
I J C T A, 9(5), 2016, pp. 2461-2465
© International Science Press

Trie Network Lookup
Joshua Ranjit Christian M.1, Sujatha V.2, Jayanthi S.3,
Akshay R.4 and Divyush Raj A.5

ABSTRACT

Networks and routing have become an integral part of life on earth. Networked computing works on routing the
packets aroundthenetwork.Theexperimentistoproposean ew algorithm to reduce the time taken to find the next hop
in the lookup table by implementing a partitioned and encoded search mechanism which reduces the time taken
from n to square root of n in look-up. This is done by using a trie data structure for the network addressed encoded
in Huffman codes. The class-wise multithreading also help s in achieving faster results. The new algorithm is to
improve the timeefficiency.

Keywords: Look-up table, Network address, Next hop, Trie data structure, Multi-threading, Huffman Code, Router.

1. INTRODUCTION

Computer networks is an important aspect in our daily progress as we depend on networked computers for
almost everything nowadays. The primary role of routers is to forward packets towards their final destination.
To this purpose, a router must decide for each incoming packet where to send it next. the next-hop router as
well as the egress port through which the packet should be sent. This forwarding information is stored in a
forwarding table that the router computes based on the information gathered by routing protocols. To
consult the forwarding table, the router uses the packet’s destination address as a key; this operation is
called address lookup. Once the forwarding information is retrieved, the router can transfer the packet from
the incoming link to the appropriate outgoing link, in a process called switching. The address lookup
operation is a major bottleneck in the forwarding performance of today’s routers. This paper presents a
technique to improve the efficiency of the existing look up algorithm.

2. EXPLANATION

In IP version4, IP addresses are 32 bit long and, when broken up into 4 groups of 8 bits, are normally
represented as four decimal numbers separated by dots. For example, the address
10000010_01010110_00010000_ 01000010 corresponds in the dotted-decimal notationto130.86.16.66. IP
addresses use a two level hierarchy, with network layer on top and the host layer at the bottom. Routing
protocols mostly focus on the network part of the addresses which is called the address prefix a sit forms
the first few bits of the IP address. With a two-level hierarchy, IP routers forwarded packets based only on
the network part, until packets reached the destination network. As a result, a forwarding table only needed
to store a single entry to forward packets to all the hosts attached to the same network. This technique is
called address aggregationand allows using prefixes to represent a group of addresses. Each entry in a
forwarding table contains a prefix, as can be seen in Table 1. So, finding the forwarding information requires
to search for the prefix in the forwarding table that matches the corresponding bits of the destination
address.

1&5 Department of Computer Science and Engineering, KCG College of Technology, Chennai-600097, Emails: jchris1901@gmail.com,
sujatha@kcgcollege.com, jayanthi.jagadeesa@gmail.com, akshayrameshbabu@gmail.com, anithvinitha@gmail.com



2462 Joshua Ranjit Christian M., Sujatha V., Jayanthi S., Akshay R. and Divyush Raj A.

Table 1
A forwarding table

Destination Address Prefix Next-hop Output interface

24.40.32/20 192.41.177.148 2

130.86/16 192.41.177.181 6

208.12.16/20 192.41.177.241 4

208.12.21/24 192.41.177.196 1

167.24.103/24 192.41.177.3 4

The addressing architecture specifies how the allocation of addresses is performed, that is it define
show to partition the total IP address space of 232 addresses. Specifically, how many network addresses
will be allowed and of what size each of them should be. When the Internet addressing was initially designed,
a rather simple address allocation scheme was defined, which is known today as the classful addressing
scheme. Basically, three different sizes of networks were defined in this scheme, identified by a class name:
class A, B, and C (see figure 1). Size of networks was determined by the number of bits used to represent
the network part and the host part. Thus networks of class A, B or C consisted in an 8, 16 or 24-bitnetwork
part and a corresponding 24,16 or 8-bithost part.

