SOME REMARKS ON COMPLETELY α-IRRESOLUTE FUNCTIONS

Govindappa Navalagi, Abdullah M. Abdul-Jabbar

Abstract

Chae *et al.* [4] (resp. Navalagi G. B. [14]) have studied the concept of NAcontinuous (resp. completely α -irresolute) functions. Now, the aim of this paper we note that NA-continuous functions and completely α -irresolute functions are the same definitions. Also, we investigate several new properties of completely α -irresolute functions are obtained. It is shown that, if f_1 and f_2 are completely α -irresolute functions of a space X into an α -Hausdorff space Y, then the set {x $\in X: f_1(x) = f_2(x)$ } is δ -closed in X.

1. INTRODUCTION

Njastad O. [15] defined an α -set in a space as a set S such that S \subset Int(Cl(Int(S))). Maheshwari S. N. [11] defined a feebly open set as a set S such that there exists an open set U such that U \subset S \subset sCl(U), where sCl(U) denotes the semi-closure operator. It was shown in [7] that α -sets and feebly open sets are the same sets in any space. Recently, Chae *et al.* [4] (resp. Navalagi G. B.[14]) have studied the concept of NA-continuous (resp. completely α -irresolute) functions. Now, in the present paper we note that NA-continuous functions and completely α -irresolute functions are the same definitions. It is known in Chae *et al.* (1986) that the type of NA-continuous functions is stronger than the class of super-continuous functions due to Munshi [13], and weaker than the class of strongly continuous functions due to Arya S. P.[1].

The purpose of the present paper is to investigate further properties of completely α -irresolute functions.

2. PRELIMINARIES

Throughout the present paper, spaces always mean topological spaces on which no separation axiom is assumed unless explicitly stated. Let S be a subset of a

2000 Maths. Sub Classification: 54A05, 54C08, 54D10.

Key words and phrases: α -open sets, completely α -irresolute functions, regular open sets, α -Hausdorff space, α -compact space.

space X. The closure of S and the interior of S are denoted by Cl(S) and Int(S), respectively. A subset S is said to be α -open [15] (resp. θ -open [19]) if S \subset Int(Cl(Int(S)))(resp. if for each x \in S, there exists an open set U in X such that x \in U \subset Cl(U) \subset S [17]). It is well-known that for a space (X, τ), X can be retopologized by the family τ^{α} of all α -open sets of X[10] and also the family τ^{θ} of all θ -open set of X[19], that is, τ^{θ} (called θ -topology) and τ^{α} (called an α -topology) are topologies on X, and it is obvious that $\tau^{\theta} \subset \tau \subset \tau^{\alpha}$.

A subset S of a space X is called regular open (resp. regular closed) set if S = Int (Cl(S)) (resp. S= Cl(Int(S)). A subset S of a space X is called δ -open [19] for each $x \in S$, there exists an open set U in X such that $x \in U \subset Int(Cl(U)) \subset S$. The family of all α -open (resp. regular open, θ -open and δ -open) sets of X is denoted by $\alpha O(X)$ (resp. RO(X), $\theta O(X)$ and $\delta O(X)$). The complement of an α -open (resp. regular open, θ -open and δ -open) sets of X is called α -closed (resp. regular closed, θ -closed and δ -closed) set.

A function $f: X \rightarrow Y$ is said to be α -strongly θ -continuous [5] if for each $x \in X$ and each α -open set H of Y containing f(x), there exists an open set U of X containing x such that $f(Cl(U)) \subset H$. A function $f: X \rightarrow Y$ is said to be strongly α irresolute[6] (resp. NA-continuous [4]) if and only if for each α -open (resp. feebly open) subset H of Y, $f^{-1}(H)$ is open (resp. δ -open) in X. A space X is said to be an extremely disconnected [18, p.32] if the closure of each open set of X is open in X. A space X is said to be semi-regular if the family of regularly open sets forms a base for the topology of X. A subset S of a space X is said to be N-closed [16] relative to X if each cover $\{G_i : i \in I\}$ of S by open sets of X, there exists a finite subset I_0 of I such that $S \subset \cup {Int(Cl(G_i)): i \in I_0}$.

