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Abstract. We consider a class of hybrid control, relative to Markov-Feller
processes, where the discrete and the continuous type variables exchange
information when a signal arrives. These problems can also be studied as
optimal stopping and impulse control problems for a Markov-Feller process
where the controls are allowed only when a signal arrives. There are a few
references of the authors in the last years, where the HJB equation was solved
and an optimal control (for the optimal stopping problem and impulse control
problem) was obtained, under suitable conditions, including a setting on a
(locally) compact metric state space, a strictly positive cost-per-impulse, and
without multiple simultaneous impulses. In this work, we use these results to
discuss optimal switching problems for Markov-Feller processes on a locally
compact state-space under weaker conditions, as a particular case of optimal
hybrid control problems.

1. Introduction

The impulse control of Markov processes and its applications has been the
subject of numerous studies (e.g., see Bensoussan and Lions [2], Davis [10], Menal-
di [25], Robin [34], and the references therein, among other works). However,
impulse control problems where constraints are imposed on the possible stopping
times is not often considered. The constraint referred in the present paper could
be expressed as ‘control when a signal arrives’. For instance, in an impulse control
setting, xt is the Markov process to be controlled and the impulse times must be
the jump times of another Markov process yt, the ‘signal process’. Perhaps the
simplest model is the case when xt is a Wiener process in R and yt is a Poisson
process as in Dupuis and Wang [11].

Let us mention that reference related to optimal stopping with constraint in-
clude Lempa [20] and Liang [22], who studied particular cases of the model con-
sidered here, and that other classes of constraint have been considered, e.g., in
Egloff and Leippold [12]. Moreover, for impulse control with constraint, relevant
references include Brémaud [6, 7], Liang and Wei [23], and Wang [37]. A differ-
ent kind of constraint is considered in Costa et al. [9], where the constraints are
written as infinite horizon expected discounted costs.
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2 J.L. MENALDI AND M. ROBIN

Impulse control problems with constraint in this sense have been studied in
[28, 29, 30], when xt is a general Markov-Feller process and yt = t − τn, where
τn is an increasing sequence of instants such that Tn = τn − τn−1, for n ≥ 1 are,
conditionally to xt, IID random variables.

The aim of the present paper is to investigate the links of these problems with
hybrid models and to apply previous results to some hybrid situations in particular
when xt is a switching process. Moreover, we consider extensions of previous works
when the cost of impulses is not always strictly positive and when simultaneous
impulses can occur. The paper is organized as follows: Section 2 introduces hybrid
models. In section 3 the general framework and previous results are described. In
section 4, we show the application of these results to switching control and, in
Sections 5 and 6 we discuss weaker assumptions and the case of simultaneous
impulses.

2. Hybrid Models

The state of a continuous-time hybrid model has a continuous-type variable x
(with cad-lag paths) and a discrete-type variable n (with cad-lag piecewise constant
paths). The ‘signal’ is represented by the ‘jumps’ of the nt, and in general, this
signal enable any possible change in setting of the model, not only the ‘possibility
of controlling’ as studied in this paper (an others). The general idea is that the
usual evolution of the system is described by the component xt, and ‘once in a
while’ (or under some specific conditions) a discrete transition (i.e., a jump of nt

occurs) and everything may change, and the evolution continues thereafter, and
so, the paths t �→ (xt, nt) are usually discontinuous in probability. With this in
mind, the signal (to act, e.g., to control the system as in our model) is given by
the ‘hitting time’ of a set of states S, i.e., τ = inf{t > 0 : (xt, nt) ∈ S}, which plays
the role of a ‘set-interface’ for the continuous-type and discrete-type evolution. It
is convenient to refer the expression defining the signal τ (hitting time of the set-
interface) as the signal functional. This set-interface D may be given a priori or
used as part of the parameters of control, however, in this paper only a very simple
model is studied. Thus set-interface D may or may not be part of the control, if
it is then there are a maximum set-interface D∨ and a minimum set-interface D∧,
which have the following meaning: (a) the state cannot remain in D∧ so that an
impulse is mandatory, (b) outside of D∨ no impulse controls are allowed, and (c)
impulses are allowed (but not required) within the region D∨ �D∧. Always in a
general context, the sequence of signals (or simply the signals) {τk} are given by
a recurrence formula, beginning with a given state (x, n) at time t = 0 define

τk = inf{t > τk−1 : (xt, nt) ∈ D}, ∀k = 1, 2, . . . ,

and for convenience set τ0 = 0, which may or may not be a signal (depending
on the specific model). Versions of this model can be found in Bensoussan and
Menaldi [4, 5] and [27], and their references as well as many others. Also, a more
complete abstract model is being studied in a book to appear, see Jasso-Fuentes
et al. [19]).

It should be clear that this hybrid model includes almost all situations, but
particular examples requires some specific details, e.g., suppose a very simple case
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HYBRID MODELS AND SWITCHING CONTROL 3

where the signals {τk} is constructed from an independent identically distributed
(IID) sequence {Tk} of random variables (RVs), i.e., τk = τk−1 + Tk, k ≥ 1. If for
instance, these RVs {Tk} are exponentially distributed, as in Dupuis and Wang [11]
or Liang [22] (and others), where the signals was given as the jumps of a Poisson
process, then thanks to the memoryless property of the exponential distribution,
there is no need to know the ‘waiting time’ (i.e., how much time the controller has
been waiting for the signal) to have full information and be able to exert the control
of the system. In the case of a stochastic differential equations (SDE) driven by
a final dimensional Lévy process (i.e., a combination of a Wiener and a Poisson
measure, both in an Euclidean space), it is not so simple to model jumps with a
prescribed distribution (other than the exponential, e.g., see Çinlar and Jacod [8])
for the times between jumps, due to the fact that any Poisson measure (which acts
as the source of jumps) is such that the times between two consecutive jumps has
necessarily an exponential distribution. One way to overcome this difficulty is to
allow jumps following a semi-Markov process instead of a Markov process.

Thus, in a simple situation, we may imagine that the hybrid state evolution
(xt, nt) is a Markov process under a Markovian feedback control, even more, the
continuous-type variable xt could be a Markov process and the discrete-type vari-
able nt be a semi-Markov process. Within this assumption (as specified later),
is included the existence of a component of xt which is a non-negative process
yt representing the ‘time elapsed since the last jumps’ of nt. Hence, the con-
trolled Markov process governing the hybrid evolution may be better written as
(xt, yt, nt), where a specific component yt (essentially needed to complete nt from
semi-Markov to Markov) has been identified. Again, making some simplifications
(or decomposition), a (simple) typical hybrid model could have two components,
(xt, yt) and (xt, nt), which are (each of them) a controlled Markov process condi-
tioned to the other. This means that, in the case of a SDE, the coefficients defining
the SDE for xt may also depends on (yt, nt) and the coefficients defining the SDE
for nt may also depend on (xt, yt). However, it is not so clear what should be the
SDE for yt, since the ‘waiting time’ (called signal process) is usually defines as
yt = t− sup{s ≤ t : ns �= nt}, see also Brémaud [6], Davis [10].

One of our main interests is on the signal process yt, so that we try to minimize
the possible actions of the control, i.e., only impulse controls as described below
are allowed. Moreover, the discrete-type process (jump process) nt is a semi-
Markov (jump) process, which may be denoted by zt. Thus, in short, we are
going to discuss an impulse control problem with constraint as in [29], but impulse
controls becomes switching controls, which are allowed only at the jump-times of
the Markov process zt. Precise assumptions are given in the next section.

Example 2.1. Before going further, let us make a more specific example of a
hybrid (or switching) control model with state (xt, nt, yt). Suppose xt belonging
to a Polish (i.e., complete, separable and metric) space E, represents, say, the
difference between the production and the demand of a product. There are two
modes of operation, n = 1 (normal) and n = 2 (degraded). When the mode
is n = 1, the uncontrolled process xt evolves as a Markov-Feller process with
infinitesimal generator An

x . When n = 1, there is a transition to n = 2 after
an exponentially distributed time (with parameter a > 0); and when n = 2, the
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4 J.L. MENALDI AND M. ROBIN

mode remains at 2 (actually, the situation where this mode of operation is no more
sustainable and a ‘replacement’ in necessary, could also be accommodated in this
model, as well as many other variations). The control action is the transition from
mode 2 to mode 1. There is a running cost f(x, n), n = 1, 2, and a transition from 2
to 1 cost c > 0. So the control can act only when n = 2, and is an impulse (rather a
jumps or switching) on the discrete component (the mode) nt. In addition, there is
a constraint on the impulse which have to be the jump times of the signal process
yt with infinitesimal generator Ayϕ(y) = ∂yϕ(y) + λ(y)[ϕ(0) − ϕ(y)],where ∂y
denotes the derivative with respect to y and λ is the intensity, i.e., a non-negative
integrable function on any bounded interval, but with an infinite integral in the
whole [0,+∞[. Thus we have (xt, nt, yt) as the state of the system at time t ≥ 0,
and we formulate the optimal control problem, for instance, as the minimization
of the cost

Jxny(ν) = Eν
xny

{∫ ∞

0

e−αtf(xt, nt)dt+
∑
i≥1

e−αθic
}

with a discount factor α > 0 and an admissible impulse control ν = {θi}, which is
an increasing sequence of stopping times, θi → ∞, satisfying yθi = 0 and θ1 > 0.
The optimal cost un(x, y) = inf{Jxny}, and the dynamic programming yields the
following Hamilton-Jacobi-Bellman (HJB) equation

A1
xu1(x, y)− a[u2(x, y)− u1(x, y)]− ∂yu1 − λ(y)[u1(x, 0)− u1(x, y)] +

+ αu1(x, y) = f1(x),

A2
xu2(x, y)− ∂yu2 − λ(y)[u2(x, 0)− u2(x, y)] +

+ λ(y)[u2(x, 0)−Mu1(x, 0)]
+ + αu2(x, y) = f2(x),

where fn(x) = f(x, n) and Mu1(x, 0) = c+ u1(x, 0).

The arguments in [29] and Jasso-Fuentes et al. [18] can be combined and ex-
tended (although not immediately) to the case E locally compact to treat the
discounted cost ‘switching case’ just described above. For E compact, the argu-
ments in [30] can be used to address the ergodic case, but for a locally compact
E with an ergodic cost is more delicate. In other words, the switching models
require a better discussion, they are not simple adaptation of previous arguments.
Certainly, all this is very related to the switching diffusion models, e.g., the reader
may check the books by Yin and Zhang [38, 39], Yin and Zhu [40], as well as
several references therein.

3. Impulse Control Models

In short, a switching control problem for a Markov-Feller process with a dis-
counted cost is considered, but all switching controls are allowed only when a signal
arrives, however the details are many. First we need to describe the uncontrolled
process and later to introduce the switching controls, all this in a general setting.

3.1. The uncontrolled process. For a purely impulse control model, the dis-
crete-type component nt used in the hybrid model is ignored (because only one
possibility is involved) and the continuous-type component xt is actually composed
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HYBRID MODELS AND SWITCHING CONTROL 5

by two parts (xt, yt), as they were called, the reduced state xt and the signal process
yt, which will serve to express the constraint. Thus, for the impulse control model,
the uncontrolled state is (xt, yt), where xt will later be impacted by the control,
and certainly, xt can include a component with discrete values (useful for the
switching model as seen later).

