International Journal of Control Theory and Applications

CONTROL THEORY
AND APPLICATIONS ISSN : 0974-5572
© International Science Press
—

Volume 10 ¢ Number36 « 2017

“9 INTERNATIONAL SCIENCE PRESS
Gurgaon, Haryana (ncia)

An Analysis of Broad Constraint Command (BCC) Test Strategy

S. Bhuvana® and M.V. Srinath”

“Research Scholar, Department of Computer Science, S.T.E.T Womens College, Mannargudi, Thiruvarur (D.t.).
bPh.D. Research Advisor & Director, Department of Master of Computer Application, S.T.E.T Womens College, Mannargudi, Thiruvarur
(D.t.).

Abstract: Broad Constraint Command (BCC) is a new strategy capable of supporting high interaction strength. In this
domain the complete input interface test is not a realistic solution to test all software configurations for generating the
test cases. A previous investigation many software testing problems involve series of procedures, in the Combinatorial
Interaction Testing (CIT) is enhanced by only the minimal test suite for covering the test cases, and that the same
way Late Acceptance Based Hill Climbing Algorithm(LAHC) is a t-way test strategy, it will also support only the
minimum amount of parameters are used to constraints the software product line testing and so that the next level
of test cases are configured by using the Enhanced Combinatorial Interaction Testing Software (ECITS) algorithm.
The Enhanced Combinatorial Interaction Testing Software (ECITS) algorithm is enhanced by three —way testing
provided the better results than existing two — way testing techniques and there was no statistically significant change
among the methods for three-way testing ,but n-way combinatorial test was detected the number of random tests.
Considering the high interaction strength is not in the absence of complications. The entire work will be integrated
and the time duration of work is shorter than other software development models. But testing occupies the major part
of the software development- the maximum time of the allotted time is utilized the testing in BCC also. The major
objective of this work is test cases in Broad Constraint Command (BCC) based model. Broad Constraint Command
(BCC) adopts the straight and cross extensions in order to construct the desired test data. This paper describes about
the test cases based on Broad Constraint Command (BCC) values are used perform the analysis to load the test cases
from given software and generate the test cases as early as possible and it will consume minimum amount time of
time generate the test cases and that the same time the test case amount is also very less.

Keywords: Broad Constraint Command (BCC), Enhanced Combinatorial Interaction Testing Software (ECITS),
Combinatorial Interaction Testing (CIT), Combinatorial Testing (CT), Test Data (TD), Constraint Set (CS).

1. INTRODUCTION

Testing is an essential but costly quantity of the software growth process. Deficiency of testing frequently pointers
to terrible moments as well as damage of records, wealth and even is alive. For these details, a lot of input
constraints and scheme settings necessity to be tested along side the terms of the scheme for conformance. Even
if looked-for, extensive testing is too expensive even in an adequate-sized assignment, owing to the properties as

International Journal of Control Theory and Applications

S. Bhuvana and M.V. Srinath

fine as skill constraints[2]. Consequently, it is required to reduce the test collection galaxy in an organized method.
In track with aggregate user difficulties for original functionalities and inventions, software implementations
developed vast in extent above the past 15 years. This unexpected development takes a reflective control as far
as testing is troubled. Now, the test sort developed expressively as an end. In the direction of the statement the
above-mentioned problems, much investigation is currently aiming on sampling methods based on interaction
testing (termed n-way testing strategy) in command to arise the most optimal test suites for testing reflection (i.e.,
termed as Test Suite (TS) for even constraint values and Mixed Test Suite (MTS) for uneven constraint values
in turn). Before implementation of n-way testing provided mixed outcomes. Even though 3-way testing (also
named Enhanced Combinatorial Interaction Testing Software (ECITS)) performs to be sufficient for completing
fine test reporting in the existing method, an opposite argument recommends that such a decision cannot be
universal to all (upcoming) software system. Frequently, the remaining result of software development presents
new interlace addition among constraints associated with, accordingly, justifying the necessity to support for
high relations power (t).