3. MAIN RESULTS

DEFINITION 3.1[14]: A function $f: X \rightarrow Y$ is said to be completely α -irresolute if the inverse image of each α -open set of Y is regular open in X.

THEOREM 3.1: Let $f: X \to Y$ be a function. Let \mathcal{B} be any basis for σ^{α} in Y. Then *f* is completely α -irresolute functions if and only if for each $B \in \mathcal{B}, f^{-1}(B)$ is a regular open subset of X.

LEMMA 3.1[20]: Let $R \in RO(A)$ and $A \in RO(X)$, then $R \in RO(X)$.

THEOREM 3.2: Let $f: X \rightarrow Y$ be any function. If for each $x \in X$, there exists a regular open set R containing x such that f | R is completely α -irresolute function, then f is completely α -irresolute function.

PROOF: Let $x \in X$ and let H be any α -open subset containing f(x). Then, there exists a regular open set R containing x such that $f \mid R$ is completely α -irresolute function. Therefore, by [14, Theorem 3.3], there exists a regular open set W in R containing x such that $f \mid_R (W) \subset H$. Since R is regular open. Therefore, by Lemma 3.1, W is regular open in X and hence $f(W) \subset H$. Thus, *f* is completely α -irresolute function.

LEMMA 3.2: If $f: X \rightarrow Y$ is completely α -irresolute function, then $f^{-1}(V)$ is regular closed for any nowhere dense subset V of Y.

PROOF: Let V be any nowhere dense in Y. Then $Int(Cl(V)) = X \setminus Int(X \setminus V)$. Thus, we have $X = Int(Cl(Int((X \setminus V))))$, for $Int(Cl(V)) = \phi$. Thus, $Y \setminus V$ is α -open in Y. Hence $f^{-1}(V)$ is regular closed in X since $f^{-1}(Y \setminus V) = X \setminus f^{-1}(V)$ is regular open and *f* is completely α -irresolute function.

THEOREM 3.3: (Restricting the range)

If $f : X \rightarrow Y$ is completely α -irresolute function and f(X) is taken with the subspace topology, then $f : X \rightarrow f(X)$ is completely α -irresolute function.

PROOF: $f: X \to Y$ is completely α -irresolute function implies $f^{-1}(H)$ is regular open, where H is some α -open subset of Y. Now $f^{-1}[H \cap f(X)] = f^{-1}(H) \cap f^{-1}[f(X)] = f^{-1}(H) \cap X = f^{-1}(H)$ is regular open. Therefore, $f: X \to f(X)$ is completely α -irresolute function.

THEOREM 3.4: Let X be an extremely disconnected. If $f: X \rightarrow Y$ is completely α -irresolute function, then it is α -strongly θ -continuous function.

PROOF: Suppose that X is an extremely disconnected and *f* is completely α -irresolute function. Let H be any α -open set of Y. Since *f* is completely α -irresolute function. Therefore, $f^{-1}(H)$ is regular open in X. But X is an extremely disconnected. Then, by [3, Lemma 2.18], $f^{-1}(H)$ is θ -open. Thus, by [5, Theorem 2], *f* is α -strongly θ -continuous.

DEFINITION 3.2: A space X is said to be r-disconnected if there exists two regular open sets R and W such that $X = R \cup W$ and $R \cap W = \phi$, otherwise X is called r-connected.

THEOREM 3.5: If X is r-connected space and $f : X \rightarrow Y$ is completely α -irresolute surjection, then Y is α -connected.