With this scheme there were very few class A networks and their addressing space represented 50% of
the total IPv4 address space (231 addresses out of a total of 232). There were 16,384 (214) class B networks
with a maximum of 65,534 hosts per network and 2,097,152 (2 21) class C networks with up to 256 hosts.
This allocation scheme worked well in the early days of the Internet. However, the continuous growth of
the number of hosts and networks have made apparent two problems with the classful addressing architecture.
First, with only three different network sizes to choose, the address space was not used efficiently and the
IP address space was getting exhausted very rapidly, even though only a small fraction of the addresses
allocated were actually in use. Second, although the state information stored in the forwarding tables did
not grow in proportion to the number of hosts, it still grew in proportion to the number of networks. This
was especially important in the backbone routers, which must maintain an entry in the forwarding table for
every allocated network address. As a result, the forwarding tables in the backbone routers were growing
very rapidly. The growth of the forwarding tables resulted in higher lookup times and higher memory
requirements in the routers and threatened to impact their forwardingcapacity.

Figure 1: Classful Addresses



Trie Network Lookup 2463

To allow for a more efficient use of the IP address space and to slow down the growth of the back bone
forwarding tables, a new scheme called Classless Inter-domain Routing or CIDR was introduced. Remember,
that in the classful address scheme, only 3 different prefix lengths are allowed: 8,16 and 24 corresponding
to the classes A, B and C, respectively (see figure 1).CIDR makes more efficient use of the IP address space
by allowing a finer granularity in the prefix lengths. With CIDR, prefixes can be of arbitrary length rather
than constraining them to be 8, 16 or 24 bits long. To address the problem of forwarding table explosion,
CIDR allows address aggregation at several levels. The idea is that the allocation of addresses hasa topological
significance. Then, we can recursively aggregate addresses at various points within the hierarchy of
theInternet’s topology. As a result, back bone routers maintain forwarding information not at the network
level but at the level of arbitrary aggregates of networks. Thus, recursive address aggregation reduces the
number of entries in the forwarding table of backbone routers

In the classful addressing architecture, the length of the prefixes was coded in the most significant bits
of an IP address (see figure 1), and the address lookup was a relatively simple operation: Prefixes in the
forwarding table were organized in three separate tables, one for each of the three allowed lengths. The
lookup operation amounted to find an exact prefix match in the appropriate table. The search for an exact
match could be performed using standard algorithms based on hashing or binary search. While CIDR
allows to reduce the size of the forwarding tables, the address lookup problem now becomes more complex.
With CIDR, the destination prefixes in the forwarding tables have arbitrary lengths and do not correspond
any more to the network part since they are the result of an arbitrary number of network aggregations.

Therefore, when using CIDR, the search in a forwarding table can not be performed any longer by exact
matching because the length of the prefix cannot be derived from the address itself. As a result, determining
the longest matching prefix involves not only to compare the bit pattern itself but also to find the appropriate
length. Therefore, we talk about searching in two dimensions, the value dimension and the length dimension.
The search methods we will review try to reduce the search space at each step in both of these dimensions.
In what follows we will use N to denote the number of prefixes in a forwarding table and W to indicate the
maximum length of prefixes, which is typically also the length of the IP addresses.

3. EXPERIMENT

The proposed experiment suggests that the binary code of the network address is encoded in Huffman
codes and then implemented using Trie data structure. Trie is a tree based data structure which can either be
a single bit trie or a multibit trie. To improve the efficiency, the trie is multithreaded under the first Octant
of the IP addressing scheme. The linear search of the longest matching prefix takes a long time equal to the
number of elements in the lookup table. Instead when we multithread it the complexity reduced to the

Figure 2: Path Compressed Trie



2464 Joshua Ranjit Christian M., Sujatha V., Jayanthi S., Akshay R. and Divyush Raj A.

square root of the number of entries in the look up table. The encoding and decoding when done in Huffman
codes can make sure that memory was tage is reduced. The usage of multi-threaded search algorithms need
better hardware so cost of production will be higher than usual but time efficiency will be consider ably
increased.

