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Abstract: Higher order systems are complex to model, analyze and to control. This paper presents a new “Sparse 
Distributed Neuro Fuzzy (SDNF) Architecture” for higher order system modeling and analysis. This model consists 
of a few neuro fuzzy locations distributed within a sparse, high dimensional array. Addressing these neuro fuzzy 
locations are achieved with long vectors, since the dimensionality of the space is high, making it ideal for high 
order system modeling with some tolerance for errors in the long vector addressing. Even with high dimensionality 
and high number of neuro fuzzy locations within the space, it is demonstrated that realizing an output from the 
architecture only requires a few neuro fuzzy locations within a specific area of interest for precise determination, 
which saves time. Two different higher order dynamic systms were considered to evaluate the suggested SDNF 
architecture and results are presented.
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INTRODUCTION1.	
Higher order dynamic systems are complex, yet they exist in several areas that are commonly used. For 
example, dynamically changing values of one currency with respect to the other; ocean wave movements 
and oscillations – are few examples. Properties of higher order systems include – several variables, states, 
known and unknown boundary conditions, constraints etc. Modeling and analysis of higher order systems 
are complicated tasks. Numerical models have been used for higher order system computations. However, 
numerical methods are only good for estimation of the current or any specific state, but not for system 
modeling. Given the complexities and difficulties in higher order system modeling and analysis; several 
approaches have been attempted and reported in the literature thus far. John Maidens et. al proposed use of 
small information zones termed as ‘kernel’, which were identified using various langrangian computation 
techniques based on requirements of the system. Inaccuracy issues associated with higher order system 
modeling were also discussed [2]. These contributions included, but not limited to Particle Filter, lagrangian 
methods, stochastic methods etc. Brown et. al in 1995 outlined problems with high dimensional systems 
particularly in terms of higher degrees of dimensionality [5] and suggested a few approaches based on 
statistical models, partitioning techniques etc. However, most methods employ several approximations, 
conditions and assumptions due to which accuracy of prediction suffers[5,6]. One of the biggest problems is 
to model the higher dimensional systems with several variables in various dimensions, with an appropriate 
architecture [6, 7, 8]. Particle filter based system identification and tracking were suggested, however with 
a great degree of approximation in system identification [13 – 16] Use of tensors for multi-dimensional 
information systems is well-known. However, the applicability of tensors with a proper architecture for 
higher order dynamic systems is not very well studied. This paper addresses this gap. An attempt is made 
to combine tensors and neuro-fuzzy computational models to produce a new architecture to model and 
simulate higher order systems. The sparse distributed neuro fuzzy (SDNF) architecture can be described 
as a memory efficient storage and retrieval machine. It is inspired by a model called Sparse Distributed 
Memory, developed by Pentti Kanerva [1]. This was a binary memory model in pursuit of developing a 
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mathematical model of human long term memory. The SDNF architecture presented in this paper however 
uses real numbers, instead of binary numbers. At the onset, there are two properties of the SDNF architecture 
which allow it to function effectively:

1.	 Information stored within the SDNF architecture can be addressed through high dimensional or 
long vectors.

2.	 Any area within the space that information is stored is relatively far from any other areas of 
information within the space, i.e. the space is sparse.

In some ways, the SDNF Architecture acts as a random access memory in experiments conducted by 
Kong [3, 4]. The location of non-zero information within the space is called its address. The number of 
dimensions of the space N determines the length of the long vector which is used to address a location in 
the memory. For example a 50 dimensional space would require a long vector with 50 rows to address a 
location within the space. Since an area of interest within the space is relatively far from any other areas of 
interest, this enables some fault tolerance to long vectors, hence noisy or lost data would not necessarily 
result in an incorrect address to the space. The elements of the long vector are integers in the range 1-S, 
where S is the upper bound of each dimension of the space. For simplicity, each dimension is made same 
length so the space is a hypercube with each side having length S.

The space is sparse, and hence comprises mostly zeros. Sparse matrices are easily compressed resulting 
in significantly less computer data storage capacity than a dense matrix would utilize. The neuro fuzzy 
parameters are stored in the non-zero locations, which are called hard locations. These hard locations are 
distributed uniformly and randomly within the space.

