θ-CLOSURE AND δ-CLOSURE OPERATORS IN BITOPOLOGICAL SPACES

P. Thangavelu \& G. Thamizharasi

Abstract

The purpose of this paper is to give the covering characterization of closure, θ-closure, δ-closure, interior, θ-interior and δ-interior operators in bitopological spaces.

Kewwords: Bitopology, Closure, Interior, Open covering.

1. INTRODUCTION

In this chapter closure, θ-closure, δ-closure, interior, θ-interior and δ-interior operators are studied in bitopological spaces by using a covering of X. Throughout the paper $\left(X, \tau_{1}, \tau_{2}\right)$ is a bitopological space and $i, j=1,2, i \neq j$. In this paper j-cl A and j-int A denote the closure of A and interior of A in a topological space $\left(X, \tau_{j}\right)$ for any subset A of X. A sub set U of X is i-open in X if $U \in \tau_{i}$.

2. $i \boldsymbol{j}-\theta$ - CLOSURE AND $\boldsymbol{i} \boldsymbol{j}-\delta$ - CLOSURE OPERATORS

Kariofillis[2] and Sanjay Tahiliani[4] studied q-closure operators in bitopolgical spaces. Banerjee[1], Khedr and Al-Areefi[3] extended the notion of δ-closure to bitopological spaces. Takashi Noiri and Valeriu Popa also studied the δ-closure and θ-closure operators in bitopological spaces. In this section the above operators are further investigated.

Definition 2.1: Let B be a subset of (X, τ_{1}, τ_{2}). A point $x \in X$ is said to be in the $i j-\theta c l B[2]$ if $B \cap j$-cl $U \neq \varnothing$ for every i-open set U containing x.

A subset A of X is said to be $i j-\theta$-closed if $A=i j-\theta c l A$. The complement of an $i j-\theta$-closed set is $i j-\theta$-open in $\left(X, \tau_{1}, \tau_{2}\right)$. The set $i j-\theta \operatorname{int} B$ is defined as the union of all $i j-\theta$-open sets contained in B. Hence $x \in i j-\theta \operatorname{int} B$ if and only if there is an i-open set U such that $x \subseteq U \subseteq j-c l U \subseteq B$.

The next two lemmas will be useful in sequel.
Lemma 2.2: If U is j-open in X then $i j-\theta c l U=i$-cl U. [2]
Lemma 2.3: (i) $X \backslash i j-\theta c l B=i j-\theta \operatorname{int}(X \backslash B)$.
(ii) $X \backslash i j-\theta \operatorname{int} B=i j-\theta c l(X \backslash B)$. $[4,5]$

Definition 2.4: Let B be a subset of (X, τ_{1}, τ_{2}). A point $x \in X$ is said to be in the set $i j-\delta c l B[1,3]$ if $B \cap i$-int $(j$-cl $U) \neq \varnothing$ for every i-open set U containing x.

A subset A of X is said to be $i j-\delta$-closed if $A=i j-\delta c l A$. The complement of an $i j-\delta$-closed set is $i j$ - δ-open in (X, τ_{1}, τ_{2}). The set $i j$ - $\delta \operatorname{int} B$ is defined as the union of all $i j-\delta$-open sets contained in B. Hence $x \in i j-\operatorname{int} B$ if and only if there is an i-open set U such that $x \in U \subseteq i-\operatorname{int}(j-c l U) \subseteq B$.

Lemma 2.5: (i) $X \backslash i j-\delta c l B=i j-\delta \operatorname{int}(X \backslash B)$.
(ii) $X \backslash i j-\delta \operatorname{int} B=i j-\delta c l(X \backslash B)$. [6]

Lemma 2.6: Let B be a subset of $\left(X, \tau_{1}, \tau_{2}\right)$. Then
(i) $i-c l B \subseteq i j-\delta c l B \subseteq i j-\theta c l B$.
(ii) $i j-\delta c l B, i j-\theta c l B$ are i-closed sets.
(iii) if B is j-open then i-cl $B=i j-\delta c l B=i j-\theta c l B$.