Previous work on three-way testing has principally absorbed on pair wise testing, which purposes to identify
errors that are initiated by relations among any two constraints. Still, errors can also be initiated by relations,
including more than two constraints. In direction to excellently identify those errors, it is needed to allow an
advanced power of reporting. In this paper, we simplify a new strategy, called Broad Constraints Command (BCC)
for n-way testing. A main test of our simplification, energy is allocated with the combinatorial development in
the size of combinations of constraint-values. We refer to an n-way testing, and argue strategy results that are
complete to assist a well-organized application of the Broad Constraints Command (BCC) test strategy. We also
report some testing that were shown to assess the value of n-way. In certain, we showed a testing that compared
n-way to existing test strategy. The end of this test shows that n-way achieved expressively improved than the
other test strategy for a real-life application.

The remaining segments of this paper are prepared as follows. Segment 2 argues some related work. Section
3 gives the details of Enhanced Combinatorial Interaction Testing Software(ECITS) and our modified Broad
Constraints Command (BCC). The similarities and differences between the two are also explained. Section 4
highlights comparisons between BCC and ECITS test method. Finally, Section 5 gives the conclusions.

2. RELATED WORK

T-Way test generation strategy based on Late Acceptance Based Hill Climbing Algorithm (LAHC): The authors
described in this paper, the -way strategy based on the Late Acceptance Based Hill Climbing Algorithm(LAHC).
Late Acceptance Based Hill Climbing Algorithm (LAHC) generated a current neighbor to be compared with all
the corresponding value of the Late Acceptance Based Hill Climbing Algorithm (LAHC) memory one-at-a-time.
It also maintains the previous cost function in the memory to allow selection of the best fit value. The ~-way
results have been promising as Late Acceptance Based Hill Climbing Algorithm (LAHC) gives competitive
results in most constraint configurations considered[2]. And these methods future work is to extend the capability
of (LAHC) in terms of supporting high constraints to be used for software product line testing.

T-way test generation using Bees Algorithm (BA): In this research, the authors highly recommend for
implementation of Bees Algorithm(BA) for generating test cases to detect ~way interaction faults. The #-way
strategy, in this paper divided in two main parts. First, the test data generated and stored using Bees algorithm
(BA). And the stored test data generates all possible interactions for the intended constraints. Second, the Bees
algorithm (BA) optimized the intended constraints test data’s. The applied algorithm running every time the
number of interaction set will be reduced[6]. The Bees algorithm (BA) keeps running until the interaction set is

I International Journal of Control Theory and Applications _ﬂ

An Analysis of Broad Constraint Command (BCC) Test Strategy

empty. In future the applied algorithm of this paper also supports variable strength interaction while generating
t-way test data.

Combinatorial Testing (CT) Method: Event Sequence Testing: In this sequence testing, applied Combinatorial
Testing (CT) to testing difficulties that has 1, 2, ..., n distinct events, where every event occurs exactly once.
The sequence Covering Array (CA), as the name suggests are similar to standard Covering Array (CA), which
contain at smallest one of every ~-way combination of any n variables, where ¢ < n. A variability of processes are
obtainable for creating Covering Array (CA) but there are not usable for producing ~way sequences as they are
planned to shield combinations in any order. Using a sequence Covering Array (CA) for scheme testing defined
here made it promising to arrange for better assurance that the system would function correctly regardless of
possible dependencies among peripherals[8]. This technique ensures that any testing events will be tested in
every possible ~-way order.

3. PROPOSED METHOD

As argued previously, the proposed strategy, BCC is based on the existing Enhanced Combinatorial Interaction
Testing Software (ECITS) 3-way strategy. For a system with at least n or more constraints, the Broad Constraints
Command (BCC) strategy makes an n-way test data formation of the first n constraints. Then, it covers the test
data to build an n-way test data of n+1constraints. After that, it continues to extend the test data until an n-way test
data has been constructed for all the constraints of the system. Like Broad Constraints Command (BCC) performs
the horizontal growth followed by the vertical growth, but in a different way in order to optimize the number of
generating test sizes such that the n-way interaction element is covered by the minimum number of test cases.

