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Abstract: Our aim of this paper is to obtain a common fixed point theorem for
three self mappings of generalized M-fuzzy metric space. Now we prove common
fixed point theorem for three self mapping of M-fuzzy metric space.
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1. Introduction

Many authors have introduced the concept of fuzzy metric spaces in different way.
Kramosil and Michalek is one of them. Recently S. Sedghi and N. Shobe developed
a new concept of M-fuzzy metric space and proved fixed point theorem in this
newly developed space.

Definition 1.1: A mapping * : [0, 1] x [0, 1] — [0, 1] is called a triangular
norm (shortly -norm) if it satisfies the following conditions.

(i) =(a,1)=aforeverya [0, 1]
(ii) =*(a, b)=* (b, a) forevery a, b € |0, 1]
(iii) * (@, c)=* (b, d)fora>b;c>d
@iv) *(a, * (b,c, )= (x(a,b),c)forall a, b, c € [0, 1]
Example 1.2:
axb=ab for a,bel0,1]

Example 1.3:

axb=min{a, b} for a,b e [0, 1]

Definition 1.4: The triple (X, M, *) is a M-fuzzy metric space if X is an arbitrary
set, * is a continuous 7-norm and M is a fuzzy set in X* x (0, o) satisfying the
following conditions for each

Xy, 2a€X and ts>0
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1. M(x,y,z,)>0,forallx,y,ze X
2. M, v,z,t)=1liffx=y=z forall >0,
3. M, v,z,0)=M(p{x, v, 2}, f), where p is a permutation function,
4. Mx,y,a,1) *M(a, z,2,5) SM(X, y, 2, L+ 5),
5. M, v, 2,.):(0,0)— [0, 1] is continuous.
Example 1.5: Let X be a nonempty set and D is the D*-metric on X.
Denote a = b=a.b forall a, b € [0, 1]. For each ¢ € (0, ), Define
t

m(x9 )7, < t): DN
r+D (x,,2)

Definition 1.6: A sequence {x } in X converges to xif andonly if M (x,x,x ,1)—> 1
as n — oo, for each 1> 0.

Definition 1.7: A sequence {x } is called a Cauchy sequence if foreachO< e <1
and 1 > 0, there exist n, € N such that M(x , x ,x ,1)>1— € foreachn, m=>n,.

Definition 1.8: A fuzzy M-metric (X, M, *) is said to be complete if every
Cauchy sequence is convergent.

Definition 1.9: Let (X, M, *) be a M-fuzzy metric space, then M is called of
first type if for every x, y € X we have M (x, x, v, 1) = M(x, v, z, t) for every z € X.

Theorem 2.1: Let T, T, and T, be three mappings of a complete first type.
M-fuzzy metric space (X, M, *) satisfying the conditions.

M(Tx, T,y, T,z, 1) 2 min {M(x, y, z, t/r), M(x, T x, T, y, tlr),
M, T,y, Tz, tIr), M(z, Tz, T,x, tir)} (2.1.1)
Where O <r< 1.Then T, T, and T, have a unique common fixed point.
Proof: Consider an arbitrary point x; in X and define a sequence {x } in X by
X, =Tx,;x, ,=Tx, ;x, =Tx,  foralln=0,1,2...0onusing (2.1.1)
M(x,, Xy, X5 1) = M(T x,, Tx,, Tox,, 1)
> min { M(x,, x,, x,, t/r), M(x,, T, x,, Tpx , t/r), M(x,, T x
M(x,, Tpx,, T x,, t/r)}
2 min {M(x,, x,, x,, /1), M(x,, x,, x,, 1), M(x, X,, X,, U/T),
M(x,, X,, x,, 1/7)}
= min {M(x,, x,, X,, t/r), M(x,, x,, x,, t/7)}

> M(x,, X, X,, HT)

Tox,,tlr),

1?
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Continuing this way
M(X,, X, X5 1) 2 M(X |, X,, X, 1T)
2 M(x,, X, X,, 1117)
In general, we can define {x } in X.

Mx,x X . 0= Mx, X, X,, ")

n+2’
—>lasn—>o
Since M is first type

Mx, x, X

n+1’

t) 2 m(xn’ xn+l’ xn+2’ t)
—>lasn—>o
Now we prove {x } is a M-fuzzy Cauchy sequence.

Let m,n2n and m> n.

Mx,x,x,02Mx,x,x ,H02)* Mx ,x,x,H2)

2Mx, X, x 12 x Mx . x X _,12%
* M, x X, H2)

2 M, x, X, 012" ")« M(x, x,x 12"
e * M, x, X H2)

=1=x1=x. %1

=1.

