
NON-NESTED MONTE CARLO DUAL BOUNDS FOR

MULTI-EXERCISABLE OPTIONS

XIANG CHENG AND ZHUO JIN*

Abstract. We study the optimal marginal value of discrete-time optimal
multiple stopping problems and find that it can be formulated as a sin-

gle optimal stopping optimization as well. Based on this result propose a
marginal-value-based lower bound method to achieve a small bound on the
iterative error. We further introduce a non-nested upper bound method. The

convergence of both methods is analysed. The implementation details and
enhancement techniques are discussed as well. Overall, our methods make a
good trade-off between the time-efficiency and the tightness in dual bounds.

1. Introduction

The main difficulty in pricing derivatives is to price high-dimensional early-
exercisable option in a quick and accurate way. The classic lattice-based methods
usually suffer from the curse of conditionality and inevitable consume an affordable
amount of time, when problems become large. Monte Carlo methods have unique
power at solving problems with features of path-dependence and high dimension,
but it is not clear how to implement Monte Carlo simulation, as going backwards
along with the simulated path is meaningless for locating the exercise boundary.
Currently, there are two main research streams to address backward dependence,
i.e. lower bound methods and upper bound methods.

Lower bound, also known as ‘buyer’s price’, relies on finding a good approxi-
mation of the optimal exercise strategy. The classic Least-Squares Monte Carlo
pricing algorithm is introduced by Carrière [9], who adopted non-parametric re-
gression to obtain a sequence of approximate continuation values and then exercise
accordingly. Similar works can be found in [17] and [22]. Clément [11] proved the
convergence of these lower bounds, and Stentoft [21] showed the order of conver-
gence. Due to the complexity of the contract and the curse of dimensionality,
the above method may not perform well in complicated cases. Broadie and Cao
[8] suggested using double regression to discard samples far away from the exer-
cise boundary in order to estimate a more accurate exercise boundary. Addition-
ally, Kolodko and Schoenmakers [16] iterated the sub-optimal exercise strategy
by sub-simulation. Although this iteration yields better lower bounds, the time
consumption for high-dimensional cases is generally unappealing in practice.
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2 XIANG CHENG AND ZHUO JIN

Upper bound, also known as ‘seller’s price’, is based on constructing a good
martingale hedging strategy. It is mathematically constructed on duality theory,
and the fundamental work can be found in [12]. Rogers [19] and Haugh and Kogan
[14] advised finding such a martingale by conducting an optimization over Monte
Carlo simulations. The primal-dual method introduced by Andersen and Broadie
[2] focuses on hedging the lower bound. They separated the martingale part from
a lower bound process by introducing sub-simulations to compute conditional ex-
pectations. The quality of the upper bound is highly dependent on the goodness of
the exercise strategy. Although this method has shown its great power at getting
a tight upper bound and judging the goodness of the exercise strategy, the time
consumption of this method prevents itself from being routinely used, just like the
policy iteration lower bound.

Monte Carlo methods have been used to price multiple exercise options as well.
Bender and Schoenmakers [5] proposed an iterative Monte Carlo method to price
multiple exercise options and analyzed its convergence. Bender [4] derived the
continuous-time multiple stopping dual representation, and Schoenmakers [20]
studied the discrete-time case. Bender [3] and Aleksandrov and Hambly [1] stud-
ied multiple pricing problem with volume constraints. Bender, Schoenmakers,
and Zhang [6] obtained a more general dual representation by considering both
refraction periods and volume constraints.

The aim of this paper is to put forward a tighter lower bound method to boost
the accuracy and a non-nested upper bound method to enhance the time-efficiency.
We propose a marginal-based lower bound method, where the marginal continua-
tion value serves as an agent to link the single stopping problem of computing the
marginal value and the multiple stopping problem of computing the option value.
In detail, we directly approximate the marginal continuation values by an iterative
extension of classic Least-Squares Monte Carlo algorithm, and then use them to
construct the exercise strategy for multiple exercise options. Compared to classic
Least-Squares lower bounds, our method improves the tightness of lower bounds
from two aspects.

The rest of this paper is arranged as follows. In section 2, we present the mathe-
matical formulation of the optimal price, where it can be formulated from a nested
optimal stopping problem. In section 3, we first review the classic Least-Squares
lower bound method, and then prove the marginal value of multiple exercise op-
tions is still a single stopping time problem, and finally propose the new marginal-
based lower bound method to build improved exercise strategies. In section 4, we
review dual representation of the marginal value and its corresponding extension
of primal-dual upper bound method in multiple exercise setting, and then put
forward a new regression-based non-nested upper bound method to avoid nested
sub-simulations. The convergence of both marginal-based lower bounds and non-
nested upper bounds are analyzed in section 5. After conducting theoretical anal-
ysis, we proceed with the numerical examination of proposed methods in section
6 and then conclude in section 7.
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2. Mathematical Setup

We work with a filtered probability space (Ω,F , (Ftj )0≤j≤L
,P). The driving

(Ftj )-Markov chain Wtj is in L2(Ω). The Borel function z(tj , ·), used to define

the numeraire-adjusted payoff Ztj = z(tj ,Wtj ) at time tj , is in L2(Ω) and Ftj -
measurable. Measure P is the risk-neutral measure corresponding to the numeraire.
Multiple exercise options allow contract holders to exercise positive integer num-
ber, n ≤ L, of rights, which occur sequentially at a time sequence, {tj}1≤j≤L.

We assume that all rights are going to be exercised, as abandoning an exercise
right is equivalent to exercising the right out of the money for zero payment.
Denote a set of stopping times {τn,n, τn−,n1, · · · , τ1,n} with t1 ≤ τn,n < τn−1,n <
· · · < τ1,n ≤ tL as an exercise strategy πn, where τ i is the exercising time of the
i-th remaining right. Then the non-arbitrage price is given by:

V n,∗
0 ≜ sup

πn
E

[
n∑

i=1

Zτ i,n F0

]
. (2.1)

Denote the exercise strategy for n remaining rights at time tj by πn
j , where tj ≤

τn,nj < τn−1,n
j < · · · < τ1,nj ≤ tL. Then define the optimal value and the optimal

continuation value as:

V n,∗
tj ≜ sup

πn
j

E

[
n∑

i=1

Zτ i Ftj

]
, j ≤ L− n+ 1; (2.2)

Cn,∗
tj ≜ E

[
V n,∗
tj+1

Ftj

]
, j ≤ L− n. (2.3)

Without loss of generality, we further assume that V 0,∗
tj = C0,∗

tj = 0 for 1 ≤ j ≤ L,

V n,∗
tj = V n−1,∗

tj for j > L − n + 1, and Cn,∗
tj = Cn−1,∗

tj for j > L − n. Define the

optimal marginal value ∆V n,∗
tj and the marginal continuation value ∆Cn,∗

tj as:

∆V n,∗
tj ≜ V n,∗

tj − V n−1,∗
tj ; (2.4)

∆Cn,∗
tj ≜ Cn,∗

tj − Cn−1,∗
tj . (2.5)

Then the optimal exercise strategy τ i,n,∗ in (2.1) is given by:

τ i,n,∗j ≜ min
{
tL−i+1 ≥ tj > τ i+1,n,∗

j ∆Ci,∗
tj ≤ Ztk

}
, i = n, · · · , 1,

where n indicates the total number of rights. Besides, we also know the exercise
strategy for i-th right with different number of remaining rights holds the following
relation:

τ i,n,∗j =
{
τ i,i,∗k tk−1 = τ i+1,n,∗

j

}
.

Remark 2.1. Most multiple exercise options allow contract holders to trade goods
for an amount no more than defined limit specified in the contract. In the above
formulation, we assume that no more than one right can be exercised at each
exercise time. This assumption seems impractical as it appears, however, it comes
from the fact that a rational contract holder will always exercise maximal number
of rights at an exercise time, if an exercise decision is made. According to [18], we

know ∆V n,∗
tj ≤ ∆V n−1,∗

tj , which implies that the exercise right is of less marginally
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valuable with more rights in hands. In other words, we should always exercise as
more rights as possible to make them equally valuable as the marginal value with
minimal possible number of rights remaining. Thus, in the above formulation, we
pack the maximal number of rights that can be exercised on a single exercise time
into one exercise right.