PROOF: Suppose Y is not α -connected. Then, there exist non empty α -open sets H₁ and H₂ in Y such that H₁ \cap H₂ = ϕ and H₁ \cup H₂ = Y and since *f* is completely

α-irresolute functions, then we have $f^{-1}(H_1) \cap f^{-1}(H_2) = \phi$ and $f^{-1}(H_1) \cup f^{-1}(H_2) = X$. Since *f* is surjection, then $f^{-1}(H_j) \neq \phi$ and $f^{-1}(H_j) \in RO(X)$, for j = 1, 2. This indicated that X is not r-connected. This is a contradiction.

COROLLARY 3.1: Let A be r-connected subset of a topological space X, and let *f* be a completely a-irresolute function of X into a topological space Y. Then f(A) is α -connected.

THEOREM 3.6: For a topological space X to be *r*-disconnected it is necessary and sufficient that there exists a surjection completely α -irresolute function of X onto a discrete space containing more than one point.

PROOF: The condition is sufficient by Theorem 3.5.

Conversely, if X is r-disconnected, there exist two non empty disjoint regular open subsets R and W whose union is X, and the function *f* of X onto a discrete space of two elements $\{a, b\}$, defined by $f(A) = \{a\}$ and $f(B) = \{b\}$, is completely α -irresolute function.

THEOREM 3.7: Let $f: X \rightarrow Y$ be a strongly α -irresolute function from a semiregular space X into Y. Then f is completely α -irresolute

PROOF: Let $x \in X$ and H be an α -open set containing f(x). Then, $f^{-1}(H)$ is open in X since f is strongly α -irresolute. Therefore, there is an open subset U of x such that $x \in U \in Int(Cl(U)) \subset f^{-1}(H)$, since X is semi-regular. Hence f is completely α -irresolute function.

REMARK 3.1: Every open set in a T_3 -space can be written as the union of regular open sets.

COROLLARY 3.2: Let X be a T₃-topological space and let $f: X \rightarrow Y$ be strongly α -irresolute, then f is completely α -irresolute function.

PROOF: Every regular (or T_3) space is semi-regular.

DEFINITION 3.3: A space X is said to be α -Hausdorff [6](resp. rT₂[2]) if for any x, y \in X, x \neq y, there exist α -open(resp. regular open) sets G and H such that x \in G, y \in H and G \cap H = ϕ .

THEOREM 3.8: Let $f: X \rightarrow Y$ be injective and completely α -irresolute function. If Y is α -Hausdorff space, then X is rT_{2} .

PROOF: Let x and y be any two distinct points of X. Since f is injective, $f(x) \neq f(y)$. Now, Y being an α -Hausdorff space, there exist two disjoint α -open sets G

and H such that $f(x) \in G$, $f(y) \in H$. Since *f* is completely α -irresolute function, it follows that $f^{-1}(G)$ and $f^{-1}(H)$ are disjoint regular open sets containing x and y, respectively. Hence X is rT_{2} .

Recall that a space (X, τ), X is called α -compact [8] if every α -open cover of X has a finite subcover.

DEFINITION 3.4: For a space (X, τ) , let A be a subset of X. Then A is said to be α -compact relative to X [8] if every cover of A by α -open sets of X has a finite subcover.

THEOREM 3.9: If $f: X \rightarrow Y$ is completely α -irresolute function and F is N-closed subspace relative to X, then f(F) is α -compact relative to Y.

PROOF: Let $\{H_i : i \in I\}$ be a cover of f(F) by α -open sets in Y. For each $x \in F$, there exists an $i(x) \in I$ such that $f(x) \in H_{i(x)}$. Since f is completely α -irresolute function, there exists a regular open set R_x of x such that $f(R_x) \subset H_{i(x)}$. The family $\{R_x : x \in F\}$ is a regular open cover of F. For some finite subset F_0 of F, we have $F \subset \cup \{R_x : x \in F_0\}$ and hence $f(F) \subset \cup \{H_{i(x)} : x \in F_0\}$. This shows that f(F) is α -compact relative to Y.