Thus Mx,x,x )—>1asm, n—> oo,

Therefore {x } is a Cauchy sequence in X and X is generalized complete M-fuzzy
metric space and we have {x } > xin X.

Hence {x, }, {x, ..} and {x, ,} are all converges to X.

3n+1 3n+2

Now, we prove that x is a fixed point of T'.

Now, we have

M(Tx, x,x, )2 im M(Tx,x, ., X, .0
n—>0

> lm M(Tx, Tx,,  ,Tx, .0
n—>0

2 hm min {Mx, x,, X, 17), M(x, Tx, T x, ., 1),
n—>0
m (x3n+l’ T2x3n+l’ T3x3n+2’ t/r)’ m(x3n+2’ T3x3n+2’ Tlx’ t/r)}
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= lim min {M(x, x
H—>0

M (x

ir), M(x, T x, x,, ,, 1I1),

3n+1? x3n+2’ 3n+2°

x ir), M(x,, . x, .. T x, t/r)}

2 lim min {1, M(x, T x, x, t/r), M(x, x, x, t/r), M(x, x, T x,1/r)}

1—>0

> M(x, x, T x, tlr)

3n+1? 3n+2’x3n+3’ 3n+2° 730437

> M(x, x, Tx, t/r")
—>lasn—> oo
Thus M(T x, x, x, 1) = 1 for all >0
Hence T x = x.
Similarly we can prove for Tx=x& T .x = x.
Therefore x is common fixed point of 7', T,and T,
Uniqueness: Suppose y is another common fixed point of 7', T, and 7,.
Then
M(x, x, y, tr)= M(T x, Tx, T,y, )
> min {M(x, x, y, t/r), M(x, T x, T x, tlr),
Mx, T x, Ty, tIr), M(y, T,y, T x, t/r)}
>min{Mx, x, v, t/r), 1, M(x, x, ¥, t/r), My, v, x, t/r)}
=My, v, x, t/r)
> M(x, x, v, t/r?)

> M(y, v, x, tr")
— lasn >
Therefore M(x, x, v, t)=1

Hence x=y.
This completes the proof of the theorem.

Corollary 2.2: Let T, T, and T, be three mappings of a complete first type
M-fuzzy metric space (X, M, *) satisfying the conditions.
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M(Tx, Ty, Toz, ) 2 {M(x, y, z, tIr) * M(x, T x, T,y, tlr) *
M, T,y, Tz, tIr) = M(z, Tz, T)x, tr)} 2.2.1)
Where O < r< 1. Then T, T, and T, have a unique common fixed point.

Theorem 2.3: Let (X, M, *) be a generalized complete fuzzy metric space and
T : X — X be a mappings such that

AM(Tx, Ty, Tz, 1) 2 {M(x, v, z, t,/ka) + M(x, Tx, Ty, t,/kb)
+ Mx, y, Ty, t.fkc) + M(Tx, z, Tz, t,/kd)}  (2.3.1)

forallx,y,ze X,andt=1¢ +1,+t,+t,and a+ b + ¢+ d= 1. Then T has a unique
fixed point.

Proof: Let x, be an arbitrary fixed element in X and define a sequence {x } in X as
x, =Tx forall n=0,1,2,..

Putting 1, =at, £, = bt, ,=ct, {,=drin(2.3.1)

we get
AMx,x,x, ,0=4MTx_,Tx ,Tx, 1)
2 {Mx, ,x _,x,0k)+Mx _,Tx ,Tx_,,t/k)
+Mx,_,x, ., Tx ,tky+ M(Tx _,x,Tx,t/k)}
2 {Mx, _,x, ., x,tk)+ Mx,_,x,x, k)
+Mx,_,x X, k) + M(x,x,x ., 1k}
IM&x,x,x ,D23MXx _,x ,x, k)
Mx,x,x ,0=2Mx ,x ,x,tk)foraln=>0
Thus
Mx, x,x ., 0= Mx, X, x,, k")

Hence {x } is M-fuzzy Cauchy sequence in X.

Since X is complete M-fuzzy metric space and {x } is a fuzzy Cauchy sequence
in X. Wehave x, — xin X.