Basic Notations: • R+ = [0,∞[, E locally compact (actually, when convenient
and to simplify or to reduce difficulties, we may impose ‘compactness’ and dis-
cuss later an extension to the locally compact case). separable and complete
metric space (in short, a locally compact Polish space), and abusing notation
N = {1, . . . , N}, also N0 = {0, 1, . . .} (i.e., natural numbers N = {1, 2, . . .} and

0), and the extended numbers N0 = N0 ∪ {∞}, R+
= [0,∞]; • B(Z) the Borel

σ-algebra of sets in Z, B(Z) the space of real-valued Borel and bounded func-
tions on Z, Cb(Z) the space of real-valued continuous and bounded functions on
Z, C0(Z) real-valued continuous functions vanishing at infinity on Z, i.e., a real-
valued continuous function v belongs to C0(Z) if and only if for every ε > 0 there
exists a compact set K of Z such that |v(z)| < ε for every z in Z �K (typically
E = Rd and this means that v(z) → 0 as |z| → ∞), and also, if necessary, B+(Z),
C+

b (Z), C+
0 (Z) for non-negative functions; usually either Z = E or Z = E × R+;

• the canonical space D(R+, Z) of cad-lag functions, with its canonical process

zt(ω) = ω(t) for any ω ∈ D(R+, Z), and its canonical filtration F0 = {F0
t : t ≥ 0},

F0
t = σ(zs : 0 ≤ s ≤ t).

Assumption 3.1. Let (Ω,F, xt, yt, Pxy) be a (realization of a) strong and normal
homogeneous Markov process , on Ω = D(R+, E×R+) with its canonical filtration
universally completed F = {Ft : t ≥ 0} with F∞ = F , where (xt, yt) is the
canonical process having values in E × R+, and Exy (or Ex,y when a confusion
may arrive) denotes the expectation relative to Pxy.
(a) It is also assumed that xt is a Markov process by itself (referred as the

reduced state), with a C0-semigroup Φx(t) (i.e., Φx(t)C0(E) ⊂ C0(E), ∀t ≥ 0),
and infinitesimal generator Ax with domain D(Ax) ⊂ C0(E).
(b) The process yt (referred to as the signal process) has jumps to zero at times

τ1, . . . , τn → ∞ and yt = t − τn for τn ≤ t < τn+1 (i.e., τ1 is the time of the first
jump –to zero– of yt, each jump is ‘the signal’ and yt is exactly the ‘time elapsed
since the last jump or signal’), and if y0 = 0 and τ0 = 0 then it is assumed that
conditionally to xt, the intervals between jumps Tn = τn − τn−1 are independent,
identically distributed random variables with a non-negative intensity function
λ(x, y), i.e.,

Px0{τ1 ≥ t | xs, s ≤ t} = exp
(
−

∫ t

0

λ(xs, s)ds
)
, ∀t ≥ 0, ∀x ∈ E,
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6 J.L. MENALDI AND M. ROBIN

which is continuous and bounded.
(c) Beside having Px0{τ1 < ∞} = 1, and the intensity λ(x, y) being a non-

negative continuous and bounded function, the following equality and estimate

Ex0{τ1} := Ex

{∫ ∞

0

tλ(xt, t) exp
(
−

∫ t

0

λ(xs, s)ds
)
dt
}
=

= Ex

{∫ ∞

0

exp
(
−

∫ t

0

λ(xs, s)ds
)
dt
}
≤ K, ∀x,

hold true for some constant K > 0.

Remark 3.2. Actually, the condition (b) above does not forbid an intensity λ(x, y)
having a bounded support (or even being integrable on ]0,∞[), and therefore a
signal such that τ1 = ∞ with a positive probability. Note also that under condition
(c), a bounded intensity λ(x, y) cannot have a compact support, since

exp
(
−
∫ t

0

λ(xs, s)ds
)
→ 0 as t → ∞.

Thus, adding condition (c) the current analysis is simplified, without assuming
that the intensity λ(x, y) is bounded below by a strictly positive constant. Some
other generalizations will be the object of a further discussion elsewhere.

Remark 3.3. Actually, we begin with a realization of the reduced state process xt

on the canonical space D(R+, E) and the signal process yt is constructed based
on the given intensity λ(x, y), and this procedure yields a C0(E ×R+)-semigroup
denoted by Φxy(t). Thus, in view of Palczewski and Stettner [32], all this implies
that both semigroups Φx(t) and Φxy(t) have the Feller property, i.e., Φx(t)Cb(E) ⊂
Cb(E) and Φxy(t)Cb(E ×R+) ⊂ Cb(E ×R+), and since only a strong and normal
Markov process is assumed, the semigroup Φxy(t) is (initially) acting on B(E×R+)
and so, weak (or stochastic) continuity is deduced from the assumption of a cad-lag
realization, which means that

(x, y, t) �→ Exy{h(xt, yt)} is a continuous function, (3.1)

for any h in Cb(E × R+). In [28, 29, 30] a probabilistic construction of the signal
process yt was described, but there are other ways to constructing Φxy(t). For
instances, begin with the process (xt, ỹt) with ỹt = y + t having infinitesimal
generator A0 = Ax+∂y and a C0(E×R+)-semigroup. Then, add the perturbation
Bh(x, y) = λ(x, y)[h(x, 0) − h(x, y)], which is a bounded operator generating a
C0(E × R+)-semigroup, with domain D(B) = C0(E × R+). Hence Axy = A0 +B
generates a C0(E × R+)-semigroup, with D(Axy) = D(A0), e.g., see Ethier and
Kurtz [13, Section 1.7, pp. 37–40, Thm 7.1]. Therefore Axy will also denote
the weak infinitesimal generator in Cb(E × R+), in several places of the following
sections.

Remark 3.4. Note that Assumption 3.1 (b) on the signal process yt means, in
particular, that

Px0

{
Tn ∈ (t, t+ dt) | xs, 0 ≤ s ≤ t

}
= λ(xt, t) exp

(
−

∫ t

0

λ(xs, s)ds
)
dt, (3.2)
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HYBRID MODELS AND SWITCHING CONTROL 7

and then it is deduced that Φxy(t) has an infinitesimal generator Axy = Ax + Ay

with

Ayϕ(x, y) = ∂yϕ(x, y) + λ(x, y)[ϕ(x, 0)− ϕ(x, y)], (3.3)

and recall that ∂y denotes the derivative with respect to y, and that λ ≥ 0 and
λ ∈ Cb(E×R+). Moreover, using the law of T1 as in (3.2) and the Feller property
of (xt, yt), it is also deduced that

(x, y) �→ Exy

{
e−ατ1g(xτ1)

}
belongs to Cb(E × R+), (3.4)

for any g in Cb(E) and any α ≥ 0. Note that if y0 = y then τ1 is random variable
independent of T1, T2, . . . with distribution Px0{T1 ∈ · | y0 = y}. Furthermore, in
turn, by applying Dynkin’s formula to Axyϕ(x, y) + αϕ(x, y) = f(x, y), it follows
that

(x, y) �→ Exy

{∫ τ1

0

e−αtf(xt, yt)dt
}

is in Cb(E × R+), (3.5)

for any f in Cb(E × R+) and any α > 0.

Remark 3.5. Note that because λ(x, y) is bounded (it suffices for y near 0), there
exists a constant a such that Px0{τ1 ≥ a > 0} ≥ a > 0, for any x in E. Moreover,
from Assumption 3.1 (b) and (c) on the signal process yt we have: if λ(x, y) ≤ k1 <
∞, for every y ≥ 0, and x ∈ E, then Ex0{τ1} ≥ a1 = 1/k1. Also, the condition
Ex0{τ1} ≤ a2 is satisfied if, for instance λ(x, y) ≥ k0 > 0 for y ≥ y0, x ∈ E, then
a2 = y0 + 1/k0. Moreover, since λ(x, y) is a continuous function in E × R+, the
continuity of Exy{τ1} follows.

Definition 3.6 (with comments). If, for some α > 0, the evolution ė = −αt
in [0, 1] is added to the homogeneous Markov process {(xt, yt) : t ≥ 0} then the
expression

{(Xn, en) = (xτn , e
−ατn), n = 0, 1, . . .}, (3.6)

with e0 = 1, τ0 = 0 and X0 = x, becomes a homogeneous Markov chain in E×]0, 1]
with respect to the filtration G = {Gn : n = 0, 1, . . .} obtained from F, namely,
Gn = Fτn . Note that {xτn : n ≥ 0} and {(xτn , τn) : n ≥ 0} are also a Markov
chain with respect to Gn. In this context, if

τ = inf{t > 0 : yt = 0}, (3.7)

is considered as a functional on Ω, then the sequence of signals (i.e., the instants
of jumps for yt) is defined by recurrence

τk+1 = inf{t > τk : yt = 0}, ∀k = 1, 2, . . . , (3.8)

with τ1 = τ , and by convenience, set τ0 = 0. An F-stopping time θ > 0 satisfying
yθ = 0 when θ < ∞ is called an admissible stopping time, in other words, if
and only if there exists a discrete (i.e., N0-valued) G-stopping time η such that
θ = τη with the convention that τ∞ = ∞. Moreover, if the condition θ > 0 (or
equivalently η ≥ 1) is dropped then θ is called a zero-admissible stopping time.

Let us also mention that as in Remark 3.5 we deduce:
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8 J.L. MENALDI AND M. ROBIN

Remark 3.7. Because λ(x, y) is bounded (by k1), for any given α > 0 we also have

Ex0

{
e−ατ

}
≤ a =

k1
α+ k1

< 1, ∀x ∈ E,

and, this implies that the operator Pw(x) = Ex0{e−ατw(xτ )} is a contraction
mapping on Cb(E) with the sup-norm. Moreover, after iterating and using Markov
property, this proves that

Ex0

{
e−ατk

}
≤ ak < 1, ∀x ∈ E, ∀k = 1, 2, . . . ,

where {τk} is the sequence of signals (3.8).

3.2. Common assumptions. It is assumed that there are a running cost f(x, y)
and a cost-per-impulse c(x, ξ) satisfying

f : E × R+ → R+ bounded and continuous, α > 0,

c : E × E → [c0,+∞[, c0 > 0, bounded and continuous.
(3.9)

Moreover, for any x ∈ E, the possible impulses must be in Γ(x) = {ξ ∈ E : (x, ξ) ∈
Γ}, where Γ is a given analytic set in E×E such that for every x in E the following
properties hold true

∅ �= Γ(x) is compact1, ∀ξ ∈ Γ(x), Γ(ξ) ⊂ Γ(x), and

c(x, ξ) + c(ξ, ξ′) ≥ c(x, ξ′), ∀ξ ∈ Γ(x), ∀ξ′ ∈ Γ(ξ) ⊂ Γ(x).
(3.10)

Finally, defining the operator M

Mv(x) = inf
ξ∈Γ(x)

{
c(x, ξ) + v(ξ)

}
, (3.11)

the condition

M maps Cb(E) into Cb(E), and there exists a measurable

selector ξ̂(x) = ξ̂(x, v) realizing the infimum in Mv(x), ∀x, v.
(3.12)

is assumed.