THEOREM 3.10: Let $g : X \to Y_1 \times Y_2$ be completely α -irresolute function, where X, Y_1 and Y_2 are any topological spaces. Let $f_i : X \to Y_i$ defined as follows:

For $x \in X$, $g(x) = (x_1, x_2)$, $f_i(x) = x_i$ for i = 1, 2. Then $f_i : X \rightarrow Y_i$ is completely α -irresolute function, for i = 1, 2.

PROOF: Let x be any point in X and H₁ be any α -open set of Y₁ containing

 $f_1(\mathbf{x}) = \mathbf{x}_1$, then $\mathbf{H}_1 \times \mathbf{Y}_2$ is α -open in $\mathbf{Y}_1 \times \mathbf{Y}_2$, which contain $(\mathbf{x}_1, \mathbf{x}_2)$.

Since g is completely α -irresolute function. Therefore, by [14, Theorem 3.3], there exists a regular open set R containing x such that $g(\mathbf{R}) \subset \mathbf{H}_1 \times \mathbf{Y}_2$. Then $f_1(\mathbf{R}) \times f_2(\mathbf{R}) \subset \mathbf{H}_1 \times \mathbf{Y}_2$. Therefore, $f_1(\mathbf{R}) \subset \mathbf{H}_1$. Hence f_1 is completely α -irresolute function. Similar statement for f_2 is completely α -irresolute function.

THEOREM 3.11: If $f: X \rightarrow Y$ is completely α -irresolute function, $g: X \rightarrow Y$ is continuous and Y is Hausdorff, then the set $\{y \in X : f(y) = g(y)\}$ is δ -closed in X.

PROOF: Let $A = \{y \in X : f(y) = g(y)\}$ and $x \in X \setminus A$. Then $f(x) \neq g(x)$. Since Y is Hausdorff, there exist open (α -open) sets H_1 and H_2 in Y such that $f(x) \in H_1$, $g(x) \in H_2$ and $H_1 \cap H_2 = \phi$. Since *f* is completely α -irresolute function. Therefore, by [4, Theorem 2.1], there exists a regular open set R containing x such that $f(R) \subset H_1$. Since *g* is continuous, there exists an open set U in X containing x such that g

(U) \subset H₂. Now, put R* = R \cap U, then by [4, Lemma 2.6], R* is regular open set in the subspace R and hence it is regular open in X containing x and *f*(R*) \cap g (R*) \subset H₁ \cap H₂ = ϕ . Therefore, we obtain R* \cap A = ϕ . This shows that A is δ -closed in X.

THEOREM 3.11: If f_1 and f_2 are completely α -irresolute functions of a space X into an α -Hausdorff space Y, then the set $\{x \in X: f_1(x) = f_2(x)\}$ is δ -closed in X.

PROOF: Let $A = \{x \in X: f_1(x) = f_2(x)\}$. If $x \in X \setminus A$, then we have $f_1(x) \neq f_2(x)$. (x). Since Y is α -Hausdorff, there exist α -open sets H_1 and H_2 in Y such that $f_1(x) \in H_1, f_2(x) \in H_2$ and $H_1 \cap H_2 = \phi$. Since f_j is completely α -irresolute functions, there exists a regular open set R_j in X containing x such that $f_j(R_j) \subset H_j$, where j = 1, 2. Put $R = R_1 \cap R_2$, then R is a regular open set in X containing x and $f_1(R) \cap f_2(R) \subset R_1 \cap R_2 = \phi$. This implies that $R \cap A = \phi$ and hence A is δ -closed in X.

LEMMA 3.2[12]: Let X_1 and X_2 be topological spaces with topologies τ_1 and τ_2 , respectively. Let $\tau_{\delta 1}$ and $\tau_{\delta 2}$ denote the topologies generated by regularly open sets of X_1 and X_2 , respectively. If τ denote the product topology of $X_1 \times X_2$ and τ_{δ} denote the topology generated by the regularly open sets of $X_1 \times X_2$, then $\tau_{\delta 1} \times \tau_{\delta 2} = \tau_{\delta}$.