As the inputs to Broad Constraints Command (BCC) algorithm is the degree of interaction ‘n’ and the set
of constraints ‘cs’. The output is an n-way test data of all the constraints in the system. The differences between
the two strategies lie in both horizontal and vertical extensions.

Broad Constraints Command (BCC): Algorithm
BCC-Test (int n, ConstraintSet ‘cs”’)
{
Step 1: initialize test data #d to be an empty set
Step 2: denote the constraints in cs, in an arbitrary order, as C,, C,, ..., and C,
Step 3: add into test data ¢d a test for each combination of values of the first n constraints
Step 4: for (inti=n+1;i<¢; i++){

Step 5: let & be the set of n-way combinations of values involving constraints C; and » — 1 constraint
between the first i — 1 constraints

Step 6: for (each test T= (v}, v, ..., v;,_) in testdata td)

{

Step 7: if (T not contains don’tmind)

{

// don’t mind means that there is a previous constraint(s) that not assigned value (s). As such, it can be
further optimized choose a value v; of C; and replace T with T’ = (v, v, ..., v;_{, ;) so that T’ covers the maximum
number of combinations of values in 1t}

S. Bhuvana and M.V. Srinath

Step 8: else

{
choose a value v; of C; and search all possible tuples that can be optimized the don’t mind to construct
T =y, Vp, .0 Vi_ 1, V;) SO that T” covers the maximum number of combinations of values in T and optimized
the don’t mind

H

Step 9: remove from 7 the combinations of values covered by T’}
Step 10: while (7 not empty){
Step 11: rearrange T in decreasing order according to the size of the remaining tuples
Step 12: Choose the first tuple and generate testcase (7)
that combine maximum number of tuples
Step 13: delete the tuples covered by 7, add 7 tolocal td
Step 14: } //while
Step 15: return td;}

In the straight extension, the Broad Constraints Command (BCC) strategy checks all the values of the input
constraints, and chooses the value that contains the maximum number of combinations for the uncovered tuples in
the m set. BCC also optimizes the ‘don’t care’ value. For this reason, Broad Constraints Command (BCC) always
generates a stable test case (that cannot be changed) by searching for tuples that can be covered by the same
test. This is performed by means of searching of uncovered tuples that can be combined with the test case to fill
the ‘don’t care’ values during the straight extension (i.e. to ensure that the test case is indeed optimized). In the
cross extension, BCC rearranges the 1 set in a decremented order size. After that, Broad Constraints Command
(BCC) chooses the first tuple from the rearranged w set and combines the tuple with other suitable tuples in the
7 set (i.e. the resulting test case must have the maximum weight of uncovered tuples). Once combined, all the
tuples are removed from the 7 set. This process is repeated until the 7 set is empty (i.e. to ensure the complete
interaction coverage). T means test services that evaluates to a given input values and that the Test Data(TD)
values are generalized using the conditions. Constraint Set (CS) included the arbitrary order of set C,, C,, ..., C,.
It will be satisfies the condition to the given Test Data (TD).

4. RESULT & DISCUSSION
In this section, we evaluate Broad Constraints Command (BCC) with the following objectives:
(i) To investigate the overall performance of Broad Constraints Command(BCC).

(i1)) To investigate whether Broad Constraints Command (BCC) can have a significant gain against ECITS
in terms of test size result.

In the (¢) denotes — Interaction Strength
In the (¢) denotes — No. of Constraints
In the (v) denotes — No. of values

From Table 1, we can see that Broad Constraints

Command (BCC) yields different execution time for 2 to 7 and fix the number of constraint (C) to 10 and
different size of codes with various values ‘V’ from strength of coverage (¢) to 5.