3. Lower Bounds

Due to the complexity of nested expectation and iterative optimal stopping,
there hardly exits a method to compute the optimal price of multiple exercise
option directly. In the section, we review the classic extension of the Least-
Squares lower bound method, and then propose our new marginal-based lower
bound method.

3.1. Review of classic least-squares lower bounds. This method is an exten-
sion of the classic Least-Squares lower bound algorithm, and is based on following
theorem that multiple stopping optimization problem is an nested single stopping
time optimization problem.

Theorem 3.1. Suppose Ztj is numeriare-adjusted payoff, and Cn−1,∗
tj is its con-

tinuation value with n − 1 remaining rights defined as (2.3). Then the optimal
value with n remaining rights, V n,∗

tj , is given by optimal stopping theory as:

V n,∗
tj = sup

tj≤τ≤L−n+1
E
[
Zτ + Cn−1,∗

τ Ftj

]
.

This theorem immediately yields an algorithm to construct sub-optimal exercise
strategies that we can use to compute lower bounds. Precisely, suppose we have
an approximation of the continuation value with n − 1 rights as Ĉn−1

tj , then the
approximation of the continuation value with n rights can be obtained from the
classic Least-Squares Monte Carlo algorithm with Ĉn−1

tj + Ztj being inputted as
the exercise payoff. The optimal price is given by exercising the option if and only
if the marginal continuation value ∆Cn,∗

tj is greater than the exercise payoff Ztj ,

thus we can easily replace ∆Cn,∗
tj with Ĉn

tj − Ĉn−1
tj to obtain a sub-optimal exercise

strategy.

3.2. Marginal-based lower bounds. Our lower bound method can be viewed
as another extension of the Least-Squares Monte Carlo algorithm, where it is
iteratively applied to approximate the marginal continuation value ∆Cn,∗

tj rather

than the continuation value Cn,∗
tj . First, we show that the optimal marginal value

is given by a single stopping time optimization problem as well.

Lemma 3.2. Supposing ∆Cn−1,∗
tj is define as (2.5), it holds:

∆Cn,∗
tj ≤ ∆Cn−1,∗

tj .

According to [18], we have ∆V n,∗
tj ≤ ∆V n−1,∗

tj , which, by definition, implies
lemma 3.2. Now, we give the main theorem.
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NON-NESTED MONTE CARLO DUAL BOUNDS 5

Theorem 3.3. Suppose Ztj is numeriare-adjusted payoff, and ∆Cn−1,∗
tj is the

marginal continuation value with n − 1 remaining rights defined as (2.5). Then
the optimal marginal value with n remaining rights, ∆V n,∗

tj , is given by optimal
stopping theory as:

∆V n,∗
tj = sup

tj≤τ≤L−n+1
E
[
min

{
Zτ ,∆Cn−1,∗

τ

}
Ftj

]
. (3.1)

The equality is achieved, when stopping time is

τn,∗j = τn,n,∗j = min {t >= tjZt ≥ ∆Cn,∗
τ } .

Proof. According to dynamic programming principle, it is enough to prove the
following equivalent recursive equation holds:

∆V n,∗
tj = max

{
min

{
Ztj ,∆Cn−1,∗

tj

}
,∆Cn,∗

tj

}
. (3.2)

Now we focus on how to prove (3.2). As we need to deal with the recursive equa-

tions of V n,∗
tj and V n−1,∗

tj at same time, and their exercise strategies are different,
we simplify the analysis into following two cases according to the exercise decision
for (n− 1)-th right.

First, we consider the case where ∆Cn−1,∗
tj ≤ Ztj . By lemma 3.2, we have

∆Cn,∗
tj ≤ Ztj . By definition of marginal value, ∆V n,∗

tj can be written as:

∆V n,∗
tj =max

{
min

{
Ztj ,∆Cn−1,∗

tj

}
,∆Cn,∗

tj

}
.

Next, we look at the case where ∆Cn−1,∗
tj > Ztj . Then ∆V n,∗

tj can be expressed
as:

∆V n,∗
tj =max

{
min

{
Ztj ,∆Cn−1,∗

tj

}
,∆Cn,∗

tj

}
.

Combining above two cases, the proof is completed. □

Remark 3.4. If τn−1,n−1,∗
j is accessible, we have the following special case of the-

orem 3.3:

∆V n,∗
tj = sup

tj≤τ≤τn−1,n−1,∗
j

E
[
Zτ1{τ<τn−1,n−1,∗

j } +∆Cn−1,∗
τ 1{τ=τn−1,n−1,∗

j }Ftj

]
,

where the maximal holds for τn,∗j = τn,n,∗j . This result comes from τn,n,∗j ≤
τn−1,n−1,∗
j , which is implied by ∆Cn,∗

tj ≤ ∆Cn−1,∗
tj .

Based on theorem 3.3, we can describe our lower bound algorithm as follow-
ing two steps. In the first step, marginal continuation value is approximated by
iteratively implementing Least-Squares Monte Carlo method for standard single
stopping problem with updating exercise values every time. Suppose the approxi-
mation of marginal continuation value with n− 1 rights is given as ∆Cn−1

tj , then
the approximation of that with n rights can be obtained from Least-Squares Monte

Carlo algorithm with min
{
∆Cn−1

tj , Ztj

}
being inputted as new exercise payoff.
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In detail, denote basis functions for the continuation value with n remaining
rights by ynj,k, k ≥ 1, which are Ftj -measurable and satisfy following conditions:

∀m > 0, ∀n > 0, ∀0 < j < L,
m∑

k=1

bky
n
j,k = 0 a.s. =⇒ bk = 0, k = 1, ...,m; (3.3)

{
ynj,k

}
k≥1

is total in L2
(
σ
(
Wtj

))
for n > 0, 0 < j < L. (3.4)

We denote the orthogonal projection into the space generated by these basis func-

tions by P
n,[m]
j (·). Then the stopping time with 1 remaining right can be expressed

by: 

τ
1,[m]
L = tL,

τ
1,[m]
j = 1{

Ztj
≥∆C

1,[m]
tj

}tj + 1{
Ztj

<∆C
1,[m]
tj

}τ1,[m]
j+1 , 0 ≤ j ≤ L− 1,

where ∆C
1,[m]
tj is the corresponding approximation of the continuation value as:

∆C
1,[m]
tj = P

[m],1
j

(
Z
τ
1,[m]
j+1

)
in L2.

Then sub-optimal stopping rules for n remaining rights are constructed as follows:

τ
n,[m]
j =




tL−n+1, j = L− n− 1,

1{
min

{
Ztj

,∆C
n−1,[m]
tj

}
≥∆C

n,[m]
tj

}tj

+1{
min

{
Ztj

,∆C
n−1,[m]
tj

}
<∆C

n,[m]
tj

}τn,mj+1 ,
, 0 < j < L− n− 1,

(3.5)

where ∆C
n,[m]
tj is the corresponding approximation continuation value as:

∆C
n,[m]
tj = P

n,[m]
j

(
min

{
Z
τ
n,[m]
j+1

,∆C
n−1,[m]

τ
n,[m]
j+1

})
.

In the next step, the lower bound of multiple exercise option is evaluated using
the exercise strategy generated by using approximate marginal continuation values
obtained from step one. The optimal value is given by exercising the option if and
only if the marginal continuation value ∆Cn,∗

tj is greater than exercise payoff Ztj .