THEOREM 3.13: If Y is an α -Hausdorff space and $f: X \rightarrow Y$ is completely α -irresolute function, then the set A={ $(x_1, x_2): f(x_1) = f(x_2)$ } is δ -closed in the product space X×X.

PROOF: If $(x_1, x_2) \in X \times (X \setminus A)$, then we have $f(x_1) \neq f(x_2)$. Since Y is α -Hausdorff, there exist α -open sets H_1 and H_2 in Y such that $f(x_1) \in H_1, f(x_2) \in H_2$ and $H_1 \cap H_2 = \phi$. Since *f* is completely α -irresolute function. Therefore, by [4, Theorem 2.1], there exists a δ -open set U_i containing x_i such that $f(U_i) \subset H_i$, where j = 1, 2.

Put $U = U_1 \times U_2$, then by Lemma 3.2, that U is a δ -open set in X×X containing (x_1, x_2) and $A \cap U = \phi$. This shows that A is δ -closed in the product space X×X.

THEOREM 3.14: If $f_i : X_i \to Y_i$ is completely α -irresolute function, for i = 1, 2. Let $f : X_1 \times X_2 \to Y_1 \times Y_2$ be a function defined as follows:

 $f(\mathbf{x}_1, \mathbf{x}_2) = (f_1(\mathbf{x}_1), f_2(\mathbf{x}_2))$. Then f is completely α -irresolute function.

PROOF: Let $H_1 \times H_2 \subset Y_1 \times Y_2$, where H_i is α -open in Y_i , for i = 1, 2, then $f^{-1}(H_1 \times H_2) = f_1^{-1}(H_1) \times f_2^{-1}(H_2)$, since f_i is completely α -irresolute function, for i = 1, 2. By, Definition 3.1 and Theorem 3.10 of [9], $f^{-1}(H_1 \times H_2)$ is regular open in $X_1 \times X_2$. Now if H is any α -open subset of $Y_1 \times Y_2$, then $f^{-1}(H) = f^{-1}(\bigcup H_{\alpha})$, where H_{α} is of the form $H_{\alpha 1} \times H_{\alpha 2}$. Therefore, by Lemma 3.2, $f^{-1}(H) = \bigcup f^{-1}(H_{\alpha})$ is δ -open in $X_1 \times X_2$, which completes the proof.

THEOREM 3.15: Let $f : X \rightarrow Y$ be a completely α -irresolute function on X into an α -Hausdorff space Y. If M is an α -compact subset of Y, then $f^{-1}(M)$ is a δ -closed subset of X.

PROOF: Suppose $f^{-1}(M)$ is not δ -closed in X. Then, there exists an $x \in$ IntCl $(f^{-1}(M))$, but $x \notin f^{-1}(M)$, it follows that $f(x) \neq m$. Now for each $m \in M$, there exist α -open sets $W_m(f(x))$ and H (m) containing f(x) and m, respectively such that

 $W_m(f(x)) \cap H(m) = \phi$ because Y is α -Hausdorff. By construction, $M \subset \bigcup_{m \in M} H(m)$, and since M is α -compact. Therefore, there exists a finite subfamily {H(m) : i = 1,

2,..., n} such that
$$M \subset \bigcup_{i=1}^{n} H(m_i)$$
. Let $H^* = \bigcup_{i=1}^{n} H(m_i)$ and $W^* = \bigcap_{i=1}^{n} W_{m_i}(f(x))$

Then $M \subset H^*$ and $H^* \cap W^* = \phi$. Since each $W_{m_i}(f(x))$ is an α -open set of f(x), it follows that W^* is an α -open set of f(x). Since f is completely α -irresolute function. Therefore, by [4, Theorem 3.3], there exists a regular open set U containing x such that $f(U) \subset W^*$. But $x \in IntCl(f^{-1}(M))$. Therefore, $U \cap f^{-1}(M) \neq \phi$. Hence there exists $z \in U \cap f^{-1}(M)$, and so $f(z) \in f(U) \cap M \subset W^* \cap M \subset W^* \cap H^* = \phi$, which is contradiction. Hence $f^{-1}(M)$ is δ -closed.