Proof: Let $x \in i$-clB. Let U be an i-open set in X containing x. Then $U \cap B \neq \varnothing$.
Since U is i-open in $X, U \subseteq i$-int $(j$-cl U) that implies i-int $(j-c l U) \cap B \neq \varnothing$.
Then by Definition 2.4, $x \in i j-\delta c l B$. This proves that $i-c l B \subseteq i j-\delta c l B$.
Now let $x \in i j$ - $\delta c l B$. Let U be an i-open set in X containing x.
Since $x \in i j-\delta c l B$, by Definition 2.4, i-int $(j-c l U) \cap B \neq \varnothing$.
This implies that $(j-c l U) \cap B \neq \varnothing$. Then by Definition 2.1, $x \in i j-\theta c l B$.
This proves $i j-\delta c l B \subseteq i j-\theta c l B$. Thus (i) is proved.
Suppose $x \in i$-cl $(i j-\delta c l B)$. Let U be an i-open set containing x. Then $U(i j-\delta c l B) \neq \varnothing$. Let $y \in U \cap(i j-\delta c l B)$. Since $y \in i j-\delta c l B$, by Definition 2.4, i-int $(j-c l U) \cap B \neq \varnothing$. This proves that $x \in i j-\delta c l B$ that implies $i j-\delta c l B$ is i-closed. Now let $x \in i-c l(i j-\theta c l B)$. Let U be an i-open set containing x. Then $U(i j-\theta c l B) \neq \varnothing$. Let $y \in U \cap i j-\theta c l B)$ that implies $y \in i j-\theta c l B$. Then by Definition 2.1, $(j-c l U) \cap B \neq \varnothing$. This proves that $x \in i j-\theta c l B$. Therefore $i j-\theta c l B$ is i-closed. We thus proved (ii).
(iii) Suppose B is j-open. Then by Lemma 2.2, $i-c l B=i j-\theta c l B$. By applying (i) it follows that $i-c l B=i j-\delta c l B=i j-\theta c l B$.
Lemma 2.7: Let B be a subset of (X, τ_{1}, τ_{2}). Then
(i) i-int $B \supseteq i j-\delta$ int $B \supseteq i j$ - θ int B.
(ii) $i j-\delta$ int $B, i j-\theta$ int B are i-open sets.
(iii) if B is j-closed then i-int $B=i j$ - δ int $B=i j-\theta$ int B.

Proof: Follows from Lemma 2.5 and Lemma 2.6.
Lemma 2.8: If B is j-open then

$$
\begin{aligned}
j-\operatorname{int}(i-c l B) & =j i-\delta \operatorname{int}(i-c l B)=j i-\theta \operatorname{int}(i-c l B) \\
& =j-\operatorname{int}(i j-\delta c l B)=j i-\delta \operatorname{int}(i j-\delta c l B)=j i-\theta \operatorname{int}(i j-\delta c l B) \\
& =j-\operatorname{int}(i j-\theta c l B)=j i-\delta \operatorname{int}(i j-\theta c l B)=j i-\theta \operatorname{int}(i j-\theta c l B) .
\end{aligned}
$$

Proof: Suppose B is j-open. Then, by Lemma 7.2.6 (iii), we have

$$
\begin{equation*}
i-c l B=i j-\delta c l B=i j-\theta c l B \tag{7.1}
\end{equation*}
$$

This implies that $i-c l B, i j-\delta c l B, i j-\theta c l B$ are all i-closed.
Since i-cl B is i-closed, using Lemma 2.7 (iii), we get

$$
\begin{equation*}
j-\operatorname{int}(i-c l B)=j i-\delta \operatorname{int}(i-c l B)=j i-\theta \operatorname{int}(i-c l B) . \tag{7.2}
\end{equation*}
$$

Since $i j-\delta c l B$ is i-closed, again using Lemma 2.7 (iii), we get

$$
\begin{equation*}
j-\operatorname{int}(i j-c l B)=j i-\delta \operatorname{int}(i j-\delta c l B)=j i-\theta \operatorname{int}(i j-\delta c l B) \tag{7.3}
\end{equation*}
$$

Since $i j-\theta c l B$ is i-closed, by using Lemma 2.7 (iii), we get

$$
\begin{equation*}
j-\operatorname{int}(i j-\theta c l B)=j i-\delta \operatorname{int}(i j-\theta c l B)=j i-\theta \operatorname{int}(i j-\theta c l B) \tag{7.3}
\end{equation*}
$$

Then using Eqn. (7.1), Eqn. (7.2), Eqn. (7.3) and Eqn. (7.4) the lemma follows.
Lemma 7.2.9: If B is j-closed then

$$
\begin{aligned}
j-c l(i-\operatorname{int} B) & =j i-\delta c l(i-\operatorname{int} B)=j i-\theta c l(i-\operatorname{int} B) \\
& =j-c l(i j-\delta \operatorname{int} B)=j i-\delta c l(i j-\delta \operatorname{int} B)=j i-\theta c l(i j-\delta \operatorname{int} B) \\
& =j-c l(i j-\theta \operatorname{int} B)=j i-\delta c l(i j-\theta \operatorname{int} B)=j i-\theta c l(i j-\theta \operatorname{int} B) .
\end{aligned}
$$

Proof: Suppose B is j-closed. Then by using Lemma 2.7(iii), we see that

$$
\begin{equation*}
i \text {-int } B=i j-\delta \text { int } B=i j-\theta \text { int } B \tag{7.5}
\end{equation*}
$$

