ( ) 1
( ( )) ( ( ))

dx t x t x t T z
L pX p z X z

dt T zT
� �� � �

� � � (17)

and also can be written as:

 11 1z z
p

zT T

�� �
� � (18)

Therefore using this method of discretization and also using the last equality given in (17) to the transfer
function matrix given in (10) we obtain the discrete transfer function as follows:

 1 1
11
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0 0 1 1

1
H(z)=C ( ) {( ) ( ) }

z

T
z
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T

�
� �
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and by using the Taylor expansion near zero term 
1

( )
z

Tze
�

�
� to a first order approximation we obtain the following

inequality:

 1
( ) 1

1
z
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z

e
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�
�

�
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the expression H(z) becomes:
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2.3. Bilinear Transformatin Method

This method is also called Tustin’s method or the trapezoidal rule in digital control community [5, 13]. So as
enounced in the introduction approximation a good discrete-time approximation for a continuous-time linear
system is obtained through the bilinear z-transformation if the sampling interval T is selected suitably so that
wT �  0.5s, where w is the magnitude of the pole of the transfer function of the continuous-time system farthest
from the origin of the s-plane [5, 10]. This transformation is given by:

 1
2

1
2

T
p

z
T

p

�
�

�
(22)

or

 1 2

2

pT
z

pT
� �
�

� (23)

where pTz e�  in ordinary transformation in z.

Also the inequality (23) can be written as follows:
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So after replacing p by its equivalent given in (24) in the transfer matrix we obtain:
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by applying an approximation Taylor expansion near0of the term 
1

1

1
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obtain this equality:
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Hence the transfer function matrix obtained by using the Tustin method can be represented in the discrete
case as follows:

11

0 0 1 11 1 1

2 2 2
( ) {( ) ( ) 2 )}

( 1)(1 ) (1 ) 1
(1I I h h z

H z C A A A A B
T zT z z z

��

� � �

� �
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� � (27)

3. NUMERICAL EXAMPLES

In this section, three different examples of application of the proposed approach are presented. These examples
show the validity of the discretizationmethod applied to the classes of systems with uncertainties, and T represents
the sampling period chosen equal to 0.1s. In a first example, we consider the system with uncertainty parameter
and constant delay on the state (1) described by:
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� � � � �
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In this case we dealt an example of linear uncertain continuous system with constant delay� , which appears
in the state and equal to 0.5s

First with applying the first discretization method previously: the explicit Euler method proposed for this
class of system we got the transfer function matrix enunciated in (13):

The simulation results of the step response of the system in the continuous case and in the discrete case are
shown in Figure 1, knowing that the sampling period chosen is equal to 0.1 s.

Figure 1: Discretization of our system using the explicit Euler method
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Then,with applying the implicit Euler implicit method of discretization to the considered system in the
state representation (28), and keeping the same sampling period T = 0.1s, we obtain the transfer function matrix

in the discrete case defined in (21) and knowing that ( ) 1;F t � for all of t.

Simulation result of the response of our system to a step in the continuous case and in the discrete case
using the second method of Euler is shown in the Figure bellow.

Figure 2: Discretization of the system by the implicit Euler method

Finally applying the bilinear transformation method to the considered system in equation (28), and keeping
the same sampling period, we have obtained the transfer function matrix in the discrete obtained by using theTustin
method obtained in (27).The simulation of the step response of our system in the continuous case and in the
discrete case gave us the following results which are represented in the Figure 3.

Figure 3: Discretization of our system by the Tustin method
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In the simulation, during the discretization of the uncertain system with delay, using the three different
methods it was found that a small variation of the parameter uncertainty leads to loss of the discretization.

Indeed, with varying the parameter uncertainty, the discrete system does not suitably follow the evolution
of the system in the continuous case.

Therefore, using those methods of approximation, it was found that a variation of 2.5% of the uncertainty
parameter leads to the obtaining of a discrete system with different evolution than that of the system in the
continuous case. With keeping the same sample period chosen previously (T=0.1s), the simulation results in the
step responses of the continuous system and approximate discrete system in the case of varying the parameter
uncertainty with 2,5% and using the proposed methods of discretization are depicted in the figure 4.

Figure 4: (a) Discretization of our system using the explicit Euler method with case 1 represents the discrete
system without varying the uncertainty parameter and case 2 represents the discrete system in

the case of varying the uncertainty parameter

Figure 4: (b) Discretization of our system using the implicit Euler method with case 1 represents the
discrete system without varying the uncertainty parameter and case 2 represents the

discrete system in the case of varying the uncertainty parameter
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Therefore it can be seen that by keeping the same sampling period, the variation of the uncertainty parameter
of 2.5% can affect the discretization of the system.