Remark 3.8. (a) The last condition in (3.10) is to ensure that simultaneous im-
pulses is never optimal. (b) Some regularity property of Γ(x) are implicitly re-
quired when (3.12) is assumed , e.g., see Davis [10]. (c) It is possible (but not
necessary) that x belongs to Γ(x), actually, even Γ(x) = E whenever E is com-
pact. However, an impulse occurs when the system moves from a state x to another
state ξ �= x, so that, it suffices to avoid (or not to allow) impulses that moves x to
itself, since they have a higher cost.

3.3. The controlled process. For a detailed construction we refer to Bensous-
san and Lions [3] (see also Davis [10], Lepeltier and Marchal [21], Robin [34], Stet-
tner [36]). To describe this construction, let us consider Ω∞ = [D(R+;E×R+)]∞,
and define F0

t = Ft and Fn+1
t = Fn

t ⊗ Ft, for n ≥ 0, where Ft is the universal
completion of the canonical filtration as previously. Hence, an arbitrary impulse
control ν (not necessarily admissible at this stage) is a sequence (θn, ξn)n≥1, where

θn is a stopping time of Fn−1
t , θn ≥ θn−1, and the impulse ξn is Fn−1

θn
measurable

random (referred to as ‘adapted’) variable with values in E.

1compactness is not really necessary, but it is convenient
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HYBRID MODELS AND SWITCHING CONTROL 9

The coordinate in Ω∞ has the form (x0
t , y

0
t , x

1
t , y

1
t , . . . , x

n
t , y

n
t , . . .), and for any

impulse control ν there exists a probability P ν
xy on Ω∞ such that the evolution

of the controlled process (xν
t , y

ν
t ) is given by the coordinates (xn

t , y
n
t ) of Ω

∞ when
θn ≤ t < θn+1, n ≥ 0 (setting θ0 = 0), i.e., (xν

t , y
ν
t ) = (xn

t , y
n
t ) for θn ≤ t < θn+1.

Note that clearly (xν
t , y

ν
t ) is defined for any t ≥ 0, but (xi

t, y
i
t) is only used for

any t ≥ θi, and (xi−1
θi

, yi−1
θi

) is the state at time θi just before the impulse (or

jump) to (ξi, y
i−1
θi

) = (xi
θi
, yiθi), as long as θi < ∞. Remark that the impulse

control ν = {(θi, ξi) : i ≥ 1} and the probability P ν
xy are constructed by means

of a sequential (or inductive) procedure, and it may be convenient to add θ0 = 0
and ξ0 = x, which is not considered as an impulse. Hence, {(x0

t , y
0
t ) : t ≥ 0} is the

uncontrolled Markov evolution (of the state) and {(xi
t, y

i
t) : t ≥ θi} denotes the

Markov evolution after the i-impulse, i.e., only the first i impulses are applied and
the Markov process restart anew at time θi < ∞ with initial condition (xi

θi
, yiθi) =

(ξi, 0), since yi−1
θi

= 0. Also the sequence {τ ik : k ≥ 1} of signals after θi is given

by the functional τ ik+1 = inf{t > τ ik : yit = 0}, beginning with τ i0 = θi < ∞, and
using the convention inf{∅} = ∞. For the sake of simplicity, we will not always
indicate, in the sequel, the dependency of (xν

t , y
ν
t ) with respect to ν.

A Markov impulse control ν is identified by a closed subset S of E × R+ and
a Borel measurable function (x, y) �→ ξ(x, y) from S into C = E × R+ � S, with
the following meaning: intervene only when the the process (xt, yt) is leaving the
continuation region C and then apply an impulse ξ(x, y), while in the stopping
region S, moving back the process to the continuation region C, i.e., θi+1 = inf{t >
θi : (x

i
t, y

i
t) ∈ S}, with the convention that inf{∅} = ∞, and ξi+1 = ξ(xi

θi+1
, yiθi+1

),

for any i ≥ 0, as long as θi < ∞.
Now, recalling that τn are the arrival times of the signal given by (3.8), the

admissible controls are defined as follows:

Definition 3.9. (i) As mentioned earlier, a stopping time θ is called ‘admissible’ if
almost surely there exists n = η(ω) ≥ 1 such that θ(ω) = τη(ω)(ω), or equivalently
if θ satisfies θ > 0 and yθ = 0 a.s.
(ii) An impulse control ν = {(θi, ξi), i ≥ 1} as above is called ‘admissible’, if each
θi is admissible (i.e., θi > 0 and yθi = 0), and ξi ∈ Γ(xi−1

θi
). The set of admissible

impulse controls is denoted by V.
(iii) If θ1 = 0 is allowed, then ν is called ‘zero-admissible’. The set of zero-
admissible impulse controls is denoted by V0.
(iv) An ‘admissible Markov’ impulse control corresponds to a stopping region S =
S0 × {0} with S0 ⊂ E, and an impulse function satisfying ξ(x, 0) = ξ0(x) ∈ Γ(x),
for any x ∈ S0, and therefore, if {(x0

t , y
0
t ) : t ≥ 0} is the uncontrolled Markov

evolution (of the state) and {(xi
t, y

i
t) : t ≥ θi} denotes the Markov evolution after

the i-impulse then η0 = 0, τ00 = 0, θ0 = τ00 , ξ0 = x, τ0k = inf{t > τ0k−1 : y0t = 0}
(∀k ≥ 1), η1 = inf{k > η0 : x0

τ0
k
∈ S0}, θ1 = τ0η1

, τ1η1
= θ1, ξ1 = ξ(x0

θ1
, 0), and next,

τ1k = inf{t > τ1k−1 : y1t = 0} (∀k > η1), η2 = inf{k > η1 : x1
τ1
k
∈ S0}, θ2 = τ1η2

,

τ2η2
= θ2, ξ2 = ξ(x1

θ2
, 0), and so forth. For a ‘zero-admissible Markov’ impulse

control, it suffices to use η1 = inf{k ≥ η0 : x1
τ0
k
∈ S0}, i.e., to replace k > η0 with

k ≥ η0, within the construction of η1 in the previous iteration.
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10 J.L. MENALDI AND M. ROBIN

As seen later, it will be useful to consider an auxiliary problem in discrete time,
for the Markov chain Xn = xτn , with the filtration G = {Gn, n ≥ 0}, Gn = Fn−1

τn .
The impulses occurs at the stopping times ηi with values in the set N = {0, 1, 2, . . .}
and are related to θi by ηi = inf{k ≥ ηi−1 : θi = τ ik} for admissible controls {θi}
and similarly for zero-admissible controls with ηi = inf{k ≥ ηi−1 : θi = τ ik}.
The discrete time impulse control problem has been consider in Bensoussan [1],
Stettner [35]. Thus,

Definition 3.10. If ν = {(ηi, ξi), i ≥ 1} is a sequence of G-stopping times and
Gηi -measurable random variables ξi, with ξi ∈ Γ(xτηi

), ηi increasing and ηi → +∞
a.s., then ν is referred to as an ‘admissible discrete time’ impulse control if η1 ≥ 1.
If ηi ≥ 0 is allowed, it is referred as an ‘zero-admissible discrete time’ impulse
control.

3.4. HJB equation. The discounted cost of an impulse control (or policy) ν =
{(θi, ξi) : i ≥ 1)} is given by

Jx,y(ν) = Eν
x,y

{∫ ∞

0

e−αtf(xt, yt)dt+
∞∑
i=0

e−αθic(xi−1
θi

, ξi)
}
, (3.13)

where Eν
xy is the P ν

xy-expectation of the process under the impulse control ν with

initial conditions (x0, y0) = (x, y), and xi−1
θi

is the value of the process just before

the impulse. Note that the process {yt : t ≥ 0} is not subject to any impulse, and
the condition yθ = 0 determines admissibility of the impulse time θ.

Thus, the optimal cost is defined by

u(x, y) = inf
{
Jx,y(ν) : ν ∈ V

}
, ∀(x, y) ∈ E × [0,∞[, (3.14)

and its associated auxiliary impulse control problem (referred to as the ‘time-
homogeneous’ impulse control) has an optimal cost given by

u0(x, y) = inf
{
Jx,y(ν) : ν ∈ V0

}
, ∀(x, y) ∈ E × [0,∞[. (3.15)

As with the optimal stopping time problems, since u(x, y) = u0(x, y) for any x ∈ E
and y > 0, it may be convenient to write u0(x) = u0(x, 0) as long as no confusion
arrives.

The Dynamic Programming Principle shows (heuristically) (see [29, Section 3])
that

u(x, y) = Exy

{∫ τ

0

e−αtf(xt, yt)dt+ e−ατ min{Mu, u}(xτ , yτ )
}
, (3.16)

and

u0(x, y) = Exy

{∫ τ

0

e−αtf(xt, yt)dt+ e−ατu0(xτ , yτ )
}
, y > 0,

u0(x) = min
{
Ex0

{∫ τ

0

e−αtf(xt, yt)dt+ e−ατu0(xτ )
}
,Mu0(x)

}
,

(3.17)

are the corresponding Hamilton-Jacobi-Bellman (HJB) equations, which are re-
ferred to as quasi-variational inequalities (QVI) in a weak form. Note that M is
an operator in the variable x alone, so that Mu(x, y) = [Mu(·, y)](x). In any case,
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min{Mu, u}(xτ , yτ ) = min{Mu, u}(xτ , 0), because yτ = 0. Also, both problems
are related (logically) by the condition

u(x, y) = Exy

{∫ τ

0

e−αtf(xt, yt)dt+ e−ατu0(xτ )
}
, (3.18)

and so, if u0(x) is known then the last equality yields u(x, y) and u0(x, y).
The optimal cost u0(x) = u0(x, 0) can be expressed as a discrete time optimal

impulse control similar to Bensoussan [1, Chapter 8, 89–132] (ignoring the con-
straint), as discussed in [28], will be used in Section 4 to solve the HJB equation.
As a key point, let us mention that u0(x) = u0(x, 0) is given by either (3.15),
and that in view of the relation (3.18), the other costs u(x, y) and u0(x, y) can be
obtained directly.

General discrete time hybrid models in Borel spaces with non-constant discount
factor have been discussed in Jasso-Fuentes et al. [16, 17], but this time, having
a non-empty intersection with the discrete time models considered in this work,
and again, with another set of assumptions. Also, the interested reader may check
(among many others) the books by Hernández-Lerma and Lasserre [15] for a classic
study on discrete time Markov control processes, and by Peskir and Shiryaev [33]
for a deep analysis of optimal stopping and free-boundary problems (which are
connected with impulse control problems). As mentioned in the abstract, an ex-
tensive analysis on these type of impulse control problems with constraints was
developed in a series of works [28, 29, 30, 31] under several assumptions. The re-
sults include solving the HJB equations in a suitable way so that it agrees with the
optimal costs, as well as a description and construction of an optimal (admissible)
impulse control (as the first exit times of the continuation region with an optimal
impulse).