We can easily replace ∆Cn,∗
tj with ∆Cn

tj to yield a lower bound. Precisely, the

approximate lower exercise strategy πn,[m] can be expressed as:

τ
i,n,[m]
j ≜ min

{
tL−i+1 ≥ tj > τ i+1,n,∗

j ∆C
i,[m]
tj ≤ Ztk

}
, i = n, · · · , 1, (3.6)

with assuming τ
n+1,n,[m]
j = tj−1, and its corresponding lower bound L

n,[m]
0 is

L
n,[m]
tj ≜ E

[
n∑

i=1

Z
τ
i,n,[m]
j

Ftj

]
. (3.7)

Remark 3.5. Compared to the classic Least-Squares lower bound, our method im-
proves the tightness of lower bound in two aspects. Primarily, when iteratively
running Least-Squares strategy construction algorithm to the marginal value, the
iterative exercise payoff is the minimal of the exercise payoff and the previous iter-
ative marginal continuation value, which is bounded by the exercise payoff, instead
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NON-NESTED MONTE CARLO DUAL BOUNDS 7

of the exercise payoff plus the previous iterative continuation, which is unbounded.
The bounded error will accumulate much slower in the iterative process than the
unbounded error. Moreover, as our method approximates marginal continuation
values directly, which can be used directly to yield a sub-optimal exercise strat-
egy, the error will be introduced only one time, while the classic Least-Squares
method will introduce the error from both two continuation values and the error
from computing their difference.

4. Upper Bounds

After discussing how to construct exercise strategies for buyers, we now focus on
how to help sellers build hedging strategy. In this section, we will first review the
dual representation of the marginal value, and then put forward our non-nested
upper bound method.

4.1. Dual representation for single stopping problem. Here, we briefly
review the dual representation of single stopping problem, which we discussed
in chapter 3. Assuming that Mt is a martingale with M0 = 0, we have:

V ∗
tj = sup

tj≤τ≤tn

E
[
ZτFtj

]

= sup
tj≤τ≤tn

E
[
Zτ −

(
Mτ −Mtj

)
Ftj

]

≤ E
[
max
j≤i≤L

(
Zti −

(
Mti −Mtj

))]
.

(4.1)

The equality in (4.1) is achieved, if Mt is the martingale part of V ∗
tj ’s Doob de-

composition. That is:
V ∗
tj = V ∗

t0 +M∗
tj −A∗

tj ,

where M∗
tj is a martingale with M∗

t0 = 0, and A∗
tj is a previsible non-decreasing

process with with A∗
t0 = 0. Precisely, they are of following forms:

M∗
tj+1

−M∗
tj ≜ V ∗

tj+1
− E

[
V ∗
tj+1

Ftj

]
, A∗

tj+1
−A∗

tj ≜ V ∗
tj − E

[
V ∗
tj+1

Ftj

]
.

We also have:

V ∗
tj = max

j≤i≤L

(
Zti −

(
M∗

ti −M∗
tj

))
a.s.. (4.2)

4.2. Dual representation and sub-simulation upper bounds. In this part,
we will review the marginal dual representation for multiple stopping problems,
and show the sub-simulation upper bound method for multiple exercise options,
which is an extension of single stopping primal-dual upper bound method. The
following theorem, put forward by Meinshausen and Hambly [18], gives the duality
expression of the marginal value ∆V n,∗

tj .

Theorem 4.1. Suppose πn is an exercise strategy with n remaining rights, and{
Mtj

}
is a martingale starting from 0. Then the optimal marginal value ∆V n,∗

tj

is obtained from the following minimization:

∆V n,∗
tj = inf

πn−1
inf
M

E

[
max

tk≥tj and tk ̸=τ i,n−1, i=1,··· ,n−1
(Ztk −Mtk)Ftj

]
.
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Note the equality is achieved when πn is the optimal exercise strategy and
{
Mtj

}
is characterized by martingale increments of optimal marginal value processes:

M∗
tj+1

−M∗
tj = ∆V l+1,∗

tj+1
−∆Cl+1,∗

tj , if τ l+1,n,∗ < tj+1 <= τ l,n,∗,

where we assume τn+1,n,∗ = 0.

For the proof of theorem 4.1, please refer to [18]. From theorem 4.1, we know,
for any given exercise strategy πn and for any given martingale process M , we can

compute upper bound ∆V n,πn,M
tj+1

as:

∆Un,πn,M
tj = E

[
max

tk≥tj and tk ̸=τ i,n−1, i=1,··· ,n−1
(Ztk −Mtk)Ftj

]
. (4.3)

Next, we look at how to compute upper bounds through sub-simulations. Without
loss of generality, suppose exercise strategies for different numbers of rights have
been obtained. Then the difficulty will be about the computation of inputted mar-
tingales. Here, we refer to the idea in the primal-dual upper bound method, where
martingale components of lower bound processes separated by sub-simulation are
used as replacements of optimal martingale processes. Denote the sub-optimal
exercised strategy we have obtained at tj+1 by πn

j+1. Starting from state Wtj , we
simulate N independent paths denoted as:

(
W

(k)
tj , · · · ,W (k)

tj

)
k=1,··· ,N

.

The Monte Carlo approximation of the continuation value is computed as:

C̃n
tj ≜ 1

N

N∑
k=1

(
n∑

i=1

Zτ i,n
j+1

)
.

The Monte Carlo approximation of the option value is expressed:

Ṽ n
tj =

(
Zj + C̃n−1

tj

)
1{τn,n

j =tj} + C̃n
tj1{τn,n

j !=tj}.

The Monte Carlo approximation of the martingale process is expressed as:

∆Ṽ m
tj+1

−∆C̃m
tj = Ṽ n

tj+1
− Ṽ n−1

tj+1
− C̃n

tj − C̃n−1
tj .

Then the sub-simulation upper bound is just an Monte Carlo estimator of (4.3).

4.3. Non-nested upper bounds. Upper bound method is initially used to judge
the goodness of lower bounds, but nowadays industry is seeking to apply upper
bound methods in locating the range of the optimal price and constructing hedging
portfolios, which requires upper bound methods to be of both high time-efficiency
and good accuracy. In this part, we propose our non-nested upper bounds to meet
such requirements. The intuitive idea is to approximate the martingale component
of the lower bound by orthogonal projection.

Let ∆Cn−1
tj , j ≤ L − n + 1 be the approximate marginal continuation values

with n − 1 rights, and τnj , j ≤ L − n + 1 be stopping times corresponding to a
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NON-NESTED MONTE CARLO DUAL BOUNDS 9

given exercise strategy with n rights. Then define a martingale process Mn,L
t by

following increments:

Mn,L
tj+1

−Mn,L
tj = E

[
min

{
Zτn

j+1
,∆Cn−1

τn
j+1

}
Ftj+1

]
− E

[
min

{
Zτn

j+1
,∆Cn−1

τn
j+1

}
Ftj

]
.

(4.4)
This is the martingale component of the lower bound process with the payoff
format min

{
Z,∆Cn−1

}
and the exercise strategy τnj+1, which can be viewed as

an approximation to ∆V n,∗
tj+1

−∆Cn,∗
tj .

Next, we formulate the orthogonal project of Mn,L
tj+1

− Mn,L
tj . For any tj , j =

0, ..., L−n+1, there are m basis functions xn
j+1,k, k = 1, · · · ,m, Ftj+1 -measurable,

satisfying following conditions:

∀m ≥ 1,
m∑

k=1

akx
n
j+1,k = 0 a.s. =⇒ ak = 0, k = 1, · · · ,m; (4.5)

E
[
xn
j+1,kFtj

]
= 0, k = 1, · · · ,m. (4.6)

Denote the orthogonal projection of the martingale increment into the space gener-

ated by these basis functions by Q
n,[m]
j (Mn,L

tj+1
−Mn,L

tj ). Denote the m-dimensional

row vector
[
xn
j+1,1 xn

j+1,2 · · · xn
j+1,m

]
by X

n,[m]
j+1 . Define the m-dimensional

column vector α
n,[m]
j =

[
αn
j,1 αn

j,2 · · · αn
j,m

]T
to be the unique solution of:

Q
n,[m]
j

(
Mn,L

tj+1
−Mn,L

tj

)
= X

n,[m]
j+1 a

n,[m]
j .