Due to the sparseness of the space, using a random long vector address to access a hard location would 
practically never point to a hard location. Instead, when reading from location x, all hard locations from 
within a certain distance a, from x are all activated. The output is the sum of all the individual outputs of 
the hard locations within distance a, of the location x. While the distance a can take any value between 
1-S, careful selection of the distance a can make the architecture fault tolerant for noisy or lost data in the 
long vector address since a determines the size of the area of interest, and each area of interest is relatively 
far away from any other areas of interest in the space.

A call to location x activates only few hard locations of the space. When the location x is called, only 
those few locations within distance a of x therefore are activated, and the remaining hard locations are not 
called. This is achieved by a special address decoder function which presents the long vector x to the address 
of all the hard locations in the space in parallel, but only those neurons which are within distance a of x 
fires. This parallel computation is the basis of the efficiency of the architecture, where the determination 
of hard locations within the area of interest does not require an exhaustive search of all hard locations 
within the space.

From the above, it can be seen that addressing a specific location in a higher order system involves data 
or information retrieval, processing, and related computation. Tensors can be effectively used to do this. 
Also, it can be seen that other attempts to address the problem with high dimensionality and rule explosion 
in neuro fuzzy systems have been proposed in [4, 5, 6, 7] which proposes rule pruning and order reduction 
that leads to a loss in data. The following sections will illustrate the proposed SDNF architecture and its 
application to higher order problems.

neuro fuzzy model2.	
The SDNF architecture can be described using vector and matrix notation. The non adaptive (fixed) 
parameters used to initialize the SDNF architecture are given by:
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	 N –	Address length; number of dimensions of the address space; input dimension.

	 S –	The length of each side of the hypercube space.

	 a –	The threshold distance between hard locations within an area of interest to an address in the 
space.

	 H –	The number of hard locations of the SDNF space.

Each hard location contains the adaptable neuro fuzzy (NF) parameters set {c, b, p} where

	 c =	[c1, c2, ..., cN]  c Œ {1, 2, ..., S}	 (1)

	 b =	[b1, b2, ..., bN]  b Œ {R}	 (2)

	 p =	[p1, p2, ..., pN + 1]  p Œ {R}	 (3)

Writing data to an address x involves writing the NF parameters {c, b, p} to all the hard locations within 
the threshold distance a of x.

Reading from an address x is the sum of the neuro fuzzy output of all the hard locations within the 
threshold distance a of x, as illustrated in Figure 1.

Figure 1: Hard locations within threshold distance constitute 
the output of reading from address x

The contributory fuzzy output in reading from an address x, for each hard location [7] is realized by 
the following:
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storage and retrieval of neuro fuzzy parameters3.	
The SDNF architecture is initialized with randomly distributed hard locations in a vastly sparse array. The 
parameters stored in these locations are {c, b, p}, where c is the address of the hard location. Parameters b 
and p are the neuro fuzzy parameters used to calculate the neuro fuzzy output from equations 5 and 6.

The threshold distance a is key to the efficiency of read and write operations. As the distance a increases 
from 1 to S, a small sub-hypercube with the same dimensionality of the SDNF space grows from a single 
element (a = 1) to encompass the entire space (a = S). The capacity of the sub-hypercube with respect to 
the SDNF capacity is initially infinitesimal, until the distance reaches some critical value, where it can be 
likened to a “bubble” that suddenly pops into existence such that the area of interest becomes discernable 
in comparison to the overall space as illustrated in Figure 2. Below this critical distance, the probability that 
there are hard locations within the area of interest is almost zero and the SDNF output would be equal to 
zero. In other words, Figure 2 provides the relationship between the threshold distance a and its ability to be 
discerned as a significant sub-entity of a 10-dimensional SDNF space with each dimension 50 units long.

Figure 2: Relationship between the threshold distance and Capacity ratio

If a is too close to S, then the number of hard locations within the area of interest m would be close to H, 
the total number of hard locations in the space. Computing the output would be computationally exhausting, 
similar to realizing an output from an artificial neural network where all the neurons are evaluated for all 
inputs. For efficiency, the threshold distance is therefore chosen just above the critical distance such that 
no more than a few hard locations are to be evaluated for any input.

Once the critical distance a is selected, this is set in the address decoder function. This function presents 
the input to the addresses of all the hard locations in parallel as shown in Figure 3. Only the hard locations 
with addresses within the threshold distance of the long vector input fires.

