
* Key Lab of Disaster Forecast and Control in Engineering, Ministry of Education of the China and Institute of Applied Mechanics, Jinan
University, Guangzou 510632, China, Macau University of Sicnece and Technology, Macau, China

J M M
 Journal of Mechanics and MEMS
 Special Issue dedicated to Prof. K Y Ye edited by Z M Ye, P Liu and B Sun

ISSN: 0974-8407
© Serials Publications

9(2) 2017: pp. 109-120
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ABSTRACT

In this paper, a large deflection problem of an annular sandwich plate with a nondeformable rigid body at the center
under uniform pressure q is solved by Yeh Kai-yuan and Liu Ren-huai’s modified iteration method. Analytic solutions
of the problem obtained may be applied directly to engineering design.
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1. INTRODUCTION

It is common knowledge that the sandwich plate is applied widely in aeronantical and astronautical engineering
because of its essential feature of high rigidity and light weight. Therefore it is of great importance both theoretically
and practically to study nonlinear bending problems for the plate. At first, Reissuer[1] established a nonlinear
bending theory of a rectangular sandwich plate with a soft core and two very thin faces. Scholars[2] of the Chinese
Research Institute of Mechanics solved a large deflection problem for the circular sandwich plate with a soft
core and two very thin faces under the action of uniform lateral load by the perturbation method. The auther[3]

solved yet a nonlinear bending problem of the plate under uniform edge moment and a more accurate third
approximation solution was obtained using the modified iteration method. This method was suggested by Yeh
Kai-yuan and Liu Ren-huai[4-6] in 1965. The method incorporates advantages of Chien Wei-zang’s perturbation
method[7] and usual successive approximations, and it is an effective, simple, accurate method for solving nonlinear
differential equations.

After that, the author[8] presented a more accurate nonlinear bending theory of a circular sandwich plate with a
soft core taking into account the bending rigidity of the faces, and also gave a simplified theory of the plate in the
case of neglecting the bending rigidity of the faces. In the case of including the bending rigidity of the faces, the
author[9] has first discussed the nonlinear bending problem for the plate by the author’s modified power series
method. Unfortunately, such studies are few yet because of quite complication of the problem.

So far as we know, nonlinear problems of bending and vibration for circular and annular sandwich plates with
very thin faces behaving as membranes were studied by Liu Ren-huai[8,10-15], Du Guojun[16-20], Yang Jingning[21-22], Ho
Chaosheng[23-24], Zhang Xiuli[25] and Kirichok[26], et al.

This paper is a further work of the author’s previous papers[12,13]. A large deflection problem of an annular
sandwich plate with a nondeformable rigid body at the center under uniform pressure is studied. We still use the
modified iteration method to solve this problem. Analysic solutions presented here may be applied directly to the
engineering design.

2. FUNDAMENTAL EQUATIONS

Now consider an annular sandwich plate with a nondeformable rigid body at the center under the action of uniform
pressure q as shown in Fig.1. The outer edge of the plate is rigidly clamped and the inner edge is fixed on the non-
deformable rigid body which can be moved up down. Here a is the outer radius, b is the inner radius, r is the radial
coordinate.



Figure 1

Using the same system of notation and the simplified equations of Ref.[8], we can easily obtain the fundamental
equations of large deflection of the plate as follows.
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where w is the deflection of the middle plane of the plate, �
r0 is the radial stress of the middle plane of the plate, D

is the flexural rigidity of the plate, E is Young’s modulus of the face, � is Poisson’s ratio of the face, G
2
 is the shear

modulus of the core, t is the thickness of the face, h
0
 is the distance from middle of thickness of the lower face to

middle of thickness of the upper face,
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Equations (1) will be solved under the following boundary conditions:

w = 0, � = 0, u = 0 at (3)

� = 0, u = 0 at r = b

where � is the rotation of a normal to the middle plane of the plate in the diametral plane, u is the radial displacement
of the middle plane of the plate,
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In order to simplify the calculations, let us introduce the following nondimensional variables

� �
2

2
0

0

2
, , 2 1 , , r r

r b w dw ta
W v S

a a h d D
� � � � � � � � � �

� (5)

� �2

4
2

0 2 0

2 1
,

2

v D
P a q k

h D G h a

�
� �

Using these nondimensional variables, the fundamental equations (1) and boundary conditions (3) become
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where L is a differential operator
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Thus Equations (6) and boundary conditions (7) and (8) constitute a nondimensional nonlinear boundary value
problem for � and S

r
 of the annular sandwich plate with a nondeformable rigid body at the center under uniform

pressure.

