
International Journal of Control Theory and Applications141

An Analysis of Broad Constraint Command (BCC) Test Strategy

S. Bhuvanaa and M.V. Srinathb

aResearch Scholar, Department of Computer Science, S.T.E.T Womens College, Mannargudi, Thiruvarur (D.t.).
bPh.D. Research Advisor & Director, Department of Master of Computer Application, S.T.E.T Womens College, Mannargudi, Thiruvarur
(D.t.).

Abstract: Broad Constraint Command (BCC) is a new strategy capable of supporting high interaction strength. In this
domain the complete input interface test is not a realistic solution to test all software configurations for generating the
test cases. A previous investigation many software testing problems involve series of procedures, in the Combinatorial
Interaction Testing (CIT) is enhanced by only the minimal test suite for covering the test cases, and that the same
way Late Acceptance Based Hill Climbing Algorithm(LAHC) is a t-way test strategy, it will also support only the
minimum amount of parameters are used to constraints the software product line testing and so that the next level
of test cases are configured by using the Enhanced Combinatorial Interaction Testing Software (ECITS) algorithm.
The Enhanced Combinatorial Interaction Testing Software (ECITS) algorithm is enhanced by three –way testing
provided the better results than existing two – way testing techniques and there was no statistically significant change
among the methods for three-way testing ,but n-way combinatorial test was detected the number of random tests.
Considering the high interaction strength is not in the absence of complications. The entire work will be integrated
and the time duration of work is shorter than other software development models. But testing occupies the major part
of the software development- the maximum time of the allotted time is utilized the testing in BCC also. The major
objective of this work is test cases in Broad Constraint Command (BCC) based model. Broad Constraint Command
(BCC) adopts the straight and cross extensions in order to construct the desired test data. This paper describes about
the test cases based on Broad Constraint Command (BCC) values are used perform the analysis to load the test cases
from given software and generate the test cases as early as possible and it will consume minimum amount time of
time generate the test cases and that the same time the test case amount is also very less.
Keywords: Broad Constraint Command (BCC), Enhanced Combinatorial Interaction Testing Software (ECITS),
Combinatorial Interaction Testing (CIT), Combinatorial Testing (CT), Test Data (TD), Constraint Set (CS).

InTroduCTIon1.
Testing is an essential but costly quantity of the software growth process. Deficiency of testing frequently pointers
to terrible moments as well as damage of records, wealth and even is alive. For these details, a lot of input
constraints and scheme settings necessity to be tested along side the terms of the scheme for conformance. Even
if looked-for, extensive testing is too expensive even in an adequate-sized assignment, owing to the properties as

International Journal of Control Theory and Applications

ISSN : 0974-5572

„ International Science Press

Volume 10 • Number 36 • 2017

S. Bhuvana and M.V. Srinath

International Journal of Control Theory and Applications 142

fine as skill constraints[2]. Consequently, it is required to reduce the test collection galaxy in an organized method.
In track with aggregate user difficulties for original functionalities and inventions, software implementations
developed vast in extent above the past 15 years. This unexpected development takes a reflective control as far
as testing is troubled. Now, the test sort developed expressively as an end. In the direction of the statement the
above-mentioned problems, much investigation is currently aiming on sampling methods based on interaction
testing (termed n-way testing strategy) in command to arise the most optimal test suites for testing reflection (i.e.,
termed as Test Suite (TS) for even constraint values and Mixed Test Suite (MTS) for uneven constraint values
in turn). Before implementation of n-way testing provided mixed outcomes. Even though 3-way testing (also
named Enhanced Combinatorial Interaction Testing Software (ECITS)) performs to be sufficient for completing
fine test reporting in the existing method, an opposite argument recommends that such a decision cannot be
universal to all (upcoming) software system. Frequently, the remaining result of software development presents
new interlace addition among constraints associated with, accordingly, justifying the necessity to support for
high relations power (t).

