© Serials Publications

θ-CLOSURE AND δ-CLOSURE OPERATORS IN BITOPOLOGICAL SPACES

P. Thangavelu & G. Thamizharasi

Abstract: The purpose of this paper is to give the covering characterization of closure, θ -closure, δ -closure, interior, θ -interior and δ -interior operators in bitopological spaces.

Kewwords: Bitopology, Closure, Interior, Open covering.

1. INTRODUCTION

In this chapter closure, θ -closure, δ -closure, interior, θ -interior and δ -interior operators are studied in bitopological spaces by using a covering of *X*. Throughout the paper (X, τ_1, τ_2) is a bitopological space and $i, j = 1, 2, i \neq j$. In this paper *j*-*cl A* and *j*-int *A* denote the closure of *A* and interior of *A* in a topological space (X, τ_j) for any subset *A* of *X*. A sub set *U* of *X* is *i*-open in *X* if $U \in \tau_i$.

2. $ij - \theta$ - CLOSURE AND $ij - \delta$ - CLOSURE OPERATORS

Kariofillis[2] and Sanjay Tahiliani[4] studied q-closure operators in bitopolgical spaces. Banerjee[1], Khedr and Al-Areefi[3] extended the notion of δ -closure to bitopological spaces. Takashi Noiri and Valeriu Popa also studied the δ -closure and θ -closure operators in bitopological spaces. In this section the above operators are further investigated.

Definition 2.1: Let *B* be a subset of (X, τ_1, τ_2) . A point $x \in X$ is said to be in the $ij \cdot \theta clB[2]$ if $B \cap j \cdot clU \neq \emptyset$ for every *i*-open set *U* containing *x*.

A subset *A* of *X* is said to be ij- θ -closed if A = ij- θclA . The complement of an ij- θ -closed set is ij- θ -open in (X, τ_1, τ_2) . The set ij- θ int*B* is defined as the union of all ij- θ -open sets contained in *B*. Hence $x \in ij$ - θ int*B* if and only if there is an *i*-open set *U* such that $x \subseteq U \subseteq j$ - $clU \subseteq B$.

The next two lemmas will be useful in sequel.

Lemma 2.2: If *U* is *j*-open in *X* then $ij - \theta cl U = i - cl U$. [2]

Lemma 2.3: (i) $X \setminus ij - \theta clB = ij - \theta int (X \setminus B)$.

(ii) $X \setminus ij - \theta \operatorname{int} B = ij - \theta cl (X \setminus B)$. [4, 5]

Definition 2.4: Let *B* be a subset of (X, τ_1, τ_2) . A point $x \in X$ is said to be in the set ij- $\delta clB[1, 3]$ if $B \cap i$ -int (j- $clU) \neq \emptyset$ for every *i*-open set *U* containing *x*.

A subset *A* of *X* is said to be *ij*- δ -closed if A = ij- δclA . The complement of an *ij*- δ -closed set is *ij*- δ -open in (*X*, τ_1 , τ_2). The set *ij*- δ int*B* is defined as the union of all *ij*- δ -open sets contained in *B*. Hence $x \in ij$ - δ int*B* if and only if there is an *i*-open set *U* such that $x \in U \subseteq i$ -int (*j*-*clU*) $\subseteq B$.

Lemma 2.5: (i) $X \setminus ij \cdot \delta cl B = ij \cdot \delta int (X \setminus B)$.

(ii) $X \setminus ij$ - $\delta int B = ij$ - $\delta cl(X \setminus B)$. [6]

Lemma 2.6: Let *B* be a subset of (X, τ_1, τ_2) . Then

- (i) i- $clB \subseteq ij$ - $\delta clB \subseteq ij$ - θclB .
- (ii) $ij \delta cl B$, $ij \theta cl B$ are *i*-closed sets.

(iii) if *B* is *j*-open then $i-clB = ij-\delta clB = ij-\theta clB$.

Proof: Let $x \in i$ -*clB*. Let U be an *i*-open set in X containing x. Then $U \cap B \neq \emptyset$.

Since *U* is *i*-open in *X*, $U \subseteq i$ -int (*j*-*clU*) that implies *i*-int (*j*-*clU*) $\cap B \neq \emptyset$.

Then by Definition 2.4, $x \in ij - \delta cl B$. This proves that $i - cl B \subseteq ij - \delta cl B$.

Now let $x \in ij$ - $\delta cl B$. Let U be an i-open set in X containing x.

Since $x \in ij$ - δclB , by Definition 2.4, *i*-int (j- $clU) \cap B \neq \emptyset$.

This implies that $(j-cl U) \cap B \neq \emptyset$. Then by Definition 2.1, $x \in ij-\theta cl B$.