For the same methods of discretization, to followproperly the continuous system in the case of varying the
parameter uncertainty with 2.5% it is necessary to grow properly the sampling period for achieving the better
discretization.So with taking a sample period T equal to 0.4s we have obtained the following results that show
the good evolution of the discrete system compared to continuous time in the case of varying the parameter
uncertainty, by using the different methods as shown in the figures bellow.

Figure 4: (c) Discretization of our system using the Tustin method with case 1 represents the discrete system
without varying the uncertainty parameter and case 2 represents the discrete system in the

case of varying the uncertainty parameter

Figure 5: (a) Discretization of our system using the explicit Euler method with case 1 represents the discrete
system without varying the uncertainty parameter and case 2 represents the discrete system in

the case of varying the parameter uncertainty
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So we can conclude the following three main issues

• In the case that we keep the same sampling period and for better discretization we have to not exceed
a rate of change of the uncertainty parameter equal to 0.048 i.e. the matrix admissible used not to
destroy the discretization of the continuous signal is as follows for different methods of discretization.

Figure 5: (b) Discretization of our system using the implicit Euler method with case 1 represents the
discrete system without varying the uncertainty parameter and case 2 represents the

discrete system in the case of varying the parameter uncertainty

Figure 5: (c) Discretization of our system using the Tustin method with case 1 represents the discrete
system without varying the uncertainty parameter and case 2 represents the discrete system in

the case of varying the parameter uncertainty
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So if we vary the uncertainty parameter more than 2.5% we risk losing the stability of the discrete system
for the different methods used

• With varying the parameter of uncertainty, it can be seen in those figures, that the representation of
discrete time system follows the evolution of the continuous system after a delay which corresponds
to the value of the state delay which is equal to 0.5 s

• In the case of varying the uncertainty parameter of rate of 2.5%,to achieve the same progress achieved
in discrete time as achieved in continuous time, we have to grow properly the sampling time, otherwise
we risk having a bad discretization and sometimes an unstable discrete system

4. COMPARISON BETWEEN THE USED METHODS OF APPROXIMATION

The simulation results of this class of systems has shown the validity of the three methods in terms of stability,
in fact we see that the three methods of discretization did not destroy the stability of the original system, so the
transition from the analogue domain to the digital domain using one of these methods has not led to the loss of
the information, except that each of these methods has shown its superiority or inferiority to the other.The
explicit Euler method (Forward difference method) is somewhat less accurate than the Euler’s implicit method
of discretization (Backward difference method) but it is easier to use, so, the drawback is due to limitations on
the size of the sampling period to ensure numerical stability. Furthermore, it is well-known in numerical analysis
that the forward Euler approximation is more sensitive for the choice of the sampling period in terms of numerical
stability than the backward Euler approximation [10, 16, 17, 18]. Both methods are much easier at programming
and in calculation comparing to the Tustin method. We also see that the bilinear approximation method is the
most accurate of the three methods because it gave a better approximation.

Figure 6: Comparison between the different methods of approximations
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5. CONCLUSION

In this paper three methods of discretization based on Euler’s and Tustin approximations are proposed for
classes of continuous and uncertain linear systems with constant delay on the state

Simulation results showed that the bilinear approximation method is the better although it is difficult to
calculate, the implicit discretization method’s may be used to replace explicit discretization method’s in the case
where the stability of these requirements impose rigorous conditions to the size of the sampling step. It is also
clear that the value of 0.5s delay appeared in the simulation using the three methods of discretization without
damaging the stability of the initially stable system [19].

The effect of a delay and the parameter of uncertainty on the dynamics of a system depend not only on its
value but also the characteristics of the system. Indeed, the presence of delay and a parameter of uncertainty can
affect the stability of the system, since its presence can cause complex behaviours namely oscillations, instability
and degradation in performance. For best approximation of a continuous uncertain system with delay, it is
allowed to choice one of the proposed methods but it isn’t allowed to vary the value of the parameter uncertainty
arbitrarily because we risk losing the evolution of the continuous time system.

Therefore in this paper we have proposed a new method of discretization of uncertain systems with time-
delay based on two techniques of approximation the Euler and Tustin methods, on the other hand in the paper
[12] stated before the discretization of this class of system was carried out by other methods of discretization:
State transition method and the method based on trapezoidal rule of integration.So with comparing our work to
the work presented in paper [12] we conclude the superiority of our methods at the level of calcul and precision.
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