Therefore $i j-\delta \operatorname{int} B$ and $i j-\theta$ int B are all i-open.
Since i-int B is i-open, by using Lemma 2.6 (iii) we see that

$$
\begin{equation*}
j-c l(i-\text { int } B)=j i-\delta c l(i-\text { int } B)=j i-\theta c l(i-\text { int } B) \tag{7.6}
\end{equation*}
$$

Since $i j-\delta \operatorname{int} \mathrm{B}$ is i-open, by using Lemma 2.6 (iii) we see that

$$
\begin{equation*}
j-c l(i j-\delta \operatorname{int} B)=j i-\delta c l(i j-\delta \operatorname{int} B)=j i-\theta c l(i j-\delta \operatorname{int} B) \tag{7.7}
\end{equation*}
$$

Since $i j-\theta \operatorname{int} \mathrm{B}$ is i-open, again by using Lemma 2.6 (iii) we see that

$$
\begin{equation*}
j-c l(i j-\theta \operatorname{int} B)=j i-d c l(i j-\theta \operatorname{int} B)=j i-q c l(i j-\theta \operatorname{int} B) \tag{7.8}
\end{equation*}
$$

Now using Eqn. (7.5), Eqn. (7.6), Eqn. (7.7) and Eqn. (7.8) the lemma follows.

3. CHARACTERIZATIONS

Theorem 3.1: For any bitopological space (X, τ_{1}, τ_{2}), the following are equivalent.
(i) For every i-open cover $\left\{U_{\alpha}: \alpha \in \Delta\right\}$ of X there is a countable subset N of Δ such that $X=\bigcup_{n \in N} j-c l\left(U_{n}\right)$.
(ii) For every i-open cover $\left\{U_{\alpha}: \alpha \in \Delta\right\}$ of X there is a countable subset N of Δ such that $X=\bigcup_{n \in N}\left(j i-\delta c l U_{n}\right)$.
(iii) For every i-open cover $\left\{U_{\alpha}: \alpha \in \Delta\right\}$ of X there is a countable subset N of Δ such that $X=\bigcup_{n \in N}\left(j i-\theta c l U_{n}\right)$.
Proof: Suppose (i) holds. Let $\left\{U_{\alpha}: \alpha \in \Delta\right\}$ be an i-open cover for X. By using (i), there is a countable subset N of Δ such that $X=\bigcup_{n \in N}\left(j-c l U_{n}\right)$. By using Lemma 2.6 (iii), it follows that $j-c l U_{n}=j i-\Delta c l U_{n}=j i-\theta c l U_{n}$. This proves that $X=\bigcup_{n \in N}\left(j i-\delta c l U_{n}\right)$ and $X=\bigcup_{n \in N}\left(j i-\theta c l U_{n}\right)$. Thus we have established that (i) \Rightarrow (ii) and (i) \Rightarrow (iii). Again using the above reasons, the implications (ii) \Rightarrow (i) and (iii) \Rightarrow (i) can be established.

Theorem 3.2: For any bitopological space (X, τ_{1}, τ_{2}), the following are equivalent.
(i) For every j-open cover $\left\{U_{\alpha}: \alpha \in \Delta\right\}$ of X there is a countable subset N of Δ such that $X=\bigcup_{n \in N}\left(j-\operatorname{int}\left(i-c l\left(U_{n}\right)\right)\right)$.
(ii) For every j-open cover $\left\{U_{\alpha}: \alpha \in \Delta\right\}$ of X there is a countable subset N of Δ such that $X=\bigcup_{n \in N}\left(j i-\delta \operatorname{int}\left(i-c l U_{n}\right)\right)$.
(iii) For every j-open cover $\left\{U_{\alpha}: \alpha \in \Delta\right\}$ of X there is a countable subset N of Δ such that $X=\bigcup_{n \in N}\left(j i-\theta \operatorname{int}\left(i-c l U_{n}\right)\right)$.
(iv) For every j-open cover $\left\{U_{\alpha}: \alpha \in \Delta\right\}$ of X there is a countable subset N of Δ such that $X=\bigcup_{n \in N}\left(j-\operatorname{int}\left(i j-\delta c l U_{n}\right)\right)$.
(v) For every j-open cover $\left\{U_{\alpha}: \alpha \in \Delta\right\}$ of X there is a countable subset N of Δ such that $X=\bigcup_{n \in N}\left(j i-\delta \operatorname{int}\left(i j-\delta c l U_{n}\right)\right)$.
(vi) For every j-open cover $\left\{U_{\alpha}: \alpha \in \Delta\right\}$ of X there is a countable subset N of Δ such that $X=\bigcup_{n \in N}\left(j i-\theta \operatorname{int}\left(i j-\delta c l U_{n}\right)\right)$.
(vii) For every j-open cover $\left\{U_{\alpha}: \alpha \in \Delta\right\}$ of X there is a countable subset N of Δ such that $X=\bigcup_{n \in N}\left(j-\operatorname{int}\left(i j-\theta c l U_{n}\right)\right)$.
(viii) For every j-open cover $\left\{U_{\alpha}: \alpha \in \Delta\right\}$ of X there is a countable subset N of Δ such that $X=\bigcup_{n \in N}\left(j i-\delta \operatorname{int}\left(i j-\theta c l U_{n}\right)\right)$.
(ix) For every j-open cover $\left\{U_{\alpha}: \alpha \in \Delta\right\}$ of X there is a countable subset N of Δ such that $X=\bigcup_{n \in N}\left(j i-\theta \operatorname{int}\left(i j-\theta c l U_{n}\right)\right)$.
Proof: Let $\left\{U_{\alpha}: \alpha \in \Delta\right\}$ be a j-open cover for X. Let N be a countable sub set of Δ.
Let $n \in N$. Since U_{n} is j-open, from Lemma 2.8, it follows that