This proves $ij - \delta cl B \subseteq ij - \theta cl B$. Thus (i) is proved.

Suppose $x \in i-cl$ (*ij*- $\delta cl B$). Let *U* be an *i*-open set containing *x*. Then $U(ij-\delta cl B) \neq \emptyset$. Let $y \in U \cap (ij-\delta cl B)$. Since $y \in ij-\delta cl B$, by Definition 2.4, *i*-int (*j*-cl U) $\cap B \neq \emptyset$. This proves that $x \in ij-\delta cl B$ that implies $ij-\delta cl B$ is *i*-closed. Now let $x \in i-cl$ (*ij*- $\theta cl B$). Let *U* be an *i*-open set containing *x*. Then $U(ij-\theta cl B) \neq \emptyset$. Let $y \in U \cap ij-\theta cl B$) that implies $y \in ij-\theta cl B$. Then by Definition 2.1, (*j*-cl U) $\cap B \neq \emptyset$. This proves that $x \in ij-\theta cl B$. Therefore $ij-\theta cl B$ is *i*-closed. We thus proved (ii).

(iii) Suppose *B* is *j*-open. Then by Lemma 2.2, *i*-*clB* = *ij*- θ *clB*. By applying (i) it follows that *i*-*clB* = *ij*- δ *clB* = *ij*- θ *clB*.

Lemma 2.7: Let *B* be a subset of (X, τ_1, τ_2) . Then

- (i) *i*-int $B \supseteq ij \cdot \delta$ int $B \supseteq ij \cdot \theta$ int B.
- (ii) ij- δ int B, ij- θ int B are i-open sets.

(iii) if B is j-closed then i-int $B = ij - \delta$ int $B = ij - \theta$ int B.

Proof: Follows from Lemma 2.5 and Lemma 2.6.

Lemma 2.8: If *B* is *j*-open then

$$j\operatorname{-int} (i - cl B) = ji - \delta \operatorname{int} (i - cl B) = ji - \theta \operatorname{int} (i - cl B)$$
$$= j\operatorname{-int} (ij - \delta cl B) = ji - \delta \operatorname{int} (ij - \delta cl B) = ji - \theta \operatorname{int} (ij - \delta cl B)$$
$$= j\operatorname{-int} (ij - \theta cl B) = ji - \delta \operatorname{int} (ij - \theta cl B) = ji - \theta \operatorname{int} (ij - \theta cl B).$$

Proof: Suppose *B* is *j*-open. Then, by Lemma 7.2.6 (iii), we have

$$i - cl B = ij - \delta cl B = ij - \theta cl B \tag{7.1}$$

This implies that *i*-*cl* B, *ij*- δ *cl* B, *ij*- θ *cl* B are all *i*-closed.

Since *i*-cl B is *i*-closed, using Lemma 2.7 (iii), we get

$$j-int (i-cl B) = ji-\delta int (i-cl B) = ji-\theta int (i-cl B).$$
(7.2)

Since $ij-\delta cl B$ is *i*-closed, again using Lemma 2.7 (iii), we get

$$j-\operatorname{int}(ij-cl B) = ji-\delta \operatorname{int}(ij-\delta cl B) = ji-\theta \operatorname{int}(ij-\delta cl B)$$
(7.3)

Since $ij - \theta cl B$ is *i*-closed, by using Lemma 2.7 (iii), we get

$$j - \operatorname{int} (ij - \theta \, cl \, B) = ji - \delta \operatorname{int} (ij - \theta \, cl \, B) = ji - \theta \operatorname{int} (ij - \theta \, cl \, B)$$
(7.3)

Then using Eqn. (7.1), Eqn. (7.2), Eqn. (7.3) and Eqn. (7.4) the lemma follows.

Lemma 7.2.9: If *B* is *j*-closed then

$$\begin{aligned} j\text{-}cl\,(i\text{-}\mathrm{int}\,B) &= ji\text{-}\delta\,cl\,(i\text{-}\mathrm{int}\,B) = ji\text{-}\theta\,cl\,(i\text{-}\mathrm{int}\,B) \\ &= j\text{-}cl\,(ij\text{-}\delta\,\mathrm{int}\,B) = ji\text{-}\delta\,cl\,(ij\text{-}\delta\,\mathrm{int}\,B) = ji\text{-}\theta\,cl\,(ij\text{-}\delta\,\mathrm{int}\,B) \\ &= j\text{-}cl\,(ij\text{-}\theta\,\mathrm{int}\,B) = ji\text{-}\delta\,cl\,(ij\text{-}\theta\,\mathrm{int}\,B) = ji\text{-}\theta\,cl\,(ij\text{-}\theta\,\mathrm{int}\,B). \end{aligned}$$

Proof: Suppose *B* is *j*-closed. Then by using Lemma 2.7(iii), we see that

$$i$$
-int $B = ij$ - δ int $B = ij$ - θ int B (7.5)

Therefore $ij - \delta$ int *B* and $ij - \theta$ int *B* are all *i*-open.