4. Switching Control Models

As mentioned earlier, in a switching model there is a ‘state’ xt and a (opera-
tion) ‘mode’ nt, and in most situation, some components of process nt are control
and state variables at the same time. This means that the actions of a switch-
ing control alter in some sense the typical continuous order: (a) read state of
the system, (b) take a decision, (c) run the dynamic evolution, and iterate (a),
(b), (c). This alteration is better recognized in a continuous time model, and it
corresponds to another step (b’), in between (b) and (c), which produces a ‘instan-
taneous’ (relative to the iteration) modification of the state. Essentially, because
a certain continuity in time is technically necessary (i.e., uncontrolled evolution
and regarded as Markov processes with trajectories continuous in probability),
the switching control produces discontinuity, that needs to be discussed. Indeed,
this is a key point of hybrid control models, this discontinuity is followed via the
set-interface, which acts as the region where discontinuity occurs.

Due to the constraint ‘interventions are allowed only at the jump-times of a
(semi-)Markov process’, the full state should contain information about the jump-
ing times, i.e., the reduced state xt needs some complement to describe the impulse
model. Thus, the signal process yt is used to translated the constraint as ‘inter-
ventions are allowed only when yt = 0’, and since it is assumed that there are
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12 J.L. MENALDI AND M. ROBIN

not jump at the initial time t = 0, it is also added (the constraint conditions)
the condition t > 0. As mentioned earlier, the Markov process (xt, nt) represents
the uncontrolled evolution in the switching control model without constraints; and
hence, a Markov process (xt, nt, yt) represents the uncontrolled evolution for the
constrained model.

This was essentially the notation in the Example 2.1, but in order to harmonize
this notation with that of the impulse control model used in Section 3.3, it seems
better to use a Markov process (x′

t, nt, yt) as the evolution of state in a switching
control problem, i.e., xt = (x′

t, nt). However, if (conditioned to x′
t) instead of

a Markov process nt, a semi-Markov process nt is needed then, by adding st =
t − sup{s ≤ t : ns �= nt}, the notation xt = (x′

t, zt), with zt = (st, nt), yields a
Markov process representing the reduced state of a switching control model.

As mentioned earlier, the discrete-type component nt used in the hybrid model
is not necessary for (or used in) the impulse control model, where an instantaneous
change is interpreted as a jump in the state, rather than as a change of mode (of
operation) as in a switching control model. Thus, the ‘controlled’ process nt plays
a more visible role in a switching control model, and even it may be a totally
controlled variable (i.e., a state and a control variable at the same time).

Nevertheless, it could be important to point-out that the meaning of the process
nt in the previous hybrid model is not exactly the same as in the switching model,
actually, nt is going to be part of the reduced state xt as either xt = (x′

t, nt) in a
Markov case, or xt = (x′

t, zt) with zt = (st, nt) in semi-Markov case. Remark that
in our hybrid model, the continuous-type (alternately, discrete-type) component
refers to processes having piecewise continuous (alternately, constant) trajectories,
i.e., a continuous-type component like xt is supposed continuous in probability and
may include a discrete-valued component (a jump component), but the actions of
an impulse/switching control produces discontinuities in probability like the so-
called discrete-type component nt in hybrid models.

In practical situations and for computational purposes, the switching model
and the impulse model are treated as different formulations. However, both are
essentially the same, but as expected, the difference is mainly on the assumptions
imposed on the data of the problems. In the remainder of this section, a discussion
on how to convert a switching model into an impulse model, both with constraints,
is given in some details.

4.1. Process without intervention. In this model, there is only one type of
controls, namely switching from one operation mode to another one. So, without
intervention means the uncontrolled process (xt, yt) as given in Section 3.1.

Let us describe a switching model that includes Example 2.1, but with a more
general discrete component and based on the notation of the impulse model. This
is, within Assumption 3.1 (a) on the Markov process xt, assume that, (1) the state
the reduced state xt = (x′

t, st, nt) belongs to E = E′ ×R+ ×N, for a Polish space
E′); (2) x′

t is like the x′
t in the example, nt indicates the operation mode of x′

t,
i.e., x′

t is a Markov process with a C0-semigroup Φi(t) when n = i; (3) nt is a
semi-Markov process with values in N, and st = t − sup{s ≤ t : ns �= nt} is its
waiting time (time elapsed since the last switching, similar to a signal process,
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HYBRID MODELS AND SWITCHING CONTROL 13

but not necessarily equal to yt), so that zt = (st, nt) is Markov processes, with a
C0-semigroup Φz(t), i.e., Φz(t)C0(R+×N) ⊂ C0(R+×N), ∀t ≥ 0, and infinitesimal
generator Az with domain D(Az) ⊂ C0(R+ × N),

Azϕ(s, n) = ∂sϕ(s, n) + r(s, n)
∑
i�=n

pi(s, n)[ϕ(0, i)− ϕ(s, n)],

where
∑

i�=n pi(s, n) = 1, pn(s, n) = 0, and pi(s, n) are non-negative continuous

functions, and the intensity r(s, n) is a continuous function such that 0 < c0 ≤
r(s, n) ≤ c1, and for simplicity, we may assume pi(x, n) = 0 for any i ≥ N , i.e.,
switching withing the modes n = 1, . . . , N . The semi-Markov process nt may
be called the automatic switching process, and if it is a Markov process then the
waiting time process st is not a necessary information for the reduced state of the
system. Actually, if nt is a purely jump Markov process then r(s, n) = r constant,
i.e., nt is a compound Poisson process.

The constraint on the control is enforced via the signal process yt, and with
these data, Assumptions 3.1 is satisfied. If only a finite of modes is necessary then
mode-state space N is replaced by a finite set N , where the modes can be labeled
{1, 2, . . . , N}.

There is an interesting situation called automaton, which is produced by a fixed
set-interface. For instance, when the state reaches a certain value (including the
constraint) then the mode nt changes to another fixed value. This would be the
case in Example 2.1 if we allow a mode 3 meaning ‘no operational mode’ (or idle)
that required an immediate switching. Actually, depending on the model, even
a switching-rate from mode 2 to 3 (like switching to mode 2 from mode 1) may
be used. However, the system could not remain idle (mode 3) for long, and some
cost should be applied, and more details are necessary. This mandatory change
does form part of the control actions, and this case is not included in what follows.
The uncontrolled process in our model, is continuous in probability, contrary to
an automaton process, which may be discontinuous in probability.

Remark that the automatic switching process nt cannot usually be constructed
from a Markov chain {nτi : i = 0, 1, . . .} in N, with {τi} being the sequence of
times in between two consecutive jumps. Its requires the Markov chain {(nτi , τi) :
i = 0, 1, . . .} in N×R+. The reader may compare with typical models, e.g., see Yin
and Zhang [38, 39], Yin and Zhu [40], among others. Thus, nt is a simple semi-
Markov process with values in N, and its waiting time st = t−sup{s ≤ t : ns ≤ nt}
is also defined in a similar way to our signal process yt. Actually, we may have
the functions r and p also depending on x′, and the Markov property of zt can be
understood as conditioned to x′

t.
Let us first recall Example 2.1 with the above notations. We have xt = (x′

t, nt),
with xt in E, nt in {1, 2} so that xt is an ‘ordinary’ switching process. Without
control, nt is a Markov chain, which can go from 1 to 2 and remains in 2 (i.e., 2
is an absorbing state), and nt is independent of x

′
t

Aϕ(x, n) =

{
A1

x′ϕ(x′, 1) + a[ϕ(x′, 2)− ϕ(x′, 1)], if n = 1,

A1
x′ϕ(x′, 2), if n = 2.
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14 J.L. MENALDI AND M. ROBIN

Next, the only control action is to go from n = 2 to n = 1, and it can be applied
only at the jump-times of yt, which is independent of xt = (x′

t, nt),

Ayϕ(y) = ∂yϕ(y) + λ(y)[ϕ(0)− ϕ(y)].

Note that the times in between two consecutive jumps from n = 1 to n = 2 form
an IID sequence with a common exponential distribution with parameter a, and if
one desires a little more general model, say with a ‘nice’ distribution other than the
exponential, some conceptual problems appear, i.e., the (uncontrolled) switching
Markov process nt could not be constructed anymore from a Markov chain with
values in {1, 2}. This suggests that perhaps, a more suitable model would have a
switching process modeled as a simple semi-Markov process nt, instead of a Markov
process. Thus, we could consider an example like Example 2.1 where the Markov
process nt becomes a Markov process (st, nt), derived from a Markov chain in
{1, 2}×R, i.e., the infinitesimal generator would be Aϕ(ϕ(x′, s, 2) = A1

x′(ϕ(x′, s, 2)
and

Aϕ(x′, s, 2) = A1
x′ϕ(x′, s, 1) + ∂sϕ(x

′, s, 1) + a(s)[ϕ(x′, 0, 2)− ϕ(x′, s, 1)].

Moreover, we could use ñ in the general model to distinguish the uncontrolled
switching process ñt from the controlled switching process nt.

4.2. The switching procedure. Now, a ‘switching’ (action) is to intervene in
the system evolution to produce an instantaneous change of operating mode from
the current mode n to another mode n′ (usually different from n), and in most
cases, there are some constraints on the modes that are allowed. Thus, assume
given a subset N(x) of N0, with x = (x′, s, n) in the reduced state-space E =
E′ × R+ × N, but usually, N(x) depends only on n in N0. Actually, in terms of
the impulse control problem, instead of given N(x), let us suppose, for instance,
that the set Γ(x) appearing in condition (3.10) satisfies

Γ(x) = Γ(x′, s, n) = {(x′, 0, n′) : n′ ∈ N(x)} ⊂ {x′} × {0} × N0, (4.1)

in the switching control model, and with this notation, the arguments of the
Controlled Process Section 3.3 can be applied.

A precise definition of Γ(x′, s, n) depends on the specific problem which is being
considered. For instance, in Example 2.1 with nt semi-Markov (as at the end of
the previous subsection), one could imagine that the transition from mode 2 to
mode 1 (using a control) is realized by the implementation of a new machine.
Then there is some logic to consider that the result of the control for (st, nt) is
(0, 1), and in this case Γ(x′, s, n) = {(x′, 0, 1)}. Nevertheless, from the theoretical
viewpoint, the only requirement is that Γ(x′, s, n) satisfies (3.10) and (3.12) , being
understood that (in the present context) x′ remains unchanged. Actually, more
on this point is discussed a couple of paragraphs below.

Remark 4.1. Note that for the uncontrolled process, the process st represents the
time elapsed since the last ‘automatic’ (i.e., uncontrolled) switching. Hence, if a
switching control is decided then it is necessary to specify how this ‘auxiliary’ (for
the semi-Markov process nt) process behaves. Among the many possibilities, there
are two cases which have a particular interpretation: (1) the meaning of the process
st is retained after a switching control, i.e., st is unchanged immediately after a
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switching control; or (2) the meaning of the process st becomes ‘time elapsed since
the last (uncontrolled or controlled) switching’, i.e., st is reset to 0 immediately
after a switching control and the expression st = t− sup{s ≤ t : ns ≤ nt} remains
valid. All this is less important for the impulse control model, but it seems more
relevant in the switching control model since n represents the current mode of
operation for the system. This last option (2) is assumed with the above choice of
Γ(x) ⊂ {x′} × {0} × N0. However, if the option (1) is preferred then

Γ(x) = Γ(x′, s, n) = {(x′, s, n′) : n′ ∈ N(x)} ⊂ {x′} × {s} × N0. (4.2)

Certainly, there are other valid choices (depending on the desired switching model)
and if (x′

t, nt) is Markov (instead of semi-Markov) process then the process st is
not necessary and this discussion is irrelevant.