Previous work on three-way testing has principally absorbed on pair wise testing, which purposes to identify
errors that are initiated by relations among any two constraints. Still, errors can also be initiated by relations,
including more than two constraints. In direction to excellently identify those errors, it is needed to allow an
advanced power of reporting. In this paper, we simplify a new strategy, called Broad Constraints Command (BCC)
for n-way testing. A main test of our simplification, energy is allocated with the combinatorial development in
the size of combinations of constraint-values. We refer to an n-way testing, and argue strategy results that are
complete to assist a well-organized application of the Broad Constraints Command (BCC) test strategy. We also
report some testing that were shown to assess the value of n-way. In certain, we showed a testing that compared
n-way to existing test strategy. The end of this test shows that n-way achieved expressively improved than the
other test strategy for a real-life application.

The remaining segments of this paper are prepared as follows. Segment 2 argues some related work. Section
3 gives the details of Enhanced Combinatorial Interaction Testing Software(ECITS) and our modified Broad
Constraints Command (BCC). The similarities and differences between the two are also explained. Section 4
highlights comparisons between BCC and ECITS test method. Finally, Section 5 gives the conclusions.

rELATEd WorK2.
T-Way test generation strategy based on Late Acceptance Based Hill Climbing Algorithm (LAHC): The authors
described in this paper, the t-way strategy based on the Late Acceptance Based Hill Climbing Algorithm(LAHC).
Late Acceptance Based Hill Climbing Algorithm (LAHC) generated a current neighbor to be compared with all
the corresponding value of the Late Acceptance Based Hill Climbing Algorithm (LAHC) memory one-at-a-time.
It also maintains the previous cost function in the memory to allow selection of the best fit value. The t-way
results have been promising as Late Acceptance Based Hill Climbing Algorithm (LAHC) gives competitive
results in most constraint configurations considered[2]. And these methods future work is to extend the capability
of (LAHC) in terms of supporting high constraints to be used for software product line testing.

T-way test generation using Bees Algorithm (BA): In this research, the authors highly recommend for
implementation of Bees Algorithm(BA) for generating test cases to detect t-way interaction faults. The t-way
strategy, in this paper divided in two main parts. First, the test data generated and stored using Bees algorithm
(BA). And the stored test data generates all possible interactions for the intended constraints. Second, the Bees
algorithm (BA) optimized the intended constraints test data’s. The applied algorithm running every time the
number of interaction set will be reduced[6]. The Bees algorithm (BA) keeps running until the interaction set is

An Analysis of Broad Constraint Command (BCC) Test Strategy

International Journal of Control Theory and Applications143

empty. In future the applied algorithm of this paper also supports variable strength interaction while generating
t-way test data.

Combinatorial Testing (CT) Method: Event Sequence Testing: In this sequence testing, applied Combinatorial
Testing (CT) to testing difficulties that has 1, 2, …, n distinct events, where every event occurs exactly once.
The sequence Covering Array (CA), as the name suggests are similar to standard Covering Array (CA), which
contain at smallest one of every t-way combination of any n variables, where t < n. A variability of processes are
obtainable for creating Covering Array (CA) but there are not usable for producing t-way sequences as they are
planned to shield combinations in any order. Using a sequence Covering Array (CA) for scheme testing defined
here made it promising to arrange for better assurance that the system would function correctly regardless of
possible dependencies among peripherals[8]. This technique ensures that any testing events will be tested in
every possible t-way order.

ProPoSEd METHod3.
As argued previously, the proposed strategy, BCC is based on the existing Enhanced Combinatorial Interaction
Testing Software (ECITS) 3-way strategy. For a system with at least n or more constraints, the Broad Constraints
Command (BCC) strategy makes an n-way test data formation of the first n constraints. Then, it covers the test
data to build an n-way test data of n+1constraints. After that, it continues to extend the test data until an n-way test
data has been constructed for all the constraints of the system. Like Broad Constraints Command (BCC) performs
the horizontal growth followed by the vertical growth, but in a different way in order to optimize the number of
generating test sizes such that the n-way interaction element is covered by the minimum number of test cases.

As the inputs to Broad Constraints Command (BCC) algorithm is the degree of interaction ‘n’ and the set
of constraints ‘cs’. The output is an n-way test data of all the constraints in the system. The differences between
the two strategies lie in both horizontal and vertical extensions.