Since *i*-int *B* is *i*-open, by using Lemma 2.6 (iii) we see that

$$j-cl (i-int B) = ji-\delta cl (i-int B) = ji-\theta cl (i-int B)$$
(7.6)

Since $ij-\delta$ intB is i-open, by using Lemma 2.6 (iii) we see that

$$j-cl(ij-\delta \operatorname{int} B) = ji-\delta cl(ij-\delta \operatorname{int} B) = ji-\theta cl(ij-\delta \operatorname{int} B)$$
(7.7)

Since $ij - \theta$ int B is i-open, again by using Lemma 2.6 (iii) we see that

$$j-cl(ij-\theta \text{ int } B) = ji-dcl(ij-\theta \text{ int } B) = ji-qcl(ij-\theta \text{ int } B)$$
(7.8)

Now using Eqn. (7.5), Eqn. (7.6), Eqn. (7.7) and Eqn. (7.8) the lemma follows.

3. CHARACTERIZATIONS

Theorem 3.1: For any bitopological space (X, τ_1, τ_2) , the following are equivalent.

- (i) For every *i*-open cover $\{U_{\alpha} : \alpha \in \Delta\}$ of *X* there is a countable subset *N* of Δ such that $X = \bigcup_{n \in N} j\text{-}cl(U_n)$.
- (ii) For every *i*-open cover $\{U_{\alpha} : \alpha \in \Delta\}$ of *X* there is a countable subset *N* of Δ such that $X = \bigcup_{N} (ji \cdot \delta cl U_n)$.
- (iii) For every *i*-open cover $\{U_{\alpha} : \alpha \in \Delta\}$ of *X* there is a countable subset *N* of Δ such that $X = \bigcup_{n \in N} (ji \cdot \theta c l U_n)$.

Proof: Suppose (i) holds. Let $\{U_{\alpha} : \alpha \in \Delta\}$ be an *i*-open cover for X. By using (i), there is a countable subset N of Δ such that $X = \bigcup_{n \in N} (j - clU_n)$. By using Lemma 2.6 (iii), it follows that $j - clU_n = ji - \alpha clU_n = ji - \theta clU_n$. This proves that $X = \bigcup_{n \in N} (ji - \delta clU_n)$ and $X = \bigcup_{n \in N} (ji - \theta clU_n)$. Thus we have established that (i) \Rightarrow (ii) and (i) \Rightarrow (iii). Again using the above reasons, the implications (ii) \Rightarrow (i) and (iii) \Rightarrow (i) can be established.

Theorem 3.2: For any bitopological space (X, τ_1, τ_2) , the following are equivalent.

- (i) For every *j*-open cover $\{U_{\alpha} : \alpha \in \Delta\}$ of *X* there is a countable subset *N* of Δ such that $X = \bigcup_{n \in N} (j \text{-int}(i \text{-} cl(U_n)))$.
- (ii) For every *j*-open cover $\{U_{\alpha} : \alpha \in \Delta\}$ of *X* there is a countable subset *N* of Δ such that $X = \bigcup_{i=1}^{N} (ji \delta \operatorname{int}(i cl U_n))$.
- (iii) For every *j*-open cover $\{U_{\alpha} : \alpha \in \Delta\}$ of *X* there is a countable subset *N* of Δ such that $X = \bigcup_{n \in N} (ji \theta \operatorname{int} (i cl U_n))$.
- (iv) For every *j*-open cover $\{U_{\alpha} : \alpha \in \Delta\}$ of *X* there is a countable subset *N* of Δ such that $X = \bigcup_{n \in N} (j \operatorname{-int}(ij \operatorname{-} \delta cl U_n))$.
- (v) For every *j*-open cover $\{U_{\alpha} : \alpha \in \Delta\}$ of *X* there is a countable subset *N* of Δ such that $X = \bigcup_{n \in N} (ji \delta \operatorname{int} (ij \delta \operatorname{cl} U_n))$.
- (vi) For every *j*-open cover $\{U_{\alpha} : \alpha \in \Delta\}$ of *X* there is a countable subset *N* of Δ such that $X = \bigcup_{n \in N} (ji \theta \operatorname{int} (ij \delta cl U_n))$.