The coefficients αm
j minimize the following objective function:

min
a
[m]
j

E
[(

Mn,L
tj+1

−Mn,L
tj −X

n,[m]
j+1 a

[m]
j

)2
]
. (4.7)

The condition (4.5) guarantees the absence of multicollinearity, and make sure that
the coefficients are unique. Precisely, the solutions of the minimization problem
are obtained by taking the first order derivatives of objective function and given
by:

α
n,[m]
j = E

[
X

n,[m]
j+1

T
X

n,[m]
j+1

]−1

E
[
X

n,[m]
j+1

T (
Mn,L

tj+1
−Mn,L

tj

)]
,

and its corresponding martingale increment is denoted by:

H
n,[m]
tj+1

(
Mn,L) = X

n,[m]
j+1 a

n,[m]
j = Q

n,[m]
j

(
Mn,L

tj+1
−Mn,L

tj

)
. (4.8)

Repeating this procedure for every j, we can approximate the martingale compo-
nent of the optimal marginal value process ∆V n,∗

tj . We further repeat this process
for every n as well, then we can obtain all martingale increments that are used
along with the exercise strategy πn to generate a hedge for upper bound compu-
tation:

H
[m],πn

tj+1

(
ML) = ∆H

l+1,[m]
tj+1

, if τ l+1,n < tj+1 <= τ l,n. (4.9)
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Before considering how to implement our method by Monte Carlo, there still exists

an issue that Mn,L
tj+1

−Mn,L
tj is a conditional expectation which is not available di-

rectly. To deal with this problem, we transform our minimization problem without
changing the solution.

Lemma 4.2. The minimization problem (4.7) has the same solution as:

min
a
n,[m]
j

E
[(

min
{
Zτn

j+1
,∆Cn−1

τn
j+1

}
−∆Cn

tj −X
n,[m]
j+1 a

n,[m]
j

)2
]
.

Proof. Denote following terms:

etj+1 ≜ min
{
Zτn

j+1
,∆Cn−1

τn
j+1

}
− E

[
min

{
Zτn

j+1
,∆Cn−1

τn
j+1

}
Ftj+1

]
,

Dtj ≜ ∆V n
tj − E

[
min

{
Zτn

j+1
,∆Cn−1

τn
j+1

}
Ftj

]
,

Rtj+1 ≜ min
{
Zτn

j+1
,∆Cn−1

τn
j+1

}
−∆V n

tj ,

where etj+1 and Rtj+1 are Ftj+1-measurable, and Dtj is Ftj -measurable. Then we
have:

E
[(

Mn,L
tj+1

−Mn,L
tj −X

n,[m]
j+1 a

n,[m]
j

)2
]

=E
[(

Rtj+1 −X
n,[m]
j+1 a

n,[m]
j

)2
]
+ E

[(
Dtj − etj+1

) (
Dtj − etj+1 − 2Rtj+1

)]

+ 2E
[(
Dtj − etj+1

)
X

n,[m]
j+1 a

n,[m]
j

]
.

As E
[(
Dtj − etj+1

) (
Dtj − etj+1 − 2Rtj+1

)]
is independent with coefficients a

n,[m]
j ,

we focus on the last term E
[(
Dtj − etj+1

)
X

n,[m]
j+1 a

n,[m]
j

]
, which follows

E
[(
Dtj − etj+1

)
X

n,[m]
j a

n,[m]
j

]
= E

[
Dtj0

]
− E

[
0X

n,[m]
j+1 a

n,[m]
j

]
= 0. (4.10)

So E
[(
Dtj − etj+1

)
X

n,[m]
j+1 a

n,[m]
j

]
is independent with coefficients a

n,[m]
j as well,

which completes the proof. □

Now, we look at the detailed Monte Carlo algorithm. As usual, assume N path
are simulated and denoted as:

(
W

(i)
0 = W0,W

(i)
t1 , · · · ,W (i)

tj , · · · ,W (i)
tj

)
i=0,··· ,N

.

Then we have the following pathwise indicators and pathwise payoffs:

E
n,(i)
tj = 1{

τ
n,(i)
j =tj

}, j = 1, · · · , L− n+ 1, i = 1, · · · , N ;

U
n,(i)
tj = min

{
Z

(i)
tj ,∆C

n−1,(i)
tj

}
, j = 1, · · · , L− n+ 1, i = 1, · · · , N.
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For each path, evolve pathwise values of min
{
Z

(i)
τn
j
,∆C

n−1,(i)
τn
j

}
backwards as fol-

lows:

min
{
Z

(i)
τn
j
,∆C

n−1,(i)
τn
j

}
=




E
n,(i)
tj U

n,(i)
tj + (1− E

n,(i)
tj )

min
{
Z

(i)
τn
j+1

,∆C
n−1,(i)
τn
j+1

}
,
, j = 1, · · · , L− 1,

U
n,(i)
tL−n+1, j = L− n+ 1.

Now all information required for conducting Least Squares regression has been
obtained, thus the coefficients can be estimated by solving the following regression:

min
a
[m]
j

N∑
i=1

(
min

{
Z

(i)
τn
j+1

,∆C
n−1,(i)
τn
j

}
−∆C

n,(i)
τn
j+1

−X
n,[m],(i)
j+1 a

[m]
j

)2

,

whose explicit solution is as:

α̂
n,[m],N
j =

(
N∑
i=1

X
n,[m],(i)
j+1

T
X

n,[m],(i)
j+1

)−1

×

(
N∑
i=1

X
n,[m],(i)
j+1

T (
min

{
Z

(i)
τn
j+1

,∆C
n−1,(i)
τn
j

}
−∆C

n,(i)
τn
j+1

))
.

After repeating this procedure for each time frame (tj , tj+1), and each number
of remaining rights n, we have everything required to compute hedge martingales
without sub-simulation.

Remark 4.3. In the above construction, Mn,L
tj+1

−Mn,L
tj is not accessible, and then

replaced by Mn,L
tj+1

−Mn,L
tj + etj+1 −Dtj . Note that etj+1 carries information after

time tj+1, which, for regression, is pure noise along with pathwise values, and
Dtj represents the difference between the approximate continuation value and the
optimal continuation value, which only depends on the information up to time

tj . Therefore both etj+1 and Dtj are irrelevant with basis functions X
n,[m]
j+1 , since

X
n,[m]
j+1 are proxy of information flowing from tj to tj+1. In other words, basis

functions X
n,[m]
j+1 are used to filter the change not driven by information between

tj and tj+1, and the rest is exactly the martingale increment Mn,L
tj+1

−Mn,L
tj .

Remark 4.4. From (4.10), we know that both etj+1 andDtj won’t affect coefficients

α
n,[m]
j . However, with limited number of simulated paths, their effect cannot be

ignored, and can be formulated as:
(

1

N

N∑
i=1

X
n,[m],(i)
j+1

T
X

n,[m],(i)
j+1

)−1 (
1

N

N∑
i=1

X
n,[m],(i)
j+1

T (
etj+1,(i) −Dtj ,(i)

))
.

This effect will vanish as more paths are used, and this follows the Law of Large
Numbers as:

1

N

N∑
i=1

X
n,[m],(i)
j+1

T (
etj+1,(i) −Dtj ,(i)

)
→ E

[
X

n,[m]
j+1

(
etj+1 −Dtj

)]
= 0 a.s..

279



12 XIANG CHENG AND ZHUO JIN

The convergence speed is judged by the the variance of X
n,[m]
j+1

(
etj+1 −Dtj

)
. Thus

better approximation of the marginal continuation value will help improve the
convergence of coefficients. Meanwhile, feasible variance reduction techniques can
also help accelerate the convergence (See [13] for detail). Fox example, using
hedged pathwise value, whose variance is smaller, is a good choice. Cheng and
Joshi [10] suggested to do this by using a small number of paths to construct an
initial hedge.