Since every compactness implies α -compactness, we obtain from Theorem 3.15 the following corollary.

COROLLARY 3.3: For completely α -irresolute functions into α -Hausdorff spaces, the inverse image of each compact set is δ -closed.

ACKNOWLEDGEMENT: The First author acknowledges the University Grant Commission (UGC), New Delhi, India, for its Financial Support under M.R.P(S) No.: 013/2004 (Xth Plan) KAKA081/UGC-SWRO dtd. 18.3.2004.

REFERENCES

- Arya S.P. and Gupta R., On strongly continuous mappings, *Kyungpook Math. J.*, 14 (1974), 131-143.
- [2] Arya S.P., Separation Axioms for Bitopological Spaces, *Indian J. Pure Appl. Math.*, 19(1), 42-50, Jan(1988).
- [3] Chae G. I. and Noiri T., Weakly completely continuous functions, *UOU Report* **17(1)** (1986), 121-125.
- [4] Chae G. I., Noiri T. and Lee D. W., On NA-Continuous Functions, *Kyungpook Math.J.*, 26 (1), June (1986).

- [5] Chae G. I., Hatir E. and Yuksel S., α-strongly θ-continuous functions, J. Natural Science,
 (5) 1 (1995), 59-66.
- [6] Faro G. L., On Strongly α-irresolute Mappings, *Indian J. Pure Appl. Math.*, 18 (1) (February 1987), 146-151.
- [7] Greenwood Sina and Ivan L. Reilly., On feebly closed mappings, *Indian J. Pure Appl. Math.*, 17(9) (Sept 1986), 1101-1105.
- [8] Jangkovic D.S., Reilly I. L. and Vamanamurthy M.K., On strongly compact Topological Spaces, *Question and answer in General Topology*, 6(1) (1988).
- [9] Lee D.W. and Chae G.I., Feebly open sets and feebly continuity in topological Spaces, *UIT Report*, **15**(2) (1984), 367-371.
- [10] Maheshwari S.N. and Thakur S.S., On α-irresolute mappings, *Tamkang J. Math*, 11 (1980), 209-214.
- [11] Maheshwari S. N., Chae G. I. and Jain P.C., Almost feebly continuous functions, UIT Report, 13 (10) (1982), 195-197.
- [12] Munshi B.M. and Bassan D. S., Almost semi-continuous mappings, *The Math. Student*, (49) 3 (1981), 239-248.
- [13] Munshi B.M. and Bassan D.S., Super continuous mappings, *Indian J. Pure. Appl. Math.*, (13) 2 (1982), 229-236.
- [14] Navalagi G. B., On completely α-irresolute functions, http://at.yorku.ca/p/a/a/n/o3,aim/ index.htm.
- [15] Njastad O., On some classes of nearly open sets, *Pacific J. Math.* **15**(3) (1965), 961-970.
- [16] Noiri T., A generalization of perfect functions, J. London Math. Soc., (2) 17 (1978), 540-544.
- [17] Prasad R., Chae G. I. and Singth I. J., On weakly θ-continuous functions, UIT Report 14 (1) (1983), 133-137.
- [18] Steen L. A. and Seebach J. A., Counter Examples in Topology, Verlag New York. Heidelberg. Berlin (1978).
- [19] VeliČo N. V., H-closed topological spaces, Amer. Math. Soc. Trans 2 (1968) 103-118.
- [20] Yunis S. H., On some dimension functions and locally dimension functions, *M. Sc. Thesis, College of Science, Salahaddin-Erbil Univ.* (2001).

Govindappa Navalagi

Abdullah M. Abdul-Jabbar Department of Mathematics College of Science University of Salahaddin-Erbil, IRAQ *e-mail: m1abdullah@yahoo.co.uk*

Department of Mathematics KLE Society's, G. H. College, Haveri-581110, Karnataka, INDIA e-mail: gnavalagi@hotmail.com