- (vii) For every *j*-open cover $\{U_{\alpha} : \alpha \in \Delta\}$ of *X* there is a countable subset *N* of Δ such
- that $X = \bigcup_{n \in N} (j \operatorname{int}(ij \theta c l U_n))$. (viii) For every *j*-open cover $\{U_{\alpha} : \alpha \in \Delta\}$ of *X* there is a countable subset *N* of Δ such that $X = \bigcup_{n \in N} (ji \delta \operatorname{int}(ij \theta c l U_n))$.
- (ix) For every *j*-open cover $\{U_{\alpha} : \alpha \in \Delta\}$ of *X* there is a countable subset *N* of Δ such that $X = \bigcup_{n \in N} (ji \cdot \theta \operatorname{int} (ij \cdot \theta \operatorname{cl} U_n))$. **Proof:** Let $\{U_{\alpha} : \alpha \in \Delta\}$ be a *j*-open cover for *X*. Let *N* be a countable sub set of Δ .

Let $n \in N$. Since U_n is *j*-open, from Lemma 2.8, it follows that

$$\begin{aligned} j\text{-}\mathrm{int}\,(i\text{-}cl\;U_n) &= ji\text{-}\delta\,\mathrm{int}\,(i\text{-}cl\;U_n) = ji\text{-}\theta\,\mathrm{int}\,(i\text{-}cl\;U_n) \\ &= j\text{-}\mathrm{int}\,(ij\text{-}\delta\,cl\;U_n) = ji\text{-}\delta\,\mathrm{int}\,(ij\text{-}\delta\,cl\;U_n) = ji\text{-}\theta\,\mathrm{int}\,(\;ij\text{-}\delta\,cl\;U_n) \\ &= j\text{-}\mathrm{int}\,(ij\text{-}\theta\,cl\;U_n) = ji\text{-}\delta\,\mathrm{int}\,(ij\text{-}\theta\,cl\;U_n) = ji\text{-}\theta\,\mathrm{int}\,(\;ij\text{-}\theta\,cl\;U_n). \end{aligned}$$

Then the theorem follows.

Theorem 3.3. For any bitopological space (X, τ_1, τ_2) , the following are equivalent.

- (i) For every *i* -open cover $\{U_{\alpha} : \alpha \in \Delta\}$ of *X* there is a countable subset *N* of Δ such that $X = j - cl \left(\bigcup_{n \in N} U_n \right)$.
- (ii) For every *i*-open cover $\{U_{\alpha} : \alpha \in \Delta\}$ of X there is a countable subset N of Δ such that $X = ji - \delta cl \left(\bigcup_{n \in N} U_n \right).$
- (iii) For every *i*-open cover $\{U_{\alpha} : \alpha \in \Delta\}$ of X there is a countable subset N of Δ such that $X = ji \cdot \theta cl\left(\bigcup_{n \in N} U_n\right)$.

Proof: Suppose (i) holds Let $\{U_{\alpha} : \alpha \in \Delta\}$ be an *i*-open cover for *X*. Then there is a countable subset N of Δ such that $X = j - cl\left(\bigcup_{n \in N} U_n\right)$. Let $U = \bigcup_{n \in N} U_n$. Since U is *i*-open, by using Lemma 7.2.6 (iii), $j-clU = ji-\delta cl U = ji-\theta cl U$. This proves (ii) and (iii). By the same technique the reverse implications can be proved.

REFERENCES

- [1] Banerjee G. K., (1987), On Pairwise Almost Strongly θ -Continuous Mappings, Bull. Calcutta Math. Soc., 79: 314-320.
- [2] Kariofillis C. G., (1986), On Pairwise Almost Compactness, Ann. Soc. Sci. Bruxelles, 100: 129-137.

- [3] Khedr F. H., and Al-Areefi S. M., (1993), θ-Connectedness and δ-Connectedness in Bitopological Spaces, Arab J. Sci. Eng., 18: 52-56.
- [4] Sanjay Tahiliani, (2008), On Weakly β-Continuous Functions in Bitopological Spaces, *Filomat* 22(1): 77-86. Available at: *http://www.pmf.ni.ac.yu/filomat*.
- [5] Takashi Noiri, and Valeriu Popa, (2006), Some Properties of Weakly Open Functions in Bitopological Spaces, *Novi Sad. J. Math.*, **36**(1): 47-54.
- [6] Takashi Noiri, and Valeriu Popa, Some forms of Almost Continuity for Functions in Bitopological Spaces, Preprint.

P. Thangavelu

Department of Mathematics, Aditanar College, Tiruchendur-628216, India. *E-mails: ptvelu12@gmail.com, pthangavelu_2004@yahoo.co.in*

G. Thamizharasi

Department of Mathematics, RMD Engineering College, Chennai-601206, India.

This document was created with the Win2PDF "print to PDF" printer available at http://www.win2pdf.com

This version of Win2PDF 10 is for evaluation and non-commercial use only.

This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com/purchase/