5. Convergence

In this section, we will prove that both our marginal-based lower bounds and
non-nested upper bounds converge to the optimal value. As both upper bound
and lower bound methods rely on iterative construction along with the number of
exercise rights, the logic behind these proof is to build iterative convergences of
marginal continuation values and marginal martingale increments.

5.1. Convergence of lower bounds. Here we will prove that our lower bound
will converge to the optimal price under L2-measure. To simplify derivation, we
introduce following lemmas before presenting the main result.

Lemma 5.1. Given basis functions of the continuation value satisfying conditions
(3.3) and (3.4), we have

lim
m→∞

L
1,[m]
tj = V 1,∗

tj in L2.

Regarding the proof of lemma 5.1, please see [11] for detail.

Lemma 5.2. Suppose Xn is a sequence of random variables converging to X in
L2, and P [m] is the orthogonal projection generated by m basis functions. Then
we have:

lim
n→∞

P [m] (Xn) = P [m] (X) .

This lemma is implied by E
[(
P [m] (Xn)− P [m] (X)

)2] ≤ E
[
(Xn −X)

2
]
.

Lemma 5.3. Assuming basis functions of the continuation value satisfy conditions
(3.3) and (3.4), we have:

lim
m→∞

∆C
1,[m]
tj = ∆C1,∗

tj in L2.

Proof. Since P
[m],1
j

(
Z
τ
1,[m]
j+1

)
= P

[m],1
j

(
E
[
L
1,[m]
tj+1

Ftj

])
, we have:

���∆C
1,[m]
tj −∆C1,∗

tj

���
=
���P [m],1

j

(
E
[
L
1,[m]
tj+1

Ftj

])
− C1,∗

tj

���
≤
���P [m],1

j

(
E
[
L
1,[m]
tj+1

Ftj

])
− E

[
L
1,[m]
tj+1

Ftj

]���+
���E

[
L
1,[m]
tj+1

− V 1,∗
tj+1

Ftj

]��� .
The first term converges to 0 due to the assumption that basis functions are total,
and the zero convergence of the second term comes from lemma 5.1, so the proof
is completed. □
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Remark 5.4. Lemma 5.3 can be generalized to the fact that, for any form of

exercise payoff, e.g. min

{
Z
τ
1,1,[m]
j+1

,∆C
n−1,[m]

τ
1,1,[m]
j+1

}
, the corresponding approximate

continuation converges to its optimal continuation value under condition that basis
functions are total.

Lemma 5.5. Suppose Ztj and Ytj are two different forms of payoff, then the
difference between their optimal option prices is bounded as follows:����� sup

tj≤τ≤tL

E
[
ZτFtj

]
− sup

tj≤τ≤tL

E
[
YτFtj

]
����� ≤

L∑
l=j

E
[
|Ztl − Ytl | Ftj

]
.

Proof. Lemma 5.5 obviously holds for j = L. Now, we look at j with assuming
the result is true for j + 1:����� sup

tj≤τ≤tL

E
[
ZτFtj

]
− sup

tj≤τ≤tL

E
[
YτFtj

]
�����

≤
��Ztj − Ztj

��+ E

[����� sup
tj+1≤τ≤tL

E
[
ZτFtj

]
− sup

tj+1≤τ≤tL

E
[
YτFtj

]
�����Ftj

]
.

By mathematical induction, the proof is completed. □
Lemma 5.6. Given the basis functions of continuation value satisfying conditions
(3.3) and (3.4), we have, for n > 1,

lim
m→∞

∆C
n,[m]
tj = ∆Cn,∗

tj in L2.

Proof. The proof is conducted by induction on n. From lemma 5.1. we know that,
the result holds for n = 1. Assuming this is true for n − 1, we now proceed to
n. Denoting the number of basis functions for n-th marginal continuation value
by m

′
, and the maximal number of basis functions for previous n − 1 marginal

continuation values by m, we have:�����∆C
n,

[
m

′]

tj −∆Cn,∗
tj

�����

≤

�����∆C
n,

[
m

′]

tj − E

[
sup

tj+1<τ≤tL−n+1

E
[
min

{
Zτ ,∆Cn−1,[m]

τ

}
Ftj+1

]
Ftj

]�����

+

�����E
[

sup
tj+1<τ≤tL−n+1

E
[
min

{
Zτ ,∆Cn−1,[m]

τ

}
Ftj+1

]
Ftj

]
− E

[
∆V n,∗

tj+1
Ftj

]����� .

Then we focus on the second term, which, by lemma 5.5, follows:�����E
[

sup
tj+1<τ≤tL−n+1

E
[
min

{
Zτ ,∆Cn−1,[m]

τ

}
Ftj+1

]
Ftj

]
− E

[
∆V n,∗

tj+1
Ftj

]�����

≤
L−n+1∑
l=j+1

E
[���∆C

n−1,[m]
tl

−∆Cn−1,∗
tl

���Ftj

]
.

By mathematical induction, the proof is completed. □
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Lemma 5.7. An exercise strategy πn is generated by approximating marginal

continuation values
{
∆C

i,[m]
tl

}
m>0

in recursive form defined as (3.6), and its cor-

responding lower bound L
n,[m]
tj is defined as (3.7). If ∆C

i,[m]
tl

converges to ∆Ci,∗
tl

in L2 for any 0 < i ≤ n and 0 < l ≤ L− i, we have:

lim
m→∞

L
n,[m]
tj = V n,∗

tj in L2.

Proof. The proof is conducted by induction on tj and n. The lower bound can be
expressed as follows:

L
n,[m]
tj =1{

τ
n,n,[m]
j =tj

}
(
Ztj + E

[
L
n−1,[m]
tj+1

Ftj

])
+ 1{

τ
n,n,[m]
j >tj

}E
[
L
n,[m]
tj+1

Ftj

]
.

Expressing V n,∗
tj in a similar recursive form, we have:

L
n,[m]
tj − V n,∗

tj =
(
Ztj + E

[
V n−1,∗
tj+1

− V n,∗
tj+1

Ftj

])(
1{

τ
n,n,[m]
j =tj

} − 1{τn,n,∗
j =tj}

)

− 1{
τ
n,n,[m]
j =tj

}E
[
L
n−1,[m]
tj+1

− V n−1,∗
tj+1

Ftj

]

+ 1{
τ
n,n,[m]
j >tj

}E
[
L
n,[m]
tj+1

− V n,∗
tj+1

Ftj

]
.

By inductive assumption, the last two terms of the right side converge to 0, so we
focus on the first term as follows:����

(
Ztj + E

[
V n−1,∗
tj+1

− V n,∗
tj+1

Ftj

])(
1{

τ
n,n,[m]
j =tj

} − 1{τn,n,∗
j =tj}

)����

=
���
(
Ztj −∆Cn,∗

tj

)���
����
(
1{

∆C
n,[m]
tj

≤Ztj
<∆Cn,∗

tj

} − 1{
∆C

n,[m]
tj

>Ztj
≥∆Cn,∗

tj

}
)����

≤
���∆C

n,[m]
tj −∆Cn,∗

tj

��� .
This term converges to 0 due to lemma 5.6, which therefore completes the proof.

□

Theorem 5.8. Suppose that basis functions of the continuation value satisfy con-

ditions (3.3) and (3.4), and that lower bound L
n,[m]
tj is defined as (3.7). Then we

have:

lim
m→∞

L
n,[m]
tj = V n,∗

tj in L2.

The proof of theorem 5.8 is a combination of the convergence of approximate
marginal continuation values and the convergence of corresponding lower bounds,
which are implied by lemma 5.6 and 5.7 respectively.