3. ANALYTICAL SOLUTION

The nondimensional nonlinear boundary value problem (6), (7) and (8) will be solved by the modified iteration
method. At first, we introduce a notation Wm of the nondimensional inner edge deflection as an iteration parameter
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Using the fourth equation of expressions (5) and the boundary condition (7a), we obtain
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For the first approximation, neglecting the nonlinear term S
r
� in Eq.(6a) and conditions (7b) and (8a) leads to

the linear boundary value problem as follows
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Eq. (12a) can be solved easily by direct integration in conjunction with the corresponding boundary conditions
(13b) and (14a).Then we obtain
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Substituting the solution (15) into (11), the linear characteristic relation is obtained as

P = �1Wm
(17)

where
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Using relation (17), the solution (15) may be written as
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–1) (19)

Using the solution (19) and integrating Eq.(12b) twice under conditions (13c) and (14b), the solution of Eq. (12b)
is
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For the second approximation, from the problem (6)-(8) the following linear boundary value problem for�  is

obtained
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Using solutions (19) and (20),the solution of this problem is
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 Substituting the solution (25) into (11), we obtain the nonlinear characteristic relation of the annular sandwich
plate
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4. RESULTS AND DISCUSSION

Now let us introduce the nondimensional variable �S  for the tangential stress 0��  of the middle plane of the annular

sandwich plate
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Using Eq.(30) and (5), expression (29) becomes
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Substituting solution (20) into Eq.(31), we obtain the following formula of the nondimensional tangential stress
for the first approximation
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Finally, from formulas (20) and (32) we obtain the stresses at the inner and outer edges of the annular sandwich
plate
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According to the above formulae (27), (20), (32) and (33), the numerical results of nonlinear bending of the
annular sandwich plate for various nondimensional characteristic parameter k and nondimensional inner radius �
by assuming Poisson’s ratio � = 0.3 are represented graphically in Figs. 2-8.

Figs. 2-3 indicate relations between the nondimensional uniform pressure P and the nondimensional inner edge
deflection W

m 
for several values of k and � respectively. It is obvious that these curves rise monotonically. For the

same value of P, the nondimensional inner edge deflection W
m 

of a annular sandwich plate with small � is larger,
and W

m 
of the plate with small k is low.

The distributions of the nondimensional radial and tangential stresses Sr and S� along the nondimensional
radius � in the case of ��= 0.2 and k = 0.05 are shown in Fig. 4a,b respectively. Obviously, the maximum stress of
the annular sandwich plate is the radial stress, and is located at the inner edge of the plate.

Fig. 5 shows the curves for the nondimensional inner edge radial stress S
r
(�). It can be seen from the figure that,

the curves rise monotonically, and for the same value of the inner edge deflection, the radial stress S
r
(�) at the inner

edge induced in a plate with larger � is high.

Finally, the results of numerical calculation for the stresses S
r
(1), S�(�) and S�(1) of the annular sandwich plate

for the several values of ��are given in Figs. 6-8 respectively.

Figure 2: Variation of the Pressure P with the Inner edge Deflection W
m 

for Several Values of  (  = 0.3) . (a) k = 0,
(b) k = 0.01, (c) k = 0.05, (d) k = 0.1



Figure 3: Variation of the Pressure P with the Inner Edge Deflection W
m 

for Several Values of k (  = 0.3) . (a) = 0.1,
(b) = 0.2, (c) = 0.4, (d) = 0.6

Figure 4: The Variation of the Radial and Tangential Stress S
r
, S  alone the radius

 ( = 0.3,  = 0.2, k = 0.05 ) (a) S
r
, (b) S



Figure 5: The Radial Stress S
r
( ) at the Inner Edge of the Annular Sandwich Plate for Several Values of

( = 0.3) (a) k = 0, (b) k = 0.01, (c) k = 0.05, (d) k = 0.1

Figure 6: The Radial Stress S
r
(1) at the Outer Edge of the Annular Sandwich Plate for Several Values of ( = 0.3, k = 0.05)
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