$$
\begin{aligned}
j-\operatorname{int}\left(i-c l U_{n}\right) & =j i-\delta \operatorname{int}\left(i-c l U_{n}\right)=j i-\theta \operatorname{int}\left(i-c l U_{n}\right) \\
& =j-\operatorname{int}\left(i j-\delta c l U_{n}\right)=j i-\delta \operatorname{int}\left(i j-\delta c l U_{n}\right)=j i-\theta \operatorname{int}\left(i j-\delta c l U_{n}\right) \\
& =j-\operatorname{int}\left(i j-\theta c l U_{n}\right)=j i-\delta \operatorname{int}\left(i j-\theta c l U_{n}\right)=j i-\theta \operatorname{int}\left(i j-\theta c l U_{n}\right) .
\end{aligned}
$$

Then the theorem follows.
Theorem 3.3. For any bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$, the following are equivalent.
(i) For every i-open cover $\left\{U_{\alpha}: \alpha \in \Delta\right\}$ of X there is a countable subset N of Δ such that $X=j-c l\left(\bigcup_{n \in N} U_{n}\right)$.
(ii) For every i-open cover $\left\{U_{\alpha}: \alpha \in \Delta\right\}$ of X there is a countable subset N of Δ such that $X=j i-\delta c l\left(\bigcup_{n \in N} U_{n}\right)$.
(iii) For every i-open cover $\left\{U_{\alpha}: \alpha \in \Delta\right\}$ of X there is a countable subset N of Δ such that $X=j i-\theta c l\left(\bigcup_{n \in N} U_{n}\right)$.
Proof: Suppose (i) holds Let $\left\{U_{\alpha}: \alpha \in \Delta\right\}$ be an i-open cover for X. Then there is a countable subset N of Δ such that $X=j-c l\left(\bigcup_{n \in N} U_{n}\right)$. Let $U=\bigcup_{n \in N} U_{n}$. Since U is i-open, by using Lemma 7.2.6 (iii), $j-c l \mathrm{U}=j i-\delta c l U=j i-\theta c l U$. This proves (ii) and (iii). By the same technique the reverse implications can be proved.

REFERENCES

[1] Banerjee G. K., (1987), On Pairwise Almost Strongly θ-Continuous Mappings, Bull. Calcutta Math. Soc., 79: 314-320.
[2] Kariofillis C. G., (1986), On Pairwise Almost Compactness, Ann. Soc. Sci. Bruxelles, 100: 129-137.
[3] Khedr F. H., and Al-Areefi S. M., (1993), θ-Connectedness and δ-Connectedness in Bitopological Spaces, Arab J. Sci. Eng., 18: 52-56.
[4] Sanjay Tahiliani, (2008), On Weakly β-Continuous Functions in Bitopological Spaces, Filomat 22(1): 77-86. Available at: http://www.pmf.ni.ac.yu/filomat.
[5] Takashi Noiri, and Valeriu Popa, (2006), Some Properties of Weakly Open Functions in Bitopological Spaces, Novi Sad. J. Math., 36(1): 47-54.
[6] Takashi Noiri, and Valeriu Popa, Some forms of Almost Continuity for Functions in Bitopological Spaces, Preprint.

P. Thangavelu

Department of Mathematics,
Aditanar College,
Tiruchendur-628216, India.
E-mails: ptvelu12@gmail.com,
pthangavelu_2004@yahoo.co.in

G. Thamizharasi

Department of Mathematics,
RMD Engineering College,
Chennai-601206, India.

This document was created with the Win2PDF "print to PDF" printer available at http://www.win2pdf.com

This version of Win2PDF 10 is for evaluation and non-commercial use only.
This page will not be added after purchasing Win2PDF.
http://www.win2pdf.com/purchase/