An Analysis of Broad Constraint Command (BCC) Test Strategy

Table 1
Results for Broad Constraints Command (BCC) with Value (V) = (2...7)
BCC
S.No. No. of Value (V)

LOC TIME
1 2 97 0.181
2 3 657 0.623
3 4 3057 5.298
4 5 8577 48.25
5 6 24735 804.91
6 7 52077 1433.72

We plot values against size (Lines of Code), Which shows size is proportional quinary (that is minimum
of five values) with the number of values.

60000

40000

20000

1 2 3 4 5 0
=#=Vy =*BCC TIME

Figure 1: Results for n-way with Broad Constraint Command (BCC) on the basis of the Constraints
Figure 1 represents that n-way with Broad Constraints Command (BCC) on the basis of the Value (V).
The graph shows, the maximum number of values is 6.

From Table 2, we can see that Broad Constraints Command (BCC) yields different execution time for different
size of codes with various constraints ranging from 7 to 13 and fix both values and strength of coverage to 5.

Table 2
Results for Broad Constraints Command (BCC) with Constraints (C) = (7, ..., 13)
SLNO Constraints BCC
© LoC TIME
1 7 3281 1.02
2 8 5906 3.03
3 9 7346 13.197
4 10 8578 25.685
5 11 9520 60.316
6 12 10473 154.862
7 13 11554 347.277

We plot constraints against execution time, which shows execution time grows in quinary (that is minimum
of five constraints) with respect to the logarithmic scale of constraints.

International Journal of Control Theory and Applications

S. Bhuvana and M.V. Srinath

400

200

=8=C =*=BCC Time

Figure 2: Results for n-way with Broad Constraints Command (BCC) on the basis of the Constraints

The n-way with Broad Constraints Command (BCC) on the basis of the Constraints (C) is shown in Figure 2.
The graph shows, the maximum number of constraints is 6.

From Table 3, We can see that Broad Constraints Command (BCC) yields different execution time for
different size of codes with various interaction strength ‘¢’ from 2 to 7 and fix the constraints ‘C’ to10 and value
to 10.

Table 3
Results for Broad Constraints Command (BCC) with Time (T) = (2, 3, ..., 7)
S.No. Time (T) Bec

LOC TIME
1 2 66 0.35
2 3 537 1.887
3 4 3839 72.50
4 5 24735 804.91
5 6 14662 13901.92
6 7 736405 48572.85

We plot interaction strength against size, which shows test size grows exponentially as the strength of
coverage increases.

60000

40000

20000

——1t =*=BCC Time
Figure 3: Results for n-way with Broad Constraints Command (BCC) on the basis of the Strength

International Journal of Control Theory and Applications

An Analysis of Broad Constraint Command (BCC) Test Strategy

The Broad Constraints Command (BCC) on the basis of the Time (T) is represents the n-way test case in
Figure 3. The graph shows ,the maximum number of Time is 6.

5. RESULT OF TESTING EFFICIENCY

This section describes the performance analysis of the Broad Constraints Command (BCC) approach for the
following metric. The implementation of the Broad Constraints Command (BCC) is done in the platform of visual
studio 2008 and MYSQLS5.6.17. The sample screens.