Figure 3: Instant addressing of locations within area of interest from the SDNF Memory
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When the SDNF is initialized, the address of the hard locations c, are pre-allocated as well as the b 
and p fuzzy parameters. Writing data to an address is done by presenting an [address output] pair to the 
SDNF model. An error function between the SDNF output and the write output is then iteratively back 
propagated to the SDNF model, where the locations {c, b, p} parameters of the hard locations within the 
area of interest are updated until the error is minimized. The data is therefore distributed among the several 
hard locations within the area of interest.

Testing and Results4.	
The SDNF model was applied to model two standard, higher order complex models, which are well-
known time-series based models. These are Mackey Glass time series [17, 18] and US Dollar to British 
Pound Exchange Rate [16]. Both of these models are considered as a good benchmarking systems for both 
high dimensional and chaotic systems The parameters for the test were as follows: S = 100, N = 5, a = 30 
(critical distance) and H = 200. The SDNF model was used to predict the next value in the time series given 
a sequence of its previous outputs, so SDNF input was previous values in the time series and the SDNF 
output was the next value in the time series.

Mackey Glass time series model is considered for the first case study. This percentage root mean square 
(RMS) error between the SDNF output and the Expected output was 5%. Figure 4 shows the simulated 
response for the Mackey Glass time series, where the SDNF output closely tracks the Expected Output.

Figure 4: The Response of the SDNF Model to the Mackey Glass Time Series

US Dollar to British Pound Exchange Rate data series model specifically during the period 1981 to 
2005 is considered for the second case study. The proposed SDNF was applied to this time series model 
to test the adaptability of the SDNF model is real data from the

The percentage RMS error between the SDNF output and the Expected output was 6%, and the output 
response is shown in Figure 5 below. This graph shows close tracking between the SDNF output and the 
expected output.

Discussion5.	
Evaluation of the sparse array demonstrated that an average of about 5-10 hard locations are called for 
each read operation from the SDNF model, so not all 200 hard locations are required to be evaluated for 
each read operation.
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Figure 5: The Response of the SDNF Model to real data for the Exchange Rate between the 
US Dollar and the British Pound

The accuracy of the output can be increased by increasing the number of hard locations within the SDNF 
model, thereby increasing the average number of hard locations within each area of interest.

The SDNF model has proven to be able to model complex nonlinear processes within 5% accuracy, 
as shown by the responses of Figures 4 and 5. Both models are chaotic, non-linear time series, which are 
difficult to model using traditional neuro fuzzy techniques.

As the number of dimensions N is increased, the critical distance increases, and hence the threshold 
distance has to be increased in order to determine an output.

Higher dimensional models have proven save on CPU memory, both RAM and ROM. This is a result 
of the way in which sparse matrices are stored where pre-allocation of memory is done for only non-zero 
locations.

The address decoder function which was developed has been developed based on neural networks 
working in parallel, where the same input is presented to the same network layer at the same time. This 
has proven more computationally efficient than sequentially calculating the distance of each hard location 
to the area of interest.

The way in which the address decoder operates resembles the response of the human brain to stimuli. 
For example the address decoder tolerates small errors in the input vector, similar to the way in which a 
visual object known by the brain can be recognized even though it is hardly likely that it is seen from the 
same perceptive. That is, the input to the brain is tolerant to small variances to its input.

The distributed nature of the data that is stored in the SDNF model has its origin from observations 
that certain brain cells may die and/or regenerate but the data is not lost because the knowledge is thought 
to be distributed among a cluster of cells. This approach is computationally efficient than traditional 
neuro fuzzy techniques which require exhaustive realization of all the neuro fuzzy elements to achieve an 
output.

The SDNF model therefore is thought to be a suitable container for mapping of human knowledge in 
trying to develop a model for the human brain, as well as other high order models which have previously 
thought to be elusive to the field of neuro fuzzy techniques.
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Conclusion6.	
The need and basis for a sparse distributed neuro fuzzy model which is applicable for high dimensional 
system modeling has been proposed. Its conceptualization and construction has been timely since the 
curse of dimensionality and explosion of rules have formed a virtual glass ceiling in applications of high 
dimensional neuro fuzzy techniques. The architecture has been demonstrated to be computationally efficient, 
and its application to model two well-known complex nonlinear processes has been presented.
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