Broad Constraints Command (BCC): Algorithm

BCC-Test (int n, ConstraintSet ‘cs’)

{

Step 1: initialize test data td to be an empty set

Step 2: denote the constraints in cs, in an arbitrary order, as C1, C2, …, and Ct

Step 3: add into test data td a test for each combination of values of the first n constraints

Step 4: for (int i = n + 1; i £ t; i++){

Step 5: let p be the set of n-way combinations of values involving constraints Ci and n - 1 constraint
between the first i – 1 constraints

Step 6: for (each test t = (v1, v2, …, vi - 1) in testdata td)

{

Step 7: if (t not contains don’tmind)

{

// don’t mind means that there is a previous constraint(s) that not assigned value (s). As such, it can be
further optimized choose a value vi of Ci and replace t with t’ = (v1, v2, …, vi - 1, vi) so that t’ covers the maximum
number of combinations of values in p}

S. Bhuvana and M.V. Srinath

International Journal of Control Theory and Applications 144

Step 8: else

{

choose a value vi of Ci and search all possible tuples that can be optimized the don’t mind to construct
t’ = (v1, v2, …, vi - 1, vi) so that t’ covers the maximum number of combinations of values in p and optimized
the don’t mind

}

Step 9: remove from p the combinations of values covered by t’}

Step 10: while (p not empty){

Step 11: rearrange p in decreasing order according to the size of the remaining tuples

Step 12: Choose the first tuple and generate testcase (t)

that combine maximum number of tuples

Step 13: delete the tuples covered by t, add t tolocal td

Step 14: } //while

Step 15: return td;}

In the straight extension, the Broad Constraints Command (BCC) strategy checks all the values of the input
constraints, and chooses the value that contains the maximum number of combinations for the uncovered tuples in
the p set. BCC also optimizes the ‘don’t care’ value. For this reason, Broad Constraints Command (BCC) always
generates a stable test case (that cannot be changed) by searching for tuples that can be covered by the same
test. This is performed by means of searching of uncovered tuples that can be combined with the test case to fill
the ‘don’t care’ values during the straight extension (i.e. to ensure that the test case is indeed optimized). In the
cross extension, BCC rearranges the p set in a decremented order size. After that, Broad Constraints Command
(BCC) chooses the first tuple from the rearranged p set and combines the tuple with other suitable tuples in the
p set (i.e. the resulting test case must have the maximum weight of uncovered tuples). Once combined, all the
tuples are removed from the p set. This process is repeated until the p set is empty (i.e. to ensure the complete
interaction coverage). t means test services that evaluates to a given input values and that the Test Data(TD)
values are generalized using the conditions. Constraint Set (CS) included the arbitrary order of set C1, C2, …, Ct.
It will be satisfies the condition to the given Test Data (TD).

rESuLT & dISCuSSIon4.
In this section, we evaluate Broad Constraints Command (BCC) with the following objectives:

(i) To investigate the overall performance of Broad Constraints Command(BCC).

(ii) To investigate whether Broad Constraints Command (BCC) can have a significant gain against ECITS
in terms of test size result.

In the (t) denotes Æ Interaction Strength

In the (c) denotes Æ No. of Constraints

In the (v) denotes Æ No. of values

From Table 1, we can see that Broad Constraints

Command (BCC) yields different execution time for 2 to 7 and fix the number of constraint (C) to 10 and
different size of codes with various values ‘V’ from strength of coverage (t) to 5.

An Analysis of Broad Constraint Command (BCC) Test Strategy

International Journal of Control Theory and Applications145

Table 1
results for Broad Constraints Command (BCC) with Value (V) = (2…7)

S.No. No. of Value (V)
BCC

LOC TIME
1 2 97 0.181
2 3 657 0.623
3 4 3057 5.298
4 5 8577 48.25
5 6 24735 804.91
6 7 52077 1433.72

We plot values against size (Lines of Code), Which shows size is proportional quinary (that is minimum
of five values) with the number of values.

Figure 1: results for n-way with Broad Constraint Command (BCC) on the basis of the Constraints

Figure 1 represents that n-way with Broad Constraints Command (BCC) on the basis of the Value (V).

The graph shows, the maximum number of values is 6.

From Table 2, we can see that Broad Constraints Command (BCC) yields different execution time for different
size of codes with various constraints ranging from 7 to 13 and fix both values and strength of coverage to 5.