5.2. Convergence of upper bounds. In this part, we will prove the conver-
gence of the upper bound method. To simplify the proof, for any given approximate

marginal values ∆C
n,[m]
tj and its corresponding stopping time τ

n,[m]
j generated as

(3.5), we define following terms:

∆L
n,[m]
tj ≜ E

[
min

{
Z
τ
n,[m]
j

,∆C
n−1,[m]

τ
n,[m]
j

}
Ftj

]
;
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M
n,L,[m]
tj+1

−M
n,L,[m]
tj ≜ ∆L

n,[m]
tj − E

[
∆L

n,[m]
tj Ftj

]
.

Given strategy πn−1
j at time tj and a martingale process M , define the pathwise

upper bound as:

Gn
tj

(
πn−1,M

)
≜ max

tL−n+1≥tk≥tj and tk ̸=τ i,n−1
j , i=1,··· ,n−1

(Ztk −Mtk) .

Lemma 5.9. Assuming M and M
′
are two martingales, for any given strategy

πn−1, for any j, we have:

���Gn
tj

(
πn−1,M

)
−Gn

tj

(
πn−1,M

′
)��� ≤

L−1∑
k=j

���(Mtk+1
−Mtk

)
−

(
M

′

tk+1
−M

′

tk

)��� .

The proof is straightforward by mathematical induction.

Lemma 5.10. For every n, there are a sequence of approximate marginal continu-

ation values
{
∆C

i,[mc]
tl

}
mc>0,0<i<n

, which are indexed by mc and satisfy condition

that, for i > 0,

lim
mc→∞

∆C
i,[mc]
tj = ∆Ci,∗

tj in L2, (5.1)

and basis functions for martingale increment, which are indexed by mm and satisfy
conditions (4.5) and (4.6). Then we have:

lim
mc→∞

lim
mm→∞

H
n,[mm]
tj+1

(
Mn,L,[m]

)
= ∆V n,∗

tj+1
−∆Cn,∗

tj in L2.

Proof. We have:

���Hn,[mm]
tj+1

(
Mn,L,[m]

)
−

(
∆V n,∗

tj+1
−∆Cn,∗

tj

)���
≤
���Qn,[m]

j

(
M

n,L,[m]
tj+1

−M
n,L,[m]
tj

)
−

(
M

n,L,[m]
tj+1

−M
n,L,[m]
tj

)���
+
���
(
M

n,L,[m]
tj+1

−M
n,L,[m]
tj

)
−

(
∆V n,∗

tj+1
−∆Cn,∗

tj

)��� .

The first term of the right side converges to 0 in L2 due to condition (4.6), so we
focus on the second term, whose second moment can be expressed as:

E
[((

M
n,L,[m]
tj+1

−M
n,L,[m]
tj

)
−

(
∆V n,∗

tj+1
−∆Cn,∗

tj

))2
]

=E
[((

∆L
n,[m]
tj+1

−∆V n,∗
tj+1

)
− E

[(
∆L

n,[m]
tj+1

−∆V n,∗
tj+1

)
Ftj

])2
]

≤E
[(

∆L
n,[m]
tj+1

−∆V n,∗
tj+1

)2
]
.
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Now, it is enough to prove the convergence of ∆L
n,[m]
tj+1

to ∆V n,∗
tj+1

in L2, which
follows: ���∆L

n,[m]
tj+1

−∆V n,∗
tj+1

���

≤

��������

E
[
min

{
Z
τ
n,[m]
j

,∆C
n−1,[m]

τ
n,[m]
j

}
Ftj

]

− sup
tj<τ≤tL−n+1

E
[
min

{
Zτ ,∆Cn−1,[m]

τ

}
Ftj

]

��������

+

��������

sup
tj<τ≤tL−n+1

E
[
min

{
Zτ ,∆Cn−1,[m]

τ

}
Ftj

]

− sup
tj<τ≤tL−n+1

E
[
min

{
Zτ ,∆Cn−1,∗

τ

}
Ftj

]

��������
.

The first term of the right side converges to 0 by lemma 5.1, as well as the second
term by condition (5.1) and lemma 5.5. Thus, the proof is completed. □

Lemma 5.11. Let M1,[m] be an martingale satisfying the condition that:

lim
m→∞

(
M

1,[m]
tj+1

−M
1,[m]
tj

)
= ∆V 1,∗

tj+1
−∆C1,∗

tj in L2. (5.2)

Then we have:

lim
m→∞

max
j≤i≤L

(
Zti −

(
M

1,[m]
ti −M

1,[m]
tj

))
= ∆V 1,∗

tj in L2.

Proof. From equation (4.2), there exists:

∆V 1,∗
tj = max

j≤i≤L


Zti −

i−1∑
k=j

(
∆V 1,∗

tk+1
−∆C1,∗

tk

) a.s..

Along with lemma 5.9, we have:���� max
j≤i≤L

(
Zti −

(
M

1,[m]
ti −M

1,[m]
tj

))
−∆V 1,∗

tj

����

≤
L−1∑
k=j

���
((

M
1,[m]
tj+1

−M
1,[m]
tj

))
−

(
∆V 1,∗

tk+1
−∆C1,∗

tk

)��� .

The condition (5.2) will guarantee the convergence of right side towards 0. □

Lemma 5.12. Given Ztj and Ytj are two different forms of payoff and M is a
martingale process, we have:
���� max
L≥k≥j

(
Ztk −

(
Mtk −Mtj

))
− max

L≥k≥j

(
Ytk −

(
Mtk −Mtj

))���� ≤
L∑

k=j

|Ztk − Ytk | .

The proof is straight forward form mathematical induction.

Lemma 5.13. For every n, there is a sequence of approximate marginal contin-

uation values ∆C
n−1,[mc]
tj , which are indexed by mc and satisfy condition that:

lim
mc→∞

∆C
n−1,[mc]
tj = ∆Cn−1,∗

tj in L2. (5.3)
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Meanwhile, there is a sequence of approximate marginal values ∆V
n−1,[mm]
tj , which

are indexed by mm and satisfy the condition that:

lim
mm→∞

∆V
n−1,[mm]
tj = ∆V n−1,∗

tj in L2.

Then the following convergence holds:

lim
mc→∞

lim
mm→∞



Ztj1

{
Ztj

≥∆C
n−1,[mc]
tj

}

+
(
∆V

n−1,[mm]
tj+1 −

(
∆V n−1,∗

tj+1
−∆Cn−1,∗

tj

))
1{

Ztj
<∆C

n−1,[mc]
tj

}




= min
{
Ztj ,∆Cn−1,∗

tj

}
in L2.

Proof. We have:
�������

Ztj1
{
Ztj

≥∆C
n,[mc]
tj

} +
(
∆V

n−1,[mm]
tj+1 −

(
∆V n,∗

tj+1
−∆Cn,∗

tj

))
1{

Ztj
<∆C

n,[mc]
tj

}

−min
{
Ztj ,∆Cn−1,∗

tj

}

�������

≤
����
(
Ztj −∆Cn−1,∗

tj

)(
1{

∆C
n,[mc]
tj

≤Ztj
<∆Cn−1,∗

tj

} − 1{
∆C

n,[mc]
tj

>Ztj
≥∆Cn−1,∗

tj

}
)����

+

����
(
∆V

n−1,[mm]
tj+1 −∆V n−1,∗

tj+1

)
1{

Ztj
<∆C

n−1,[mc]
tj

}
���� .

The first term of the right side converges to 0 like we have proved before in lemma
5.7, while the second term converges to 0 due to condition (5.3). □

Lemma 5.14. For every n, there is a sequence of approximate marginal con-

tinuation values ∆C
n−1,[mc]
tj , which are indexed by mc and satisfy the condition

that:

lim
mc→∞

∆C
n−1,[mc]
tj = ∆Cn−1,∗

tj in L2.

Meanwhile, there is a sequence of approximate marginal values ∆V
n−1,[mm]
tj , which

are indexed by mm and satisfy the condition that:

lim
mc→∞

∆V
n−1,[mm]
tj = ∆V n−1,∗

tj in L2.