Wame Ve - @
= odesemeer . - K
[SERCE (e Desigbenustelonge e [NRSRN |ISS—— . Forctin e -
[Wil Bk e 10
_Outherritsnuoe Possan] + 2 -
- caboulsieMuliglerinat 4. m_Afvibuleindor . Sme
H
] - |
bmn-n.uhwu has been impoded |
1 gy pwsisie sings. restansl vakes lbmr v i Enumeration. i boen inpentid
g Vehstairaibew. Talse, inanid datsset]) eiCspuFory [l b [rront i ey
k |y s v Mot hia ber mpsasd
£ 380 10 et leinry msiia cove Copabliies, has bewn mpsted
resull s bierw liary msiua cove Cipabliies Capalsity has bess mped
¥ T Sy
Eorary mais core st has Been eperied
et rem, Eorary maia core starzes. has bewn e
1 irary mesia core Dpion; Fan bean impor ad
locary moska com Flange: haa been
-~ lorary maica corm Flevamrl iz ba been reperied
* Rt the revisen: ating lorary meka corm Lhis. b men
locary moskon fiters. SerpleEsatchFiter s baen iported
$ B a anen iheried a Claza {
Long wariske sacalVarion I} = -227EPSEEIETSTI0NL |
n-Heng Favtsand) | kmger v NON_NUMERI = -1 o e Claclamsl
o o Lbis saermc [Fanemcn: 3525 571 Denin wannbae m_Ohnseractor = 3 has baan Daciarnd
ety \akseaFactor « 7'm_[hsleract
arg vpeshs b
~ ¥ mn cpbon b ot mpperted b
- Wi mnthiach for i thes cines Bxoaption [Excaption [has been Theoen out
Irbnger st 1 e e
- Epomn g sk coninin srgurents e e iler um hi stang vasnbe hosboen Ceclymd
’ vasahe hy
b s wokd manSirg] s [3 hesiks
nirfitaries it . el capeption BagalrgumeniExcepion §an vk rarge bet &
1 apeption Begal frpumeni Excepion §an mekd 22t of rng
I ajis waeahe haw peen Daclyed
wannbe has besn Dsolswed

+ 329, 16] 10 1366 = TéBgm © Size: 35THE 0% (=)

Figure 4: Summarization screen shot

The summarization screen shots are represent Figure 4, that is explanation of given software coding, but this
concept already discussed in the Enhanced Combinatorial Interaction Testing Software (ECITS) algorithm.

S o=

x
File Home View -
~
[BEBRGGER| C\User\Ha\Desitop iterquantie Renge fove _l _l _| I:|
Loc 1013 Blark Line 133
m_QutlierAttributePositionf] + 2,
Caleuate MaplerindtO m Al s
) e
} Long varialbe has been Declared ~ 2ddirt float b charq)
library java il AmayList; has been imported add l{char a sting b.bool d Jong gh double f}
/1 copy possible stings. relational values liorary java.utl Enumeration: has been imported add2ibool aiint b char vs.sting k)
copyValuesinstNew. false. nstOld dataset), getOutput Form lirary java il Veclor; has been imporied add3{siring a it b,beol f}
library weka core Attrbute: has besn imperted
/1 addto output liorary weka core Capabilties: has been imported
resut.addnstNew); liorary wekea core Capabilfies.Capabity; has been imported
} library wek core Denselnstance: has been mported
liorary wek core Instance: has been imported
retum resul; liorary weka core Instances; hes been mported
¥ librany weka cors Option: has been importad
liorary weka core Range: has been imported
~ liorary weka core Revisionis; has been imported
* Retums the revision sting library wekca core Uitls; has been mported
liorary ek fiters. Smple Batch Fiter, hs been imporied
- Eretum the revision Inherted a Class Smple BatchFif {
Long varialbe: serialVersionUID = -227879653635723030L |
uubhc String getRevision] { Integer varialbe NON_NUMERIC -1 has besn Deciared
retum RevisionUtis exiract("SRevision: 9528 §"); Double variabe m_OutierFactor = 3 has been Declared
) Double variabe m_ExtremeVaiussFactor = 2'm_OutierFact
sting vanialbe has been Declared
r Exception Exception i an option s not supported +
* Main method for testing this diass Exception Exception { has been Thrown out
- Integer variabe ihas been Declared
* @param args should corttain arguments to the fiter: use fc sting vanalbe has been Deciared
K sting varialbe has been Declared
public static void main(String(] angs) { string variabe has been Declared
unFiter{new InterquartieRange(), args); Exception Ilegal ArgumentException ff an invalid range list it

Exceplion [llegalArgumentExcepiion if an invalid set of rang
E—— || Double varabe has been Declared

Double vanabe has been Declared

Double variabe has been Declared

Double variabe has been Declared ¥

<
S

1] 1366 x To8px Size: 87.6KB

7:32PM
22-Jan-17

= %])

Figure 5: Function Finder

International Journal of Control Theory and Applications

S. Bhuvana and M.V. Srinath

Figure 5 shows that all the functions used in that software that will be separtated. Because these functions
used to generate the test cases.