Table 2
results for Broad Constraints Command (BCC) with Constraints (C) = (7, …, 13)

SL.NO Constraints
(C)

BCC
LOC TIME

1 7 3281 1.02
2 8 5906 3.03
3 9 7346 13.197
4 10 8578 25.685
5 11 9520 60.316
6 12 10473 154.862
7 13 11554 347.277

We plot constraints against execution time, which shows execution time grows in quinary (that is minimum
of five constraints) with respect to the logarithmic scale of constraints.

S. Bhuvana and M.V. Srinath

International Journal of Control Theory and Applications 146

Figure 2: results for n-way with Broad Constraints Command (BCC) on the basis of the Constraints

The n-way with Broad Constraints Command (BCC) on the basis of the Constraints (C) is shown in Figure 2.
The graph shows, the maximum number of constraints is 6.

From Table 3, We can see that Broad Constraints Command (BCC) yields different execution time for
different size of codes with various interaction strength ‘t’ from 2 to 7 and fix the constraints ‘C’ to10 and value
to 10.

Table 3
results for Broad Constraints Command (BCC) with Time (T) = (2, 3, …, 7)

S.No. Time (T)
BCC

LOC TIME
1 2 66 0.35
2 3 537 1.887
3 4 3839 72.50
4 5 24735 804.91
5 6 14662 13901.92
6 7 736405 48572.85

We plot interaction strength against size, which shows test size grows exponentially as the strength of
coverage increases.

Figure 3: results for n-way with Broad Constraints Command (BCC) on the basis of the Strength

An Analysis of Broad Constraint Command (BCC) Test Strategy

International Journal of Control Theory and Applications147

The Broad Constraints Command (BCC) on the basis of the Time (T) is represents the n-way test case in
Figure 3. The graph shows ,the maximum number of Time is 6.

rESuLT oF TESTInG EFFICIEnCY5.
This section describes the performance analysis of the Broad Constraints Command (BCC) approach for the
following metric.The implementation of the Broad Constraints Command (BCC) is done in the platform of visual
studio 2008 and MYSQL5.6.17. The sample screens.

Figure 4: Summarization screen shot

The summarization screen shots are represent Figure 4, that is explanation of given software coding, but this
concept already discussed in the Enhanced Combinatorial Interaction Testing Software (ECITS) algorithm.

Figure 5: Function Finder

S. Bhuvana and M.V. Srinath

International Journal of Control Theory and Applications 148

Figure 5 shows that all the functions used in that software that will be separtated. Because these functions
used to generate the test cases.

Figure 6: Generate the Test cases

Figure 6 shows that the test cases are generated, these test cases are updated by using the given functions.
That functions are generated by the using the given software.

Figure 7: Sample screens of proposed work Broad Constraints Command (BCC)

The proposed work of Broad Constraints Command (BCC) will be generated in Figure 7, that is test cases
are generated first and then these test cases are loaded.

PErForMAnCE AnALYSIS6.
Broad Constraints Command (BCC) is perhaps the most developed form of Enhanced Combinatorial Interaction
Testing Software (ECITS). Testers have used it for years with two-way, three-way, four-way but it is a n-way
coverage. Many if not most software systems have a large number of configuration parameters. Many of the
earliest applications of combinatorial testing were in testing all pairs of system configuration.

An Analysis of Broad Constraint Command (BCC) Test Strategy

International Journal of Control Theory and Applications149

Figure 8: Performance Analysis

Because the number of tests required grows only logarithmically with the number of events.

But using a BCC it is n-way system testing described here made it of extensive human involvement, the time
required for a single test is significant, and a small number of random tests or scenario-based ad hoc testing would
be unlikely to provide t-way sequence coverage to a satisfactory degree possible to provide greater confidence
that the system would function correctly regardless of possible dependencies among peripherals. Because of
extensive human involvement, the time required for a single test is significant, and a small number of random
tests or three-way, four-way would be unlikely to provide n-way testing coverage to a satisfactory degree.