Then the following holds:

lim
mc→∞

lim
mm→∞

max
j≤i≤L−n+1




Zti1
{
Zti

≥∆C
n,[mc]
ti

}

+


∆V

n−1,[mm]
ti+1

−
(
∆V n,∗

ti+1
−∆Cn,∗

ti

)

 1{

Zti
<∆C

n,[mc]
ti

}

−
i−1∑
k=j

(
∆V n,∗

tk+1
−∆Cn,∗

tk

)




= ∆V n,∗
tj in L2.

The proof is straightforward following the results in lemma 5.13.
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Lemma 5.15. For every n, there is a sequence of approximate marginal con-

tinuation values
{
∆C

i,[mc]
tl

}
mc>0, 0<i<n

, which are indexed by mc and satisfy the

condition that, for i > 0,

lim
mc→∞

∆C
i,[mc]
tj = ∆Ci,∗

tj in L2. (5.4)

and they generate exercise strategy πn,[mc], i.e. τ
i,n,[mc]
j , 0 < i ≤ n. Denot-

ing by H∗,πn−1,[mc]

the martingale synthesized as (4.9) using ∆V n,∗
tj+1

−∆Cn∗
tj and

πn−1,[mc], then the following holds:

lim
mc→∞

Gn
tj

(
πn−1,[mc], H∗,πn−1,[mc]

)
= ∆V n,∗

tj+1
in L2.

The proof follows directly from the results in lemma 5.12, lemma 5.13, and
lemma 5.14.

Theorem 5.16. For every n, we have a sequence of approximate marginal con-

tinuation values
{
∆C

i,[mc]
tl

}
mc>0,0<i<n

, which are indexed by mc and satisfy con-

dition that, for i > 0,

lim
mc→∞

∆C
i,[mc]
tj = ∆Ci,∗

tj in L2.

and the basis functions for the martingale increment, which are indexed by mm

and satisfy conditions (4.5) and (4.6). Martingale increments H
n,[mm]
tj+1

(
Mn,L,[mc]

)
are computed from (4.4) and (4.8) with approximate marginal continuation values

∆C
i,[mc]
tl

and the stopping time τ
n,[mc]
j+1 generated by ∆C

i,[mc]
tl

as (3.5). Exercise

strategy πn,[m], i.e. τ
i,n,[mc]
j 0 < i ≤ n, generated by ∆C

i,[mc]
tl

as (3.6), and

martingale increments H
n,[mm]
tj+1

(
Mn,L,[mc]

)
are used to construct hedge processes

in (4.9) as H
[mm],πn,[mc]

tj+1

(
ML,[mc]

)
, which is then used to compute upper bound

defined according to (4.3) as ∆U
n,πn,[mc],H[mm],πn,[mc]

(ML,[mc])
tj . Then we have

lim
mc→∞

lim
mm→∞

∆U
n,πn,[mc],H[mm],πn,[mc](ML,[mc])
tj = ∆V n,∗

tj in L2.

Proof. We have the following convergence:

lim
mm→∞

E
[
Gn

tj

(
πn−1,[mc], H∗,πn−1,[mc]

)
Ftj

]
= ∆V n,∗

tj+1
in L2.

Then we have

E

[(
∆U

n,πn,[mc],H[mm],πn,[mc](ML,[mc])
tj −∆V n,∗

tj+1

)2
]

≤E
[(

Gn
tj

(
πn−1,[mc], H [mc],π

n−1,[mc]
)
−∆V n,∗

tj+1

)2
]
.
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Thus it is enough to prove thatGn
tj

(
πn−1,[mc], H [mc],π

n−1,[mc]
)
converges to ∆V n,∗

tj+1

in L2. Then it follows:���Gn
tj

(
πn−1,[mc], H [mc],π

n−1,[mc]
)
−∆V n,∗

tj+1

���
≤
���Gn

tj

(
πn−1,[mc], H [mc],π

n−1,[mc]
)
−Gn

tj

(
πn−1,[mc], H∗,πn−1,[mc]

)���
+
���Gn

tj

(
πn−1,[mc], H∗,πn−1,[mc]

)
−∆V n,∗

tj+1

��� .
Combining lemma 5.9 and 5.10, we know the first term of the right side converges
to 0. From lemma 5.15, we have the convergence of the second term towards 0 as
well. The proof is completed. □

6. Numerical Results

In this section, we show the effectiveness of proposed methods by applying them
to price derivatives in two different markets, i.e. chooser’s flexible cap in interest
rate market and swing option in energy market.

6.1. Chooser’s flexible cap. Chooser’s flexible cap is an interest rate derivative
which enables contract holders to lower the risk subject to adverse movements in
financial market. A cap is a sequence of caplets corresponding to each of L se-
quential time periods, where the i-th caplets will pay contract holders the nominal
amount times the excess of the current interest rate to the fixed strike. Chooser’s
flexible cap is similar to cap, but, rather than cover every forward rate, it offers
contract holders greater flexibility to choose maximal n < T forward rates over
the lifetime of the policy. For each exercise time, the contract holder can choose
to exercise the right or spare it for the future.

Here we assume the dynamic of interest rate Rt follows the two-factor additive
Gaussian model as below:

Rt ≜ ϕt + St + Ut,

dSt ≜ −aSt + σdWS
t ,

dUt ≜ −bUt + ηWU
t ,

where ϕt is a deterministic time-varying rate, and WS
t and WU

t are Brownian
motions with correlation ρ. There is a set of tenor times {tj} , j = 0, · · · , L, with
ti < tj , ∀i < j, and a strike K. Then the exercise payoff at time tj will be:

max
{
Rtj −K, 0

}
.

The price of zero coupon bond maturing at tL is used as numeraire. The dynamic
of interest rate under the corresponding T -forward measure is given by numeraire
changing technique (See [7] for detail).

Specifically, the parameters are set as follows:

• a = 5, b = 2, σ = 0.05, η = 0.02, ρ = 0.2;
• ϕt = 0.05;
• S0 = 0, U0 = 0;
• L = 40, tj+1 − tj = 0.25;
• K = 0.05, n = 40.
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6.1.1. Basis Functions for the Continuation Value. Considering the complexity
of driving dynamic and the form of payoff function, basis functions are chosen as
the polynomials of S and U as:

1, S, U, SU

6.1.2. Basis Functions for the Martingale Increment. Selection of basis function
for martingale increment follows the suggestion in [10] that coefficients obtained
from LS regression should be state-dependent to allow for dynamic hedging. First,
we decompose WS and WU into two independent Brownian motions W 1 and W 2

as follows:

WS = W 1;

WU = ρW 1 +
√
1− ρW 2.

Denote the martingale increments of W 1 and W 2 by:

κ1
j+1 = W 1

tj+1
−W 1

tj ;

κ2
j+1 = W 1

tj+1
−W 2

tj .

The basis functions of martingale increments are chosen to be the product of
basis functions of continuation value and powers of uncorrelated driving Brownian
motion increments. Denote the basis functions of continuation value by:

Y ≜ [y1, y2, · · · , yn] ≜
[
SiSU iU

]
iS+iU<=2

,

and powers of driving uncorrelated Brownian Motion increments by:

Φ ≜
[
κ1 i1
j+1κ

2 i2
j+1 − E

[
κ1 i1
j+1

]
E
[
κ2 i2
j+1

]]
0<i1+i2≤10

.