The operator M becomes

Mv(x) = inf
{
c(x, ξ) + v(ξ) : ξ ∈ Γ(x), n′ �= n

}
, (4.3)

where c(x, ξ) = c(x; ξ) = c(x′, s, n;x′, 0, n′). Certainly, to match Example 2.1, we
have to replace N0 with {1, 2} and take N(1) = {1} (which means that switching
is certainly not optimal, since its cost is strictly positive).

4.3. Solving the HJB equation. We have seen in the previous subsections
that our switching problem with constraint for (xt, yt) = (x′

t, st, nt, yt) satisfies
the assumptions of Section 3 . Now the results of [28, 29, 31] can be directly
used to solve this switching control problem, i.e., to solve the HJB equation and
to identify an optimal control. Thus, we only describe the method, referring to
[28, 29, 31] for the proofs.

Starting with the HJB equation (3.17) of the auxiliary problem, we use the
classical iterations (e.g., see Bensoussan and Lions [3]):

un
0 (x) = min

{
Ex0

{∫ τ

0

e−αtf(xt, yt)dt+ e−ατun
0 (xτ )

}
,Mun−1

0 (x)

}
,

for any n ≥ 1 with u0
0(x) = Ex0

{∫ ∞

0

e−αtf(xt, yt)dt
}
.

(4.4)

This is a sequence of HJB equations corresponding to a sequence of optimal
stopping problems with constraint, typically,

w(x) = min

{
Ex0

{∫ τ

0

e−αtf(xt, yt)dt+ e−ατw(xτ )
}
, ψ(x)

}
, (4.5)

with ψ(x) = Mun−1
0 (x), and w0(x) = u0

0(x). Indeed, the problem (4.5) can be
seen as a discrete time optimal stopping problem for the Markov chain (3.6), and
its corresponding HJB equation can be written as

w(x) = min
{
fα(x) + Pw(x), ψ(x)

}
, (4.6)

where Pw(x) = Ex0{e−ατw(xτ )} as in Remark 3.7.
Then, under the assumptions of Section 3, we have:

Theorem 4.2 ([28]). If the terminal cost ψ belongs to Cb(E) then the HJB equa-
tion (4.6) has a unique solution w in Cb(E), which is the optimal cost of the
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corresponding optimal stopping problem. Moreover, the following stopping time

θ̂ = τη̂ corresponding to discrete stopping time

η̂ = inf
{
n ≥ 0 : w(Xn) = ψ(Xn)

}

is optimal, with the convention that τ∞ = ∞ and that the infimum over an empty
set is ∞.

Certainly, in Theorem 4.2 the data corresponding to impulse/switching cost
function c(x, ξ) has been replaced by the assumption that ψ belongs to Cb(E).
Thus, because the operator M maps Cb(E) into itself, this means that for each
n ≥ 1, the HJB equation (4.4) for un

0 (x) has a unique solution in Cb(E), which is
the optimal cost of the corresponding optimal stopping problem and the first exit

time of the continuation region {x : un
0 (x) < Mun−1

0 (x)} is optimal, i.e., θ̂ = τη̂
with the convention that θ∞ = ∞. Hence, for each n ≥ 1 we have

Corollary 4.3 ([28]). The HJB equation (4.4) has a unique solution un
0 in Cb(E),

and the sequence {un
0} is monotone decreasing and converges uniformly to the

unique solution of (3.17), i.e.,

u0(x) = min
{
fα(x) + Pu0(x),Mu0(x)

}
, (4.7)

where M is given by (3.11), i.e., like (4.6) with ψ = Mu0. Moreover, each function
un
0 (x) is the optimal cost of an impulse control problem with at most n impulses,

i.e.,

un
0 (x) = inf

{
Jx,0(ν) : ν = {(ηi, ξi) : 1 ≤ i ≤ n}

}
, ∀x ∈ E, (4.8)

and u0(x) is the optimal cost (3.15) with y = 0. Furthermore, the impulse control
obtained from the continuation region is optimal, for each of the optimal impulse
control costs un

0 and u0.

Next, knowing u0(x) = u0(x, 0), the relation (3.17) gives u0(x, y), for y > 0,
and the expression (3.18) gives u(x, y). Thus

Theorem 4.4 ([29, 31]). The function

u0(x, y) = Exy

{∫ τ

0

e−αtf(xt, yt)dt+ e−ατu0(xτ )
}
, y > 0,

is the optimal cost (3.15), i.e.,

u0(x, y) = inf
{
Jxy(ν) : ν ∈ V0

}

and there exists an optimal control ν̂0 = {(θ̂i, ξ̂i) : i ≥ 1}, with θ̂i obtained from η̂,
namely

θ̂1 = inf
{
t ≥ 0 : u0(xt, yt) = Mu0(xt, yt), yt = 0

}
,

and the θ̂i, i > 1 are obtained by translations, and ξ̂i = ξ̂(xi−1
θi

), where ξ̂(x) realizes

the infimum in Mu0(x, 0).

Theorem 4.5 ([29, 31]). The function

u(x, y) = Exy

{∫ τ

0

e−αtf(xt, yt)dt+ e−ατu0(xτ )
}
, y ≥ 0,
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belongs to the domain D(Axy) ⊂ Cb(E × R+) of the weak generator of the uncon-
trolled process, and the equation

−Axyu(x, y) + αu(x, y) + λ(x, y)[u(x, 0)−Mu(x, 0)]+ = f(x, y)

is satisfied. Moreover, u(x, y) is the optimal impulse cost (3.14), i.e.,

u(x, y) = inf
{
Jxy(ν) : ν ∈ V

}

and there exists an optimal control ν̂ which is obtained from ν̂0 by translation with
τ1, the first jump of yt.

Recall that u(x, y) = u0(x, y) for any y > 0 and that, the condition (3.12)
ensures that in each step of the HJB solving the optimal stopping problems with
stopping cost ψ = Mun

0 is a continuous and bounded functions and so, the results
in [28] can be applied. However, the second part of condition (3.9) on the function
c(x, ξ) is needed to prove the uniform convergence of un

0 → u0, and the condition
(3.10) ensures that two simultaneous intervention is certainly not optimal. Note
that comparing with the hybrid models, D∧ = ∅, D∨ = E × {0}.

5. Weaker Assumptions

For switching control models, it is often necessary to weaken condition (3.9)
relative to the cost-per-impulse c(x, ξ), i.e., to allow the possibility c(x, ξ) = 0 for
some x ∈ E and ξ ∈ Γ(x). However, in this section, assumption (3.10) and con-
dition (3.12) on the operator M –which really imposes conditions on the mapping
Γ(x)– is certainly retained in our formulation.

All this involves reconsidering the arguments in [29, 31] in such a way that
assumption (3.9) can be replaced by

f : E × R+ → R+ bounded and continuous, α > 0,

c : E × E → [0,+∞[ bounded and continuous,
(5.1)

without changing the results.

5.1. An initial discussion. Our discussion goes as follows:
(1) Inventory management is a prototype of optimal impulse control, where x

represents the inventory levels of the various items and a simple expression of
c(x, ξ) has the form c0 {x �=ξ} + c1(x, ξ) with a constant c0 > 0 and a non-negative
function c1. However, a prototype of optimal switching control is an energy and
power system management, where x represents the various power levels provided
with the current active configuration n (which is, for instance, a label from 1 to
N < ∞ or a more complicate digital designation), and a simple expression of
c(x, n; ξ, η) could be c0 {n�=η, η∈N}+ c1(x, n; ξ, η) with a constant c0 > 0, a proper
subset N of configurations, and a non-negative function c1, in other words, switch-
ing costs may be zero.
(2) As mentioned earlier, condition (3.12) ensures that at each step in the itera-

tion (4.4) the solution un
0 (x) is continuous, but (3.9) relative to c(x, ξ) ≥ c0 > 0, is

used to establish the uniform convergence of un
0 (x) to u0(x) and the uniqueness of

the solution of the HJB equation, similarly to the standard case of impulse control
problem (i.e., without the constraint given by a signal process yt).
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(3) The condition c(x, ξ) ≥ c0 > 0 plays an essential role, it allows to deduce
that the (Markov) optimal impulse control ν̂ constructed from the continuation
region {x ∈ E : u0(x) < Mu0(x)} is indeed an impulse control, i.e., the sequence

{θ̂i} of impulse-times satisfies θ̂i → ∞ with probability one. For instance, if ν is
an impulse control with a finite cost, i.e., Jx0(ν) < C0 = 2 supx u

0
0(x), then

c0Ex0

{
e−αθk

}
≤ Ex0

{∑
i≥k

c(ξi−1, ξi)e
−αθi

}
→ 0 as k → ∞

since, Ex0{
∑

i≥1 c(ξi−1, ξi)e
−αθi} ≤ C0.

(4) Adding the restriction ‘no simultaneous impulses’ does not change the in-
fimum of the cost Jxy(ν) over all (admissible) impulse controls, since condition
(3.10) implies precisely, that any transition from state x to ξ obtained by two
or more successive (simultaneous) impulses can also be achieved with just one
impulse with equal or lower cost.

Therefore, for an impulse control model with a constraint given by a signal
process, we can use the assertions in Remark 3.5 and Definition 3.6 to deduce that
Exy{ τn<T } → 0 as n → ∞, uniformly in (x, y) within E×R+, for any fixed T > 0.
Hence, because the condition (3.10) is retained, simultaneous impulses are ruled-
out (since they are not better than single impulses), and thus, ‘zero-admissible
discrete time impulse controls’ {(ηi, ξi) : i ≥ 1} have the property ηi < ηi+1

whenever ηi < ∞. Nevertheless, under the condition (3.10) and without assuming
c(x, ξ) ≥ c0 > 0, it not so clear that the optimal impulse control obtained from the

continuation region satisfies θ̂i → ∞, since it is not clear that all optimal impulses
form the stopping region {x : u0(x) = Mu0(x)}moves the state to the continuation
region {x : u0(x) < Mu0(x)}, and so, an infinite number of simultaneous impulses
may occur, i.e., moving the state from ξ to ξ′ �= ξ forward and backward with
zero-cost c(ξ, ξ′) = c(ξ′, ξ) = 0 (certainly, this makes more sense for a switching
model than an impulse model, but the possibility is there).

5.2. No simultaneous impulses. As mentioned above, (3.10) implies that im-
pulse (or switching) controls with simultaneous impulses are not necessary, since
a strictly lower cost is not obtained by allowing simultaneous impulses (or switch-
ings). But, this does not ensure that if v(x) ≤ Mv(x) for every x in E then the

selector ξ̂(x) = ξ̂(x, v) realizing the infimum in Mv(x) –i.e., satisfying v(ξ̂(x, v))+

c(x, ξ̂(x, v)) = Mv(x), as given in assumption (3.12)–, can be chosen (i.e., can

be modified) so that v(ξ̂(x, v)) < Mv(ξ̂(x, v)), unless the ‘continuation region’
{x : v(x) < Mv(x)} is empty. Such a minimizer would imply that the optimal
impulse control associated with the continuation region does not have any simul-
taneous impulses. This difficulty can be overcome by assuming

∅ �= Γ(x) is closed ∀x ∈ E, Γ(ξ) ⊂ Γ(x) ∀ξ ∈ Γ(x),

and c(x, ξ) + c(ξ, ξ′) > c(x, ξ′), ∀ξ ∈ Γ(x), ∀ξ′ ∈ Γ(ξ),
(5.2)

which is a stronger (or strict) version of condition (3.10).