Now, we prove that x is a fixed point of 7.
Suppose x # Tx

Now, we have

AM(Tx, x,x,0)= lim 4 M(Tx,x ., x .10

1—>0

> lim 4 M(Tx, Tx ,Tx . ,1)

1—>0
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\

lim {M(x, x,x
n—>0

iky + M(x, Tx, Tx , t/k) +

M(x, x , Tx , t/k) + M(Tx, x

n+1’

Tx

n+1’

t'k)}

\

lim {M(x, x,x .,
n—>0

k) + M(x, Tx, x

n+1’

t/k)

+ M, x,x

n+1’

k) + M(Tx, x

n+1’ xn+2’

t'k)}
>2+ M(x, Tx, x, t/k) + M(Tx, x, x, t/k)
M(Tx, x, x, )= M(x, Tx, x, t/k)

> M (x, Tx, x, t/k")
—>lasn—> oo
Thus M(Tx, x,x,t)=1forallt>0
Hence Tx=x.
Therefore x is fixed point of 7.
Uniqueness: Suppose x # y such that x = Tx and Ty = y.
Now consider
AM(x, x, 9, t)=4M(Tx, Tx, Ty, 1)
> {M(x, x, v, k) + M(x, Tx, Tx, t/k) + M(x, x, Tx, t/k)
+ M(Tx, v, Ty, t/k)}
> M(x, x, ¥, k) + M(x, x, x, tk) + M(x, x, x, t/k)
+ M(x, v, y, tlk)
224+ Mx, x, v, k) + M(x, v, y, tlk)
224+2M(x, v, v, tlk)
M, X, 9, L) = M(x, v, v, tk)
Which is contradiction.

This completes the proof of the theorem
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Corollary 2.4: Let (X, M, *) be a generalized complete fuzzy metric space and
T : X — X be a mapping such that

M(Tx, Ty, Tz, 1) 2 min { M (x, y, z, t,/ka), M(x, Tx, Ty, t,/kD),
M(x, v, Ty, t,lkc), M(y, z, Tz, 1,/kd)} (2.4.1)
forallx,y,ze X,andr=r+1,+t,+t,anda+b+c+d=1.
Then T has a unique fixed point.
Putting 1,=0, 1, =at, £,= b1, 1,= ct, in (2.4.1). We get the following

Corollary 2.5: Let (X, M, *) be a generalized complete fuzzy metric space and
T: X — Xbe amapping suchthat M(Tx, Ty, Tz, ©) > min { M(x, v, z, t/k), M(x, Tx, Ty, t/k),
M(x,y, Ty, t/k)} forallx, v,z € X,and r =1, + t,+ t,and a + b + ¢ = 1. Then T has
a unique fixed point.

Putting 7,,1,=0, 1, = at, £,= bz, in (2.4.1). We get the following

Corollary 2.6: Let (X, M, %)) be a generalized complete fuzzy metric space
and T : X — X be a mapping such that M (Tx, Ty, Tz, f) 2 min {M (x, v, z, t/k),
M(x, Tx, Ty, t/k)} for all x, v, z € X, and =1, + t,and a + b = 1. Then T has a unique
fixed point.

Putting 7,,1,,£,=0, f,= at, in (2.4.1). We get the following

Corollary 2.7: Let (X, M, *)) be a generalized complete fuzzy metric space
and 7 : X — X be a mapping such that M (Tx, Ty, Tz, 1) = M(x, v, z, t/k) for all x, v,
ze€ X,and r=¢ and a = 1. Then T has a unique fixed point.

Putting ,=0, 1, =at, £, = bt, f,= dt in (2.4.1). We get the following

Corollary 2.8: Let (X, M, *)) be a generalized complete fuzzy metric space
and T : X — X be a mapping such that M (Tx, Ty, Tz, f) 2 min {M (x, v, z, t/k),
M(x, Tx, Ty, tk), M(y, z, Tz, t/k)} forall x, v,z € X,and t=¢ +1,+ f,anda+ D +d=1.
Then T has a unique fixed point.

Putting 1,=0, = at, t,= ct, t,= drin (2.4.1). We get the following

Corollary 2.9: Let (X, M, *)) be a generalized complete fuzzy metric space
and T : X — X be a mapping such that M (Tx, Ty, Tz, f) 2 min {M (x, v, z, t/k),
Mx, y, Ty, k), M(y, z, Tz, t/k)} forall x,y, z € X,and r=¢ + 1, + t,anda+c+d=1.
Then T has a unique fixed point.

Putting 1, =0, £,= b1, t,= ct, ,= dt in (2.4.1). We get the following

Corollary 2.10: Let (X, M, x)) be a generalized complete fuzzy metric space
and T : X - X be a mapping such that M (Tx, Ty, Tz, £) = min {M (x, Tx, Ty, t/k),
M(x,y, Ty, k), M(y, z, Tz, t/k)} forall x,y,z € X,and r=t,+ t,+ t,and b+ c+d=1.
Then T has a unique fixed point.
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