The multi-threaded algorithm is as follows

a) Split the IP address into three parts, first part being the first octant, second part being the rest of the
IP address and the last part being the host address.

b) Neglect the host address part and consider only the second part.

c) Encode the second part in Huffman codes and construct binary tries with the next hops appended
on the node.

This considerably improves the efficiency of the search and also the memory complexity of the routing
mechanisms.

4. RESULT

Routing in networks is a very important process. With the increasing network addresses and number of
hosts the time taken to route a packet is crucial. The proposed algorithm when implemented has proven to
reduce the time complexity of routing algorithms from O(n) to O (d) by multithreading and encoding in
Huffman codes.

REFERENCES:
[1] G. Cheung and S. McCanne, “Optimal Routing Table Design for IP Address Lookups Under Memory Constraints,”

Proceedings of IEEE INFOCOM’99, pp. 1437-1444, March 1999.

[2] P. Crescenzi, L. Dardini, R. Grossi, “IP Address Lookup Made Fast and Simple,” Algorithms ESA’99, also as Technical
Report TR-99-01 Università di Pisa.

[3] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small Forwarding Tables for Fast Routing Lookups,” Proceedings
of ACM SIGCOMM’97, pp. 3-14, September 1997.

[4] W. Eatherton, “Full Tree Bit Map,” Master’s Thesis, Washington University, 1999.

[5] A. Feldmann and S. Muthukrishnan, “Tradeoffs for Packet Classification,” Proceedings of IEEE INFOCOM 2000, pp
1193-1202, March 2000.

[6] P. Gupta, S. Lin, N. McKeown, “Routing Lookups in Hardware at Memory Access Speeds,” in Proceedings of IEEE
INFOCOM’98, pp. 1240-1247, April 1998.

[7] G. Huston, “Tracking the Internet’s BGP Table,” presentation slides available at: http://www.telstra.net/gih/prestns/ietf/
bgpt able.pdf, December 2000.

[8] C. Labovitz, “Scalability of the Internet Backbone Routing Infrastructure,” Ph. D. Thesis, University of Michigan, 1999.

[9] B. Lampson, V. Srinivasan, and G. Varghese, “IP Lookups using Multi-way and Multicolumn Search,” in Proceedings of
IEEE INFOCOM’98, pp. 1248-1256, April 1998.

[10] D. R. Morrison, “PATRICIA-Practical Algorithm to Retrieve Information Coded in Alphanumeric,” Journal of the ACM,
15(4), pp. 514-534, October 1968.

[11] S. Nilsson and G. Karlsson “IP-Address Lookup Using LC-Tries,” IEEE Journal on Selected Areas in Communications
June 1999, Vol. 17, Number 6, pp. 1083-1092.

[12] “Un mécanisme optimisé de recherche de route IP,” in Proceedings of CFIP 2000 (Coloque Francophone sur l’Ingénierie
des Protocoles), pp. 217-232. October 2000.

[13] K. Sklower, “A tree-based packet routing table for Berkeley Unix,” Proceedings of the 1991Winter Usenix Conference,
pp. 93-99, 1991.

[14] V. Srinivasan and G. Varghese, “Fast Address Lookups using Controlled Prefix Expansion,” Proceedings of ACM
Sigmetrics’98, pp. 1-11, June 1998.



Trie Network Lookup 2465

[15] W. Richard Stevens and Gary R. Wright. TCP/IP Illustrated, Vol. 2 The Implementation. Addison-Wesley, 1995.du/ipma/
routing_table/,16 August, 1999.

[16] Warkhede, “Multiway Range Trees: Scalable IP Lookup with Fast Updates,” Technical Report 99-28, Washington
University, 1999.

[17] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable High Speed IP Routing Lookups,” Proceedings of ACM
SIGCOMM’97, pp. 25-36, September 1997.

[18] Prefix database Mae East, The Internet Performance Measurement and Analysis (IPMA) project, data available at: http:/
/www.merit.e