Lemma 5.1. Let us assume (5.1) on c(x, ξ), (5.2) in lieu of (3.10), and suppose
that the impulse operator M defined by (3.11) satisfies (3.12). If v is a function in
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B+(E) and v(x) = Mv(x) for some x in E, then its continuation region Cv = {x ∈
E : v(x) < Mv(x)} is nonempty and any selector ξ̂(x) = ξ̂(x, v) as in condition

(3.12) satisfies v(ξ̂(x, v)) < Mv(ξ̂(x, v)).

Proof. Indeed, if v(x) = Mv(x) with x in E then v(x) = c(x, ξ̂(x)) + v(ξ̂(x)).

Now, let make an argument by contradiction, i.e., suppose that the ξ̂(x) does not

belong to the continuation region. Therefore, if v(ξ̂(x)) = Mv(ξ̂(x)) then deduce

that v(ξ̂(x)) = c(x, ξ̂(ξ̂(x))) + v(ξ̂(ξ̂(x))). Hence, combine these two equalities to
get

v(x) = c(x, ξ̂(x)) + v(ξ̂(x)) = c(x, ξ̂(x)) + c(ξ̂(x), ξ̂(ξ̂(x))) + v(ξ̂(ξ̂(x)))

and in view of (5.2), it follows

v(x) > c(x, ξ̂(ξ̂(x))) + v(ξ̂(ξ̂(x))) ≥ Mv(x),

which is a contradiction. �

Remark 5.2. The operator M given by (3.11) is ‘almost’ the effective impulse (or
switching) operator, since an actual intervention should move the state, i.e., if
some x belongs to Γ(x) then the correct expression for M should be

Mv(x) = inf
{
c(x, ξ) + v(ξ) : ξ ∈ Γ(x), ξ �= x

}
.

and because the set {ξ ∈ Γ(x), ξ �= x} is not necessarily closed, the compactness
of Γ(x) does not ensure that a minimizer should always exist. This is usually
overcome by assuming that c(x, x) > 0 for every x ∈ E. In any case, if

M̄v(x) = inf
{
c(x, ξ) + v(ξ) : ξ ∈ Γ(x), ξ �= x, Mv(ξ) �= v(ξ)

}

then under condition (3.10) it follows that M̄v = Mv, and therefore, condition

(5.2) implies that the minimizer ξ̂(x, ·) of M as in assumption (3.12) can be used

also for M̄ , and the requirement x �= ξ̂(x, v) (for x in the stopping region) since this

would force ξ̂(x, v) = x to remain in the stopping region instead of moving to the

continuation region; and clearly, c(x, ξ̂(x, v)) + v(ξ̂(x, v)) = v(x) and ξ̂(x, v) = x
implies c(x, x) = 0. Also, under condition (3.10), if the mapping Ξ : (x, ξ) �→ ξ′

from {(x, ξ) : x ∈ E, ξ ∈ Γ(x)} into Γ(x) ⊂ E is measurable then an impulse (or
switching) control composed (a finite number of times) with Ξ is transformed into
an impulse (or switching) control with a possible lower cost and without simulta-

neous impulses, e.g., Ξ(ξ̂(x, v), v) for any minimizer ξ̂(x, v) as in (3.12). However,
this does not ensure that the impulse control obtained from the continuation region

satisfies θ̂i → ∞, an infinite number of simultaneous impulses may occur.

5.3. Markov impulses and results. Therefore, Lemma 5.1 implies that the
(Markov) optimal impulse (or switching) control ν̂ constructed from the continua-
tion region does not have simultaneous impulses (or switchings). To clarify this last
point, let us give more details on the construction of a feedback impulse control.
Indeed, the ‘admissible Markov’ impulse (or switching) control {ηi, θi, ξi : i ≥ 1}
corresponds to a stopping region S = S0 × {0} with S0 ⊂ E, and an impulse
function satisfying ξ(x, 0) ∈ Γ(x), for any x ∈ S0.

Thus θi = ∞ and ηi = ∞ are possible with the understanding that θ∞ = ∞,
η∞ = ∞ and θi = ∞ if and only if ηi = ∞. Therefore, beginning with τ00 = 0,
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η0 = 0, θ0 = 0, ξ0 = x, and uncontrolled Markov evolution (of the state) {(x0
t , y

0
t ) :

t ≥ 0}, let us iterate (for i = 0, 1, . . .) the expression

τ ik = inf{t > τ0ηi
: yit = 0}, ∀ k > ηi, ηi+1 = inf{k > ηi : x

i
τ i
k
∈ S0},

θi+1 = τ iηi+1
, τ i+1

ηi+1
= θi+1, ξi+1 = ξ(xi

θi+1
, 0), xi+1

t , yi+1
t , t ≥ θi,

where {(xi
t, y

i
t) : t ≥ θi} is the Markov evolution after the i-impulse (or switching),

see Definition 3.9 (iv). This shows that τ i+1
ηi+1

= θi+1 = τ iηi+1
≥ τ iηi

and θi+1 − θi ≥
τ iηi+1 − τ iηi

∼ τ1 (i.e., equal distribution), which is also valid for any admissible
impulse control, not necessarily Markov. Since there exists a constant 0 < a < 1
such that Ex0

{
e−ατ1

}
≤ a < 1, for any x ∈ E, obtained in Definition 3.6, all these

arguments and the Markov property yield the estimate

Ex0

{
e−αθi

}
≤ ai, ∀x ∈ E, ∀i, (5.3)

for some constant a in ]0, 1[ (which may depend on α). Hence, we deduce that
θi → ∞ as i → ∞, uniformly in x.

The argument used in [29, Theorem 4.2, (4.13)] to show the uniform convergence
of un

0 (x) → u0(x) on E –which is indeed the same ‘analytic’ argument as in
Hanouzet and Joly [14]–, cannot be used now (because c(x, ξ) ≥ c0 > 0 is not
retained, only c(x, ξ) ≥ 0 is assumed). Thus, we propose to apply an argument
similar to [24, 26], i.e., directly from

0 ≤ un
0 (x)− u0(x) ≤ Ex0

{∫ ∞

θn

f(xn
t , y

n
t )e

−αtdt
}
≤

≤ 1

α

(
sup
x,y

{|f(x, y)|}
)
Ex0

{
e−αθn

}
, ∀n, ∀x ∈ E.

and estimate (5.3), we obtain the desired uniform convergence. Actually, con-
sidering un

0 (x, y) and un(x, y), we may also argue as follow: If Ti denotes the
first jump time of s �→ yθi+s (for a control ν = {(θi, ξi) : i ≥ 1} zero-admissible
and not necessarily Markov), then θn ≥ θn−1 + Tn−1, ∀n ≥ 2, so θn ≥ θ1 +
T1 + T2 + · · · + Tn−1. From the construction of the probabilities Pxy corre-
sponding to ν, we have E1

xy{e−αT1} = Exy{Eξ0[e
−αT1 ]}, and from the law of

T1, we get E1
xy{e−αT1} ≤ a < 1 and more generally En−1

xy {e−αTn−1} ≤ a, i.e.,

Exy{e−αθn} ≤ an−1. Hence, the convergence un
0 (x, y) → u0(x, y), uniformly on

E × R+, has been proved.
In any case, with the previous arguments we can show the following

Theorem 5.3. The results of Theorem 4.4 and Theorem 4.5 remain valid (with
minimal changes as discussed above) if the assumptions (5.1) and (5.2) are used
in lieu of (3.9) and (3.10), i.e., a discounted impulse/switching control model with
a constraint given by a signal process can be solved.

Note that the substitution of assumptions mentioned in Theorem 5.3 does not
apply for the usual impulse control models without a constraint given by a signal
process. Again, remark that under the weaker assumption (5.1), if the condition
(3.10) is not assumed and a discrete time setting is considered, then multiple
simultaneous impulses are logically possible in the definition of the auxiliary with
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optimal cost u0(x) given by (3.15) with y = 0. However, for the costs u(x, y) and
u0(x, y) given by (3.14) and (3.15) in a continuous time setting, we may argue
that multiple simultaneous impulses should not be allowed, because a constraint
like ‘only one intervention at any given time’ make sense from the modeling point
of view. Nevertheless, if such a constraint is also assumed then we may solve
the HJB equation for u0(x) and therefore we can obtain the costs u(x, y) and
u0(x, y), but the continuity on x would follow from imposing a maximum finite
number of possible multiple simultaneous impulses, and even more, there may not
be an optimal impulse control, since the expression of the optimal impulse (or
switching) control does not necessary produces an impulse (or switching) control
without multiple simultaneous interventions.

Let us clarify the meaning of zero-admissible impulse controls as the context
of an extension of Corollary 4.3 without assuming the condition (3.10), i.e., when
simultaneous impulses may occur, namely, the possibility ηi = ηi−1 < ∞ with a
positive probability for some i ≥ 0, and this class of impulse controls is denoted by
V ′
0 ⊃ V0. In this section, the optimal costs un

0 (x) and u0(x) are defined without this
possibility, i.e., a zero-admissible impulse control includes the condition ηi−1 < ηi
whenever ηi−1 < ∞, for any i. If optimal costs ūn

0 (x) and ū0(x) were defined
similarly, but allowing simultaneous impulses, i.e., ηi = ηi−1 < ∞ is permitted
then certainly, ūn

0 (x) ≤ un
0 (x) and ū0(x) ≤ u0(x) and the equalities hold whenever

assumption (3.10) is retained. With this in mind, we have

Theorem 5.4. If the assumption (3.9) is replaced with (5.1) then the HJB equa-
tion (4.4) has a unique solution un

0 in Cb(E), and the sequence {un
0} is monotone

decreasing and converges uniformly to the maximum solution of (3.17), i.e., u0

solves (4.7) and any other solution u satisfies u ≤ u0. Moreover, each function
un
0 (x) is the optimal cost of an impulse control problem with at most n impulses,

i.e., (4.8) holds, and u0(x) is the optimal cost (3.15) with y = 0, i.e., the min-
imization uses impulse controls satisfying ηi−1 < ηi whenever ηi−1 < ∞, for
any i. Furthermore, if ūn

0 (x) denotes the optimal cost with possible simultaneous

impulses then the impulse control {(η̂i, ξ̂i) : 1 ≤ i ≤ n} obtained from the contin-
uation region is optimal, but of course, it may have simultaneous interventions,
i.e., η̂i = η̂i−1 < ∞ with a positive probability for some i ≤ n. However, if con-
dition (3.10) with the measurable selector Ξ(x, ξ, v) (see Remark 5.2) is retained
then for any ν′ in V ′

0 there exists another ν in V0 such that Jx,0(ν
′) ≥ Jx,0(ν), and

so ūn
0 (x) = un

0 (x), and hence, the impulse control obtained from the continuation

regions (i.e., {uk
0 < ψk = Muk−1

0 }, k = 1, . . . , n and the operator Ξ(x, ξ, v)) can
be modified to be optimal, i.e., without having simultaneous interventions.