1 Mo Haw'sioshton st orguonioflonge et

A 50w w L1 1368 = Tibips Wl Siver SEAKB 0% (=) (]

Figure 6: Generate the Test cases

Figure 6 shows that the test cases are generated, these test cases are updated by using the given functions.
That functions are generated by the using the given software.

nm«u R -
B TemcCesegenewr -~ °E

"l Ha Diesbaan Ut erpsanieRangs gt

exbifed et bcha | [t Boetoher | [inibde boreg bool Flanama Finconbiams Agument Fama -
| | e e b 1 .
i b chas] | ragian o ata] |z et cha s [T T [m———
Ernem e~ I [
e | € lnamiiarDis. .. il Tichar m ... |charlng sring . | tsise
ol char .
et st |C e e Die e cher st |char kg b wn_| L
o c e Vo .|t g st .| e
ﬁﬁmﬂ | kinenHarDie . el lichar n.rn. | char lng double | taise
i zhar beol s
[char boul s | inem ot lle. ol ichar .| char kg doule | Lsiee
it e e b [T D p————_— e ———— -
it g v b |
char el £ s |Gsem e e, i Vorar B, | o doubie s | tsie
ohiar ach swing &
(el shing ¥ | imera i Dbe. sl car m .| char touble b | bsiee
char 1t s e CisemiianDe . aclcrar nmn. | crer doutie bosl | teee
char st baol & I f :
char s et |Coem e e, o Vorer B, |oher bl fong | Lske
ke prdias | € imamia .. il e m ... |char doutia iong . | dsee
srng it bool e ColisemidianDe addlcrar s mn. |sting chartosiio | teee
sty i b I - - -
s b bl 0 | e Harle o Vehar st |ty charbosi d | Lsie
e ity £ Lina el .. lichar u ... |sking charfong b | teies
:::m | S ineHane . add Vichar a.n. |t chariong d. | tase
it meng boi | e e le el ar m |ty char ot s
4 hohamy ©LinaHal e, . add Vichar a .. | sing char doubl... | taiss
—.m i Voo b sivn | stwenn bl cheln | sine L2

< 13N VTags il 100 1306 « Tosps 1 Size 330 0% (= e

Figure 7: Sample screens of proposed work Broad Constraints Command (BCC)

The proposed work of Broad Constraints Command (BCC) will be generated in Figure 7, that is test cases
are generated first and then these test cases are loaded.

6. PERFORMANCE ANALYSIS

Broad Constraints Command (BCC) is perhaps the most developed form of Enhanced Combinatorial Interaction
Testing Software (ECITS). Testers have used it for years with two-way, three-way, four-way but it is a n-way
coverage. Many if not most software systems have a large number of configuration parameters. Many of the
earliest applications of combinatorial testing were in testing all pairs of system configuration.

International Journal of Control Theory and Applications

An Analysis of Broad Constraint Command (BCC) Test Strategy

Performance Analysis

H Different Types of
Testing Algorithm

Figure 8: Performance Analysis
Because the number of tests required grows only logarithmically with the number of events.

Butusing a BCC it is n-way system testing described here made it of extensive human involvement, the time
required for a single test is significant, and a small number of random tests or scenario-based ad hoc testing would
be unlikely to provide #-way sequence coverage to a satisfactory degree possible to provide greater confidence
that the system would function correctly regardless of possible dependencies among peripherals. Because of
extensive human involvement, the time required for a single test is significant, and a small number of random
tests or three-way, four-way would be unlikely to provide n-way testing coverage to a satisfactory degree.

7. CONCLUSION

In this paper, we have proposed an efficient n-way test data generator Broad Constraints Command (BCC) based
on constraints. BCC adopts the straight and cross extensions in order to create the desired test data, and that
the same time it generates the small test data sizes with a standard performance time, our estimation of BCC is
promising. In fact, our experience also indicates BCC is capable to generate a higher strength test suite that has
never been described in the collected works (i.e., # > 6). We’re currently working with developers of real-world
software to measure the costs and benefits of this approach for full-scale systems. We are integrating BCC within
the web background in order to attain more speed as far as performance time is troubled. In addition, we will
expand the strategy to handle other practical testing issues such as needs among features and ethics.