Basis functions of martingale increment are expressed as:
[
y1Φ y2Φ · · · ynΦ

]

The above way to expand the set of basis functions will lead to a big increase in the
number of basis functions in regression, and thus will slow down the convergence
of estimated coefficients. We now present a decomposition method to handle this
problem. The covariance matrix of

[
y1Φ y2Φ · · · ynΦ

]
is given by:



E [y1y1]E

[
ΦΦT

]
· · · E [y1yn]E

[
ΦΦT

]
· · · · · ·

E [y1y1]E
[
ΦΦT

]
· · · E [y1yn]E

[
ΦΦT

]


 . (6.1)

The inverse of above covariance matrix is easily computed from:

A11E

[
ΦΦT

]−1 · · · A1nE
[
ΦΦT

]−1

· · · · · ·
An1E

[
ΦΦT

]−1 · · · AnnE
[
ΦΦT

]−1


 ,

where Aij is the element of inverse matrix E
[
YYT

]−1
. Here we can estimate the

E
[
YYT

]
and E

[
ΦΦT

]
separately rather than do that for matrix (6.1) as a whole

to accelerate the convergence of the inverse of estimated covariance matrix. The
inverse of the covariance matrix can then be computed from individual inverses of
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E
[
YYT

]
and E

[
ΦΦT

]
, and this can help lower the time consumed on computing

the inverse of high dimensional square matrix as well.

6.1.3. Lower Bounds and Upper Bounds Computed. In this part, we present nu-
merical results of different bounds to demonstrate the effectiveness of our methods.

Regarding the lower bound, we compute classic Least-Squares lower bounds
based iterative construction of continuation described in section 3.1 and marginal-
based lower bounds in section 3.2. All lower bound strategies are developed using
524 288 paths. A second independent pass with 524 288 paths is used to evaluate
independent lower bound estimates.

For the upper bound, we first compute non-nested upper bounds proposed in
section 4.3. To further examine the effectiveness of sub-simulation upper bounds,
we also introduce another extension of primal-dual upper bound, where the mar-

ginal martingale process is obtained from running sub-simulation forMn,L
tj+1

−Mn,L
tj

defined in (4.4). The continuation values used in (4.4) is the approximation of the
marginal continuation value from the marginal-based lower bound method. For
non-nested upper bounds, 524 288 paths are used to construct parametric mar-
tingale processes, and a second pass with independent 524 288 paths is used to
develop independent upper bound estimates. For primal-dual upper bounds, we
use 8 192 paths for each sub-simulation and 2 048 paths for the outer simulation.

In summary, all benchmarks lower bounds and upper bounds are listed as fol-
lows:

• LBLS - Least-Squares Lower Bounds;
• LBMB - Marginal-Based Lower Bounds;
• UBNN - Non-Nested Upper Bounds;
• UBEPD - Extended Primal-Dual Upper Bounds.

The numerical results presented in Table 1. All values are multiplied by 104

to match one basis point. The first column represents the number of exercise
rights. Observing from results, the non-nested upper bound method works well,
and some trade-off between accuracy and time-efficiency needs to be made for
practical implementation. For lower bound methods, since the contract is not
very long-dated, the marginal-based lower bounds are almost same as those from
classic Least-Squares lower bound method.

6.2. Swing option. In this part, we will apply the proposed methods to price
a commonly traded energy market derivative, swing option. It allows contract
holders to buy a certain amount of energy, but will limit the maximal amount of
energy that can be purchased over the lifetime of policy. Here we assume that the
log of energy price St follows AR(1) model as:

logStj+1 = (1− k)
(
logStj+1 − µ

)
+ µ+ σNtj+1 ,

where Ntj are an independent standard Gaussian random variables. Denoting the
strike by K, the payoff is

max
{
Stj −K, 0

}
.

The parameters are set as follows:

• σ = 0.5, k = 0.9, µ = 0
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n LBLS LBMB UBEPD UBNN

1 302.09 0.15 302.09 0.15 302.43 0.65 303.31 0.03
2 556.18 0.23 556.18 0.23 556.67 0.86 559.14 0.04
3 777.98 0.30 777.98 0.30 778.76 0.99 783.16 0.05
4 975.31 0.36 975.32 0.36 976.23 1.09 982.87 0.06
5 1152.59 0.42 1152.58 0.42 1153.68 1.17 1162.73 0.07
6 1312.73 0.48 1312.72 0.48 1313.87 1.23 1325.57 0.08
7 1457.95 0.53 1457.94 0.53 1459.04 1.28 1473.44 0.09
8 1589.46 0.58 1589.46 0.58 1590.75 1.31 1607.82 0.10
9 1708.88 0.63 1708.88 0.63 1710.15 1.34 1729.93 0.10
10 1816.90 0.68 1816.92 0.68 1818.25 1.37 1840.74 0.11
15 2212.57 0.89 2212.55 0.89 2214.19 1.45 2249.11 0.13
20 2415.82 1.06 2415.82 1.06 2417.81 1.48 2461.99 0.15
25 2489.77 1.16 2489.78 1.16 2492.08 1.49 2541.14 0.16
30 2503.48 1.19 2503.48 1.19 2505.90 1.49 2556.73 0.16
35 2504.27 1.19 2504.27 1.19 2506.70 1.49 2557.75 0.16
40 2504.27 1.19 2504.27 1.19 2506.71 1.49 2557.76 0.16

Table 1. Lower Bounds and Upper Bounds of Chooser’s Flexible Cap

• S0 = 1
• L = 200, tj+1 − tj = 1
• K = 0, n = 100

The basis functions for marginal continuation values are chosen as:

1, S.

The basis functions for martingale increments are chosen as:

SiS
tj

(
N iN

tj+1
− E

[
N iN

tj+1

])
, 0 ≤ iS ≤ 2 and 1 ≤ iN ≤ 2.

Benchmark upper bounds and lowers bounds are computed as same as those for
chooser’s flexible cap. Numbers of paths for lower bounds and upper bounds share
same setup as those of chooser’s flexible cap as well. The numerical results are
presented in Table 2. We can observe from the table that the marginal-based lower
bound method tends to outperform the classic Least-Square lower bound method
along with the increase of the number of exercise rights.

7. Conclusion

Our lower bound method helps lower the error in the approximation of the
marginal continuation value, and therefore offers a better exercise strategy. This
improvement makes the practical pricing more accurate and assists contract hold-
ers to make higher profit by adopting better trading strategy. The marginal-based
lower bound method outperforms the classic Least-Squares lower bound method
by lowering the error in the approximate marginal continuation value, especially
when the contract is long-dated and owns a large number of exercise rights. We
also extend the sub-simulation-free upper bound method into the multiple exercise
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n LBLS LBMB UBEPD UBNN

1 3.690 0.001 3.690 0.001 3.691 0.000 3.717 0.000
2 6.936 0.002 6.936 0.002 6.936 0.000 7.005 0.000
3 9.934 0.002 9.934 0.002 9.932 0.000 10.053 0.000
4 12.758 0.002 12.758 0.002 12.756 0.000 12.932 0.001
5 15.450 0.003 15.450 0.003 15.449 0.000 15.683 0.001
10 27.609 0.004 27.609 0.004 27.611 0.000 28.141 0.001
15 38.378 0.004 38.378 0.004 38.381 0.000 39.203 0.001
20 48.242 0.005 48.242 0.005 48.246 0.000 49.352 0.002
30 66.081 0.006 66.082 0.006 66.091 0.000 67.743 0.002
40 82.102 0.007 82.102 0.007 82.116 0.000 84.288 0.002
50 96.753 0.008 96.754 0.008 96.775 0.000 99.441 0.003
60 110.298 0.008 110.300 0.008 110.328 0.000 113.463 0.003
70 122.906 0.009 122.910 0.009 122.946 0.000 126.522 0.003
80 134.695 0.009 134.699 0.009 134.748 0.000 138.738 0.004
90 145.749 0.010 145.754 0.010 145.816 0.000 150.197 0.004
100 156.129 0.010 156.136 0.010 156.215 0.000 160.964 0.004

Table 2. Lower Bounds and Upper Bounds of Swing Option

derivative pricing problem. This is an effective tool for sellers to quickly construct
dynamic hedging portfolios. Meanwhile, our non-nested upper bound method is
also free from diffusive assumption of underlying dynamics, which will ensure its
compatibility with general stochastic models. Moreover, the enhancement and ac-
celeration techniques for sub-simulation-free upper bounds can be used to improve
the non-nested upper bound method as well. In future studies, we may consider
extend the problem to solve control problems in complex stochastic systems as in
[15].
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