This does not prove that the impulse control obtained from the continuation
region corresponding to u0 or ū0 is optimal since we do not know that η̂i → ∞ as
i → ∞ (which would need additional assumptions).

6. Possible Simultaneous Switchings

The assumption (3.10) should be partially dropped (i.e., retaining only the
condition that Γ(x) is a non-empty closed subset of E) to allow simultaneous
impulses or switchings. This means that within the Definition 3.9, every impulse
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(or switching) control satisfied θi ≤ θi+1, instead of (implicitly) assuming θi < θi+1

whenever θi < ∞, and in both cases, it is also assumed that θi → ∞ as i → ∞.
In any case, impulse (or switching) controls are sequential decisions and therefore,
θi+1 = θi < ∞ means an impulse (or switching) time with two simultaneous
impulses (or switchings), i.e., from xi = xi−1

θi
the state is moved first to ξi ∈ Γ(xi)

and then from ξi to the state ξi+1 ∈ Γ(ξi). With this setting, the expression of cost
Jxy(ν) is the same as given by (3.13). There may be a finite number of impulses
(or switchings) at a particular instant, but not an infinite number since this would
violate the condition that θi → ∞ as i → ∞ (and would not be realistic). This
class of (zero-)admissible impulse or switching controls is denoted by V ′ ⊃ V (and
V ′
0 ⊃ V0), and referred to as ‘simultaneous (time) interventions’ since the time of

interventions may satisfy θi+1 = θi < ∞ for some i. As explained later on, this
notation is modified to better understand of our setting.

6.1. Sequential construction. As explained earlier, these controls are sequen-
tial decisions and by convenience, (θ0, η0, ξ0) = (0, 0, x) is added as well as θ∞ =
η∞ = ∞ and the condition θi = ∞ if and only if ηi = ∞, and certainly, these
cases are not considered interventions. Therefore, if the equality θi = θi+1 is al-
lowed then necessarily the relation θηi = τηi should be reconsidered. Indeed, using
the fact that a signal occurs if and only if yt = 0, the sequence of signals is now
defined sequentially together with an impulse (or switching) control. As described
in Subsection 3.3, θi and ηi are stopping times and ξi is ‘adapted with values in
Γ(·)’, and thus, the sequential procedure to define interventions can be expressed
as follows:

• First, if {(x0
t , y

0
t ) : t ≥ 0} denotes the uncontrolled Markov evolution (of the

state) and τ0k = inf{t > τ0k−1 : y0t = 0} (k ≥ 1) is the sequence of signals with

τ00 = 0, then θ1 ≥ 0, η1 ≥ 0 and ξ1 ∈ Γ(x) are chosen satisfying θ1 = τ0η1
,

and the state is moved from (x0
θ1
, y0θ1) to (ξ1, y

0
θ1
) so that the Markov evolution

{(x1
t , y

1
t ) : t ≥ θ1} continues anew (on the region θi < ∞) with the initial condition

(x1
θ1
, y1θ1) = (ξ1, 0), since y0

τ0
k
= 0 for every k ≥ 0.

• Next, iterate for every i ≥ 1, if θi = ∞ (and ηi = ∞) then θi+1 = ∞, ηi+1 = ∞
and ξi+1 is irrelevant (i.e., no more interventions), otherwise (i.e., if θi < ∞ and
ηi < ∞) and if τ ik = inf{t > τ ik−1 : yit = 0} denotes the sequence (k > ηi) of

signals after τ iηi
= θi then θi+1 ≥ θi, ηi+1 ≥ ηi and ξi+1 ∈ Γ(xi−1

θi
) are chosen

satisfying θi+1 = τ iηi+1
, and the state is moved from (xi

θi+1
, yiθi+1

) to (ξi+1, y
i
θi+1

),

so that the Markov evolution {(xi+1
t , yi+1

t ) : t ≥ θi+1} continue anew (on the re-
gion θi+1 < ∞) with the initial condition (xi+1

θi+1
, yi+1

θi+1
) = (ξi+1, 0) since yi

τ i
k
= 0

for every k ≥ i, and now, τ i+1
k = inf{t > τ i+1

k−1 : yi+1
t = 0} denotes (k > ηi+1) the

signals after τ i+1
ηi+1

= θi+1.

• Hence, for every i ≥ 1, it should be understood that {(xi
t, y

i
t) : t ≥ θi} denotes

the Markov evolution after the i-intervention applied at ‘time’ θi (or ηi in a discrete
time model), with the signals (after τ i0 = θi) given by τ ik = inf{t > τ ik−1 : yit = 0},
k > ηi. They satisfy θi ≥ θi−1, ηi ≥ ηi−1 and θi = τ iηi

for every i ≥ 1. For any
i = 1, 2, . . ., recall that θi < ∞ if and only if ηi = ∞, that θ∞ = η∞ = ∞, that
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θi = ∞ may have a non-zero probability (an intervention requires θi < ∞, and so,
the impulse ξi may not be defined when θi = ∞), that the intervention i occurs
when the stopping time θi < ∞, and that the upper index i of the process and
the signals, {(xi

t, y
i
t) : t ≥ θi} and {τ ik : k ≥ ηi}, correspond to notation ‘after’ the

i intervention.

This procedure used to define (and choose) an impulse (or switching) control
includes the possibility that θi = θi−1 < ∞ (or equivalently, ηi = ηi−1 < ∞)
for some i ≥ 1, and to actually produce a ‘valid’ impulse (or switching) control
the choice should ensure that θi → ∞ (and ηi → ∞) as i → ∞, since possible
simultaneous impulses (or switchings) are allowed and regarded as simultaneous
interventions. Clearly, requesting that at each step in the iteration i ≥ 1 the choice
of θi (and ηi) satisfies θi < θi−1 whenever θi−1 < ∞ (and ηi < ηi−1 whenever
ηi−1 < ∞) will overrule any possible simultaneous interventions, and because the
signals τ ik → ∞ as k → ∞, this implies that θi → ∞ (and ηi → ∞) as i → ∞
(as in previous sections). With this in mind, it seems unnecessary to change the
initial notation of our impulse (or switching) control model, since θi+1 = θi < ∞
means that the i+ 1 and i interventions are applied simultaneously.

6.2. k-simultaneous impulses. Nevertheless, we may think that ‘an interven-
tion’ (at a given time) means a finite number of simultaneous impulses (or switch-
ings) that transfer the state successively from x = x1 to ξ1 = x2 in Γ(x1), next
from x2 to ξ2 = x3 in Γ(x2), and so forth, to end with a transfer from xk to
ξk = ξ in Γ(xk). Thus a ‘natural’ cost due to this intervention is c̄(x, ξ) =
c(x1, ξ1) + · · · + c(xk, ξk), and clearly, the running cost function f(x, y) is ‘non
sensible’ to this multiple impulses (i.e., for f only the states x before and ξ af-
ter simultaneous impulses are relevant). As mentioned in the previous sections,
there is no need to consider possible simultaneous impulses (or switchings), when
condition (3.10) is assumed, so this condition is partially dropped in this section.
A formal setting allowing multiple simultaneous impulses may be formulate as
follows:

Definition 6.1. If Γ(x) is as given in Section 3.2, with condition (3.10) partially
dropped, i.e., assuming only that ∅ �= Γ(x) is closed, then a k-simultaneous impulse
(or in short, k-impulse) from x to ξ is a k-uple ξ = (ξ1, . . . , ξk) such that x =
x1, ξ1 ∈ Γ(x1), x2 = ξ1, ξ2 ∈ Γ(x2), . . . , xk = ξk−1, ξk ∈ Γ(xk), ξk, e.g.,
a (single) impulse as used in previous sections is an 1-impulse from x to ξ. A
‘multiple simultaneous impulses’ is used as alternative name when the integer k
of simultaneous impulses is not necessarily mentioned, and implicitly understood
that only a finite number of simultaneous impulses is used. Also, define the iterates
of Γ(x) as

Γk(x) = {(ξ1, . . . , ξk) : ξ1 ∈ Γ(x), ξ2 ∈ Γ(ξ1), . . . , ξk ∈ Γ(ξk−1)} ⊂ Ek,

for any k ≥ 1. Clearly, Γ(x) is identified with Γ1(x) and for any integer κ ≥ 1
define

Γκ(x) = Γ1(x) ∪ Γ1(x) ∪ · · · ∪ Γκ−1(x) ∪ Γκ(x),

the set of possible k-impulses with 1 ≤ k ≤ κ. Similarly, if the set {x ∈ E : x ∈
Γ(x)} is non-empty then it may be useful to define the set Γ′

k(x) ⊂ Γk(x) of all
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k-impulses with Γ′(x) = {ξ ∈ Γ(x) : ξ �= x} in lieu of Γ(x), which are referred
to as strict k-simultaneous impulse. The function c(x, ξ) is initially defined for
any x ∈ E and ξ ∈ Γ(x) and therefore, extended to any (ξ1, . . . , ξk) ∈ Γk(x) by
linearity, i.e.,

c(x, ξ1, . . . , ξk) = c(x, ξ1) + c(ξ1, ξ2) + · · ·+ c(ξk−1, ξk),

and eventually conveniently extended to E × Ek, fro any k ≥ 1. Thus, the same
notation c(x, ξ) for any x ∈ E and ξ ∈ Γk(x) can still be used, with the previ-
ous meaning, i.e., for ξ belongs to Γk(k) ⊂ Ek the expression of c(x, ξ) changes
accordingly.

Hence, an alternative and equivalent way to describe a simultaneous impulse
(or switching) control {(θi, ξi,1, . . . , ξi,ki) : i ≥ 1} is to impose that θi < θi+1

whenever θi < ∞ and (ξi,1, . . . , ξi,ki) has values in Γki(x), i.e., at time θi the state
is moved successively from x to ξi,1, from ξi,1 to ξi,2, and so forth, to reach ξi,ki

in ki instantaneous impulses (or switching). Thus, the notation {(θi, ξi) : i ≥ 1}
with ξi ∈ Γki(x) makes a subtle difference with notation used in previous sec-
tions, and with this in mind, Definition 3.9 for admissible and zero-admissible
impulse controls is meaningful. Certainly, θ0 = 0 and ξ0 = x is added by con-
venience; and a ‘simple impulse’ from x to ξ is ‘strict’ if x �= ξ, and a k-impulse
ξ = (ξ1, . . . , ξk) from x to ξ (actually to xk ) is ‘strict’ if ξ �= x = x1 �= ξ1 = x2 �=
ξ2 = x3, . . . , xk−1 �= ξk−1 = xk �= ξk, i.e., it belongs to Γ′

k(x). Therefore:

• The class V�
0 ⊃ V0 of all zero-admissible impulse controls with possible simul-

taneous impulses can be represented as ν = {(θi, ξi,1, . . . , ξi,ki) : i ≥ 1} or simply
ν = {(θi, ξi) : i ≥ 1} or the discrete time version ν = {(ηi, ξi) : i ≥ 1}, satisfying
θi < θi+1 whenever θi < ∞, ηi < ηi+1 whenever ηi < ∞, and (ξi,1, . . . , ξi,ki) has
values in Γki(x), as previously. This class is the same V ′

0 described at the begin-
ning of this section, usually referred to as zero-admissible impulse control with
possible simultaneous interventions, i.e., {(θn, ξn) : n ≥ 1} satisfying θn ≤ θn+1

and ξn ∈ Γ(x), besides the zero-admissible condition yθn = 0, and also the neces-
sary requirement that θn → ∞ as n → ∞.