REFERENCES
[1T R.Kuhn, Y.Lei & R.Kacker, Practical Combinatorial Testing: Beyond Pairwise, in IT Professional, Vol: 10, Issue: 3, May
2008.

[2] Kamal Z. Zamli, Abdul Rahman Alsewari & Basem Al-Kazemi, “Comparative Benchmarking of Constraints T-Way Test
Generation Strategy Based on Late Acceptance Hill Climbing Algorithm”, in IISECS, Vol:1, PP: 15-27, February 2015.

[3] Renee C. Bryce, SreedeviSampath & Atif M. Memon, “Developing a Single Model and Test Prioritization Strategies for
Event-Driven Software”, in Software Engineering, Vol: 37, Issue: 1, PP: 48 — 64, February 2011.

[4] C.Yilmaz, E.Dumlu, Myra B. Cohen & A.Porter, “Reducing Masking Effects in Combinatorial Interaction Testing: A
Feedback Driven Adaptive Approach”, in Software Engineering, Vol: 40, Issue: PP: 43 — 66, January 2014.

[5] M.Rahman, R.R.Othman, & RB.Ahmad, “Test case generation for event driven systems using 4-way input teststrategy”,
Research and Development (SCOReD), December 2015.

International Journal of Control Theory and Applications

[10]

[11]

[12]

[13]

[14]

[15]

S. Bhuvana and M.V. Srinath

M.Hazli, M.Zabil & K.Z. Zamli “Implementing a T-Way Test Generation Strategy Using Bees Algorithm”, in IJASCA,
Vol: 5, Issue: 3, December 2013.

C.Yilmaz, “Test Case-Aware Combinatorial Interaction Testing”, in Software Engineering, Vol: 39, Issue:5, PP: 684 — 706,
May 2013.

D. Richard Kuhn, James M. Higdon, James F. Lawrence & Raghu N. Kacker, Y.Lei, “Combinatorial Methods for Event
Sequence Testing”, April 2012.

Christopher Henard, Mike Papadakis & Gilles Perrouin, “Bypassing the Combinatorial Explosion : Using Similarity to
Generate and Prioritize T-Wise Test Configurations for Software Product Lines”, in IEEE Software Engineering, Vol-40,
Issue-7, PP-650 —670, 2014.

Justyna Petke, Myra B. Cohen, Mark Harman & Shin Yoo, “Practical Combinatorial Interaction Testing: Empirical Findings
on Efficiency and EarlyFault Detection”, in IEEE Software Engineering, Vol-41, Issue-9, PP-901 — 924, 2015.

Mohammad F. J. Klaiba, Mohammad Subhi Al-batahb & Rashad J. Rasrasc, “3-way Interaction Testing using the Tree
Strategy”, ICCMIT 2015,Procedia Computer Science65(2015)845 — 852.

Cemal Yilmaz, “Test Case-Aware Combinatorial Interaction Testing”, in IEEE Software Engineering, Vol-39, Issue-5,
PP-684 — 706, 2013.

M.Zamri Zahir Ahmad, R. Razif Othman & M.S.Aziz Rashid Ali, “Sequence Covering Array Generator (SCAT) For
Sequence Based Combinatorial Testing”, in IJAER, Volumel 1, Issue:8, PP:5984-5991, 2016.

Ely Porat & Amir Rothschild, “Explicit Nonadaptive Combinatorial Group Testing Schemes”, in [EEE Information Theory,
Vol-57, Issue-12, PP-7982 — 7989, 2011.

M.N. Borazjany, L.Yu & Y.Lei, “Combinatorial Testing of ACTS: A Case Study”, 2012 IEEE Fifth International Conference
on Software Testing.

International Journal of Control Theory and Applications