ConCLuSIon7.
In this paper, we have proposed an efficient n-way test data generator Broad Constraints Command (BCC) based
on constraints. BCC adopts the straight and cross extensions in order to create the desired test data, and that
the same time it generates the small test data sizes with a standard performance time, our estimation of BCC is
promising. In fact, our experience also indicates BCC is capable to generate a higher strength test suite that has
never been described in the collected works (i.e., t > 6). We’re currently working with developers of real-world
software to measure the costs and benefits of this approach for full-scale systems. We are integrating BCC within
the web background in order to attain more speed as far as performance time is troubled. In addition, we will
expand the strategy to handle other practical testing issues such as needs among features and ethics.

rEFErEnCES
R.Kuhn, Y.Lei & R.Kacker, Practical Combinatorial Testing: Beyond Pairwise, in IT Professional, Vol: 10, Issue: 3, May [1]
2008.

Kamal Z. Zamli, Abdul Rahman Alsewari & Basem Al-Kazemi, “Comparative Benchmarking of Constraints T-Way Test [2]
Generation Strategy Based on Late Acceptance Hill Climbing Algorithm”, in IJSECS, Vol:1, PP: 15-27, February 2015.

Renee C. Bryce, SreedeviSampath & Atif M. Memon, “Developing a Single Model and Test Prioritization Strategies for [3]
Event-Driven Software”, in Software Engineering, Vol: 37, Issue: 1, PP: 48 – 64, February 2011.

C.Yilmaz, E.Dumlu, Myra B. Cohen & A.Porter, “Reducing Masking Effects in Combinatorial Interaction Testing: A [4]
Feedback Driven Adaptive Approach”, in Software Engineering, Vol: 40, Issue: PP: 43 – 66, January 2014.

M.Rahman, R.R.Othman, & RB.Ahmad, “Test case generation for event driven systems using 4-way input teststrategy”, [5]
Research and Development (SCOReD), December 2015.

S. Bhuvana and M.V. Srinath

International Journal of Control Theory and Applications 150

M.Hazli, M.Zabil & K.Z. Zamli “Implementing a T-Way Test Generation Strategy Using Bees Algorithm”, in IJASCA, [6]
Vol: 5, Issue: 3, December 2013.

C.Yilmaz, “Test Case-Aware Combinatorial Interaction Testing”, in Software Engineering, Vol: 39, Issue:5, PP: 684 – 706, [7]
May 2013.

D. Richard Kuhn, James M. Higdon, James F. Lawrence & Raghu N. Kacker, Y.Lei, “Combinatorial Methods for Event [8]
Sequence Testing”, April 2012.

Christopher Henard, Mike Papadakis & Gilles Perrouin, “Bypassing the Combinatorial Explosion : Using Similarity to [9]
Generate and Prioritize T-Wise Test Configurations for Software Product Lines”, in IEEE Software Engineering, Vol-40,
Issue-7, PP-650 –670, 2014.

Justyna Petke, Myra B. Cohen, Mark Harman & Shin Yoo, “Practical Combinatorial Interaction Testing: Empirical Findings [10]
on Efficiency and EarlyFault Detection”, in IEEE Software Engineering, Vol-41, Issue-9, PP-901 – 924, 2015.

Mohammad F. J. Klaiba, Mohammad Subhi Al-batahb & Rashad J. Rasrasc, “3-way Interaction Testing using the Tree [11]
Strategy”, ICCMIT 2015,Procedia Computer Science65(2015)845 – 852.

Cemal Yilmaz, “Test Case-Aware Combinatorial Interaction Testing”, in IEEE Software Engineering, Vol-39, Issue-5, [12]
PP-684 – 706, 2013.

M.Zamri Zahir Ahmad, R. Razif Othman & M.S.Aziz Rashid Ali, “Sequence Covering Array Generator (SCAT) For [13]
Sequence Based Combinatorial Testing”, in IJAER, Volume11, Issue:8, PP:5984-5991, 2016.

Ely Porat & Amir Rothschild, “Explicit Nonadaptive Combinatorial Group Testing Schemes”, in IEEE Information Theory, [14]
Vol-57, Issue-12, PP-7982 – 7989, 2011.

M.N. Borazjany, L.Yu & Y.Lei, “Combinatorial Testing of ACTS: A Case Study”, 2012 IEEE Fifth International Conference [15]
on Software Testing.