• Similarly, for a given positive integer κ, denote by Vκ
0 the class of impulse con-

trols ν in V0 such that ki ≤ κ for every i ≥ 1, and by convenience, we set θ0 = 0,
ξ0 = x, and ξi = (ξi,1, . . . , ξi,ki), for any i ≥ 1. Clearly, Vκ

0 ⊂ Vκ+1
0 ⊂ V�

0 and if
κ = 1 then V1

0 is the class of V0 of zero-admissible impulse controls. Similarly, the
class Vκ is defined, which corresponds to the class of admissible impulse controls
V without possible simultaneous impulses, see in Definition 3.9.

6.3. Impulse operator M . Thus, besides the operator M as given by (3.11), if
simultaneous impulses (or switchings) are allowed then iterations of M are useful,
and it is convenient to define the operator

Mkv(x) = inf
{
c(x1, ξ1) + · · ·+ c(xk, ξk) + v(ξk) : x = x1 ∈ E,

x1 �= x2 = ξ1 ∈ Γ(x1), . . . , xk−1 �= xk = ξk−1 ∈ Γ(xk−1),

x �= ξ = ξk ∈ Γ(xk)
}
, (6.1)
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which agrees with the (power) expression Mkv = M(Mk−1)v. As implicitly un-
derstood, the impulse (or switching) cost c(x, ξ) is continuously defined (and used
only) for x in E and ξ in Γ(x), and for convenience, it is extended to the whole
E × E and E × Ek for a k-impulse. Setting up an impulse (or switching) control
model imposes (implicitly) the restriction x �∈ Γ(x), i.e., an impulse (or switching)
that does not actually move the state is not allowed (and unnecessary). Thus,
because an optimal control is desired, it is natural to assume (at least) that the
set Γ(x) ⊂ E is closed. This combined with what follow, justify the assertion that
the extension of the function c(x, ξ) to the whole product space E × E could be
not necessarily continuous on the diagonal x = ξ, unless the diagonal is an isolated
region, like in an usual switching control model.

Also, it may be expected that a positive cost should be associated with any
intervention (impulse or switching), i.e., c(x, ξ) > 0 for any x �= ξ ∈ Γ(x) (in an
inventory control problem this includes a positive fixed cost per order), unless a
switching control model is in mind, e.g., the cost-per-switching may be associated
with beginning some operation (i.e., starting a machine), and therefore, stopping
the operation, may have no cost (i.e., a zero cost), which yields c(x, ξ) = 0 for
some ξ �= x. For instance, if there is no cost for two interventions then switching
forward and backward between them, produces an undesired situation: the system
may get trap at a finite time, and this situation could be possible even when a
constraint given by a signal process is enforced.

Still, there may be other reasons to decide for simultaneous impulses, e.g., when
ξ1 ∈ Γ(x1), ξ2 ∈ Γ(ξ1), and either ξ2 �∈ Γ(x) or c(x1, ξ1) + c(ξ1, ξ2) < c(x1, ξ2)
with ξ2 ∈ Γ(x1). Actually, to include all these possibilities, involves to drop the
assumption (3.10) partially, i.e., retaining only the condition that Γ(x) is a non-
empty closed subset of E. For instance, if we recall that V�

0 denotes the set of
zero-admissible impulses having at most finite number of simultaneous impulses
then the dynamic programming applied to the optimal cost u0(x) = inf{Jx0(ν) :
ν ∈ V�

0} yields (4.7) as the HJB equation with Mv(x) = infk≥1 Mkv(x) instead
of M being given by (3.11), i.e., u0 is expected to be the maximum solution of
w(x) = min

{
fα(x) + Pw(x), infk≥1 Mkw(x)

}
,within a suitable class of functions

w. This analysis could be worked out under the condition: there exists a positive
integer κ and a constant cκ > 0 such that

c(x, ξ1, . . . , ξk) ≥ cκ, ∀(ξ1, . . . , ξk) ∈ Γk(x), ∀k > κ, (6.2)

since this would implies that any impulse control {θn, ξn} in V ′
0 cannot have a

finite cost and also an infinite number of simultaneous k-interventions with k >
κ, namely, an impulse control model with possible κ-simultaneous impulses (i.e.,
in the class Vκ

0 ). Conceptually, this situation works fine also for the standard
switching control model, where some costs may be zero but no loop may show up.

6.4. Manageable situations. Now, if the number of possible simultaneous im-
pulses is a priori bounded by a positive integer κ, i.e.,

u0(x) = inf{Jx0(ν) : ν ∈ Vκ
0 }, (6.3)

then the HJB becomes

w(x) = min
{
fα(x) + Pw(x),M1w(x), . . . ,Mκw(x)

}
. (6.4)
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This HJB equation can be solved almost as in Subsection 5, where simultaneous
impulses were ruled out. Indeed, it suffices to use impulse (or switching) con-
trols {(θi, ξi,1, . . . , ξi,ki) : i ≥ 1} with ki ≤ κ and the sequence of VIs as (4.6)

with ψ = min{M1u
n−1
0 (x), . . . ,Mκu

n−1
0 (x)} has a unique solution at each step

n, and un
0 (x) → u0(x) uniformly in x, since the estimate (5.3) remains valid

for any impulse control in Vκ
0 . However, this does not ensure that the optimal

impulse (or switching) control ν̂ obtained from the continuation region u0(x) <
min{M1u0(x), . . . ,Mκu0(x)} has at most κ impulses. Moreover, each un

0 (x) corre-
sponds to the optimal cost on the class of impulse controls ν = {(ηi, ξi) : i ≥ 1} in
Vκ
0 satisfying ηn+1 = ∞, and if ν̂n is the impulse control obtained from the contin-

uation regions associated with u1
0, . . . , u

n
0 , then ν̂n may belong to the class V�

0 �Vκ
0 ,

i.e., may have simultaneous interventions. This is because the cost-per-impulse is
not necessarily strictly positive or the condition (3.10) is not enforced.

Hence, to deal with simultaneous impulses (or switchings), an ‘iterated’ condi-
tion (5.2) could be reformulated as follows: besides Γ(x) being a non-empty closed
subset of E, suppose that there exists a positive integer κ such that for every k > κ,
x ∈ E and (ξ1, . . . , ξk) ∈ Γk(x) there exists k′ ≤ κ and (ξ′1, . . . , ξ

′
k′) ∈ Γk′(x) such

that
ξ′k′ = ξk and c(x, ξ1, . . . , ξk) > c(x, ξ′1, . . . , ξ

′
k′). (6.5)

since κ = 1 becomes essentially condition (5.2), even if it may happen that Γ(ξ) �⊂
Γ(x) for some ξ ∈ Γ(x). An interpretation of this assumption is as follows: ‘strictly
more that κ simultaneous impulses (or switchings) are irrelevant’, because, any
action to transfer the state from x to ξk with a k-simultaneous impulse having
k > κ can be achieved with k′-simultaneous impulses with k′ ≤ κ and a strictly
lower cost.

A version of Lemma 5.1 with M replaced by Mk given by (6.1) can be proved,
i.e., under the condition (6.5), if x ∈ E, k ≤ κ, v(x) ≤ Mk′v(x), for any k′, and

v(x) = Mkv(x) = c(x, ξ̂1(x, v), . . . , ξ̂k(x, v)) + v(ξ̂k(x, v)),

v(x) < Mk+1v(x) = c(x, ξ̂′1(x, v), . . . , ξ̂
′
k+1(x, v)) + v(ξ̂′k+1(x, v)),

then v(ξ̂k(x, v)) < inf{Mkv(ξ̂k(x, v)) : 1 ≤ k ≤ κ}.
Therefore, under the assumption (6.5) instead of (3.10) for an impulse control

model with possible simultaneous impulses (or switching), we are essentially back
to conditions of the Section 5, and so, it would be not so hard to complete the
above arguments to deduce:

Theorem 6.2. The results of Theorem 4.4 and Theorem 4.5 remain valid (with
minimal changes as discussed above) if the conditions (3.9), (3.10) are replaced
with (5.1), (6.5), i.e., a discounted impulse/switching control model with a con-
straint given by a signal process and possible simultaneous impulses/switchings can
be solved, namely, using Vκ

0 instead of V0, and similarly with V.

Also, similar to Theorem 5.4, we have

Theorem 6.3. If the assumptions (3.9) and (3.10) are replaced with (5.1) and an
iterated condition (3.10) or a non-strict version of condition (6.5), namely,

ξ′k′ = ξk and c(x, ξ1, . . . , ξk) ≥ c(x, ξ′1, . . . , ξ
′
k′), (6.6)
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then Mkv(x) ≥ inf{Mk′v(x) : 1 ≤ k ≤ κ} for any x, the HJB equation

un
0 (x) = min

{
fα(x) + Pun

0 (x),M1u
n−1
0 (x), . . . ,Mκu

n−1
0 (x)

}
.

has a unique solution un
0 in Cb(E), and the sequence {un

0} is monotone decreasing
and converging uniformly to the maximum solution u0 of (6.4), i.e., u0 solves
(6.4) and any other solution u satisfies u ≤ u0. Moreover, each function un

0 (x) is
the optimal cost of an impulse control problem with at most n impulses, i.e., (4.8)
holds, and u0(x) is the optimal cost within the class V�

0 , i.e., the minimization
uses impulse controls satisfying ξi ∈ Γki(x) and ηi−1 < ηi whenever ηi−1 < ∞, for
any i. Furthermore, if for the optimal cost un

0 we define the continuation region

{x ∈ E : un
0 (x) < ψn(x)}, ψn = min{Mku

n−1
0 : 1 ≤ κ},

as well as the optimal multiple impulse (ξ̂1, . . . , ξ̂k), with 0 ≤ k ≤ κ, depending on
x and un−1

0 and satisfying

ψn(x) = Mku
n−1
0 (x) = c(x, ξ̂1, . . . , ξ̂k) + un−1

0 (ξ̂k),

then the impulse control {(η̂i, ξ̂i) : 1 ≤ i ≤ n} obtained from the continuation
region is optimal for un

0 , but it may have simultaneous interventions (certainly, if
the condition (6.5) is retained then no simultaneous impulses may occur, in the
sense of ηi−1 < ηi whenever ηi−1 < ∞), i.e., η̂i = η̂i−1 < ∞ with a positive
probability for some i ≤ n.

Note that it was not necessary to use the notation with multiple impulses (see
Definition 6.1) within Theorem 5.4 and the optimal impulse control was denoted

by {(η̂i, ξ̂i) : 1 ≤ i ≤ n}, but as a recall of this subtle difference, the notation

{(η̂i, ξ̂i) : 1 ≤ i ≤ n} was preferred in Theorem 6.3.
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