Common Fixed Point Theorem in Generalized M-Fuzzy Metric Space

T. Veerapandi, M. Jeyaraman & J. Paul Raj Josphs

Abstract: Our aim of this paper is to obtain a common fixed point theorem for three self mappings of generalized \mathcal{M} -fuzzy metric space. Now we prove common fixed point theorem for three self mapping of \mathcal{M} -fuzzy metric space.

Mathematics Subject Classification: 47H10, 54H25.

Keywords: \mathcal{M} -Fuzzy metric space, Complete \mathcal{M} -Fuzzy metric space, Common fixed point.

1. Introduction

Many authors have introduced the concept of fuzzy metric spaces in different way. Kramosil and Michalek is one of them. Recently S. Sedghi and N. Shobe developed a new concept of \mathcal{M} -fuzzy metric space and proved fixed point theorem in this newly developed space.

Definition 1.1: A mapping $*: [0, 1] \times [0, 1] \rightarrow [0, 1]$ is called a triangular norm (shortly *t*-norm) if it satisfies the following conditions.

- (i) *(a, 1) = a for every $a \in [0, 1]$
- (ii) *(a, b) = *(b, a) for every $a, b \in [0, 1]$
- (iii) $*(a, c) \ge *(b, d)$ for $a \ge b$; $c \ge d$
- (iv) *(a, *(b, c,)) = *(*(a, b), c) for all $a, b, c \in [0, 1]$

Example 1.2:

$$a * b = ab$$
 for $a, b \in [0, 1]$.

Example 1.3:

$$a * b = \min \{a, b\}$$
 for $a, b \in [0, 1]$.

Definition 1.4: The triple $(X, \mathcal{M}, *)$ is a \mathcal{M} -fuzzy metric space if X is an arbitrary set, * is a continuous t-norm and \mathcal{M} is a fuzzy set in $X^3 \times (0, \infty)$ satisfying the following conditions for each

$$x, y, z, a \in X$$
 and $t, s > 0$

- 1. $\mathcal{M}(x, y, z, t) > 0$, for all $x, y, z \in X$
- 2. $\mathcal{M}(x, y, z, t) = 1$ iff x = y = z, for all t > 0,
- 3. $\mathcal{M}(x, y, z, t) = \mathcal{M}(p\{x, y, z\}, t)$, where p is a permutation function,
- 4. $\mathcal{M}(x, y, a, t) * \mathcal{M}(a, z, z, s) \leq \mathcal{M}(x, y, z, t + s)$,
- 5. $\mathcal{M}(x, y, z, \bullet) : (0, \infty) \to [0, 1]$ is continuous.

Example 1.5: Let X be a nonempty set and D is the D^* -metric on X.

Denote a * b = a.b for all $a, b \in [0, 1]$. For each $t \in (0, \infty)$, Define

$$\mathcal{M}(x, y, z, t) = \frac{t}{t + D^*(x, y, z)}$$

Definition 1.6: A sequence $\{x_n\}$ in X converges to x if and only if $\mathcal{M}(x, x, x_n, t) \to 1$ as $n \to \infty$, for each t > 0.

Definition 1.7: A sequence $\{x_n\}$ is called a Cauchy sequence if for each $0 < \epsilon < 1$ and t > 0, there exist $n_0 \in N$ such that $\mathcal{M}(x_n, x_n, x_m, t) > 1 - \epsilon$ for each $n, m \ge n_0$.

Definition 1.8: A fuzzy \mathcal{M} -metric $(X, \mathcal{M}, *)$ is said to be complete if every Cauchy sequence is convergent.

Definition 1.9: Let $(X, \mathcal{M}, *)$ be a \mathcal{M} -fuzzy metric space, then \mathcal{M} is called of first type if for every $x, y \in X$ we have $\mathcal{M}(x, x, y, t) \ge \mathcal{M}(x, y, z, t)$ for every $z \in X$.

Theorem 2.1: Let T_1 , T_2 and T_3 be three mappings of a complete first type. \mathcal{M} -fuzzy metric space $(X, \mathcal{M}, *)$ satisfying the conditions.

$$\mathcal{M}(T_{1}x, T_{2}y, T_{3}z, t) \ge \min \left\{ \mathcal{M}(x, y, z, t/r), \mathcal{M}(x, T_{1}x, T_{2}y, t/r), \right.$$

$$\mathcal{M}(y, T_{2}y, T_{3}z, t/r), \mathcal{M}(z, T_{3}z, T_{1}x, t/r) \right\}$$
(2.1.1)

Where 0 < r < 1. Then T_1 , T_2 and T_3 have a unique common fixed point.

Proof: Consider an arbitrary point x_0 in X and define a sequence $\{x_n\}$ in X by

$$\begin{split} x_{3n+1} &= T_1 x_{3n}; \, x_{3n+2} = T_2 x_{3n+1}; \, x_{3n+3} = T_3 x_{3n+2} \, \text{for all } n = 0, \, 1, \, 2 \dots \, \text{on using} \quad (2.1.1) \\ \mathcal{M}(x_1, \, x_2, \, x_3, \, t) &= \mathcal{M}(T_1 x_0, \, T_2 x_1, \, T_3 x_2, \, t) \\ &\geq \min \left\{ \mathcal{M}(x_0, \, x_1, \, x_2, \, t/r), \, \mathcal{M}(x_0, \, T_1 x_0, \, T_2 x_1, \, t/r), \, \mathcal{M}(x_1, \, T_2 x_1, \, T_3 x_2, \, t/r), \\ \mathcal{M}(x_2, \, T_3 x_2, \, T_1 x_0, \, t/r) \right\} \\ &\geq \min \left\{ \mathcal{M}(x_0, \, x_1, \, x_2, \, t/r), \, \mathcal{M}(x_0, \, x_1, \, x_2, \, t/r), \, \mathcal{M}(x_1, \, x_2, \, x_3, \, t/r) \right\} \\ &= \min \left\{ \mathcal{M}(x_0, \, x_1, \, x_2, \, t/r), \, \mathcal{M}(x_1, \, x_2, \, x_3, \, t/r) \right\} \\ &\geq \mathcal{M}(x_0, \, x_1, \, x_2, \, t/r) \end{split}$$

Continuing this way

$$\mathcal{M}(x_2, x_3, x_4, t) \ge \mathcal{M}(x_1, x_2, x_3, t/r)$$

 $\ge \mathcal{M}(x_0, x_1, x_2, t/r^2)$

In general, we can define $\{x_n\}$ in X.

$$\mathcal{M}(x_n, x_{n+1}, x_{n+2}, t) \ge \mathcal{M}(x_0, x_1, x_2, t/r^n)$$

$$\to 1 \text{ as } n \to \infty$$

Since \mathcal{M} is first type

$$\mathcal{M}(x_n, x_n, x_{n+1}, t) \ge \mathcal{M}(x_n, x_{n+1}, x_{n+2}, t)$$

$$\to 1 \text{ as } n \to \infty$$

Now we prove $\{x_n\}$ is a \mathcal{M} -fuzzy Cauchy sequence.

Let m, $n \ge n_0$ and m > n.

$$\begin{split} \mathcal{M}(x_{n}, x_{n}, x_{m}, t) &\geq \mathcal{M}(x_{n}, x_{n}, x_{m-1}, t/2) * \mathcal{M}(x_{m-1}, x_{m}, x_{m}, t/2) \\ &\geq \mathcal{M}(x_{n}, x_{n}, x_{m-2}, t/2^{2}) * \mathcal{M}(x_{m-2}, x_{m-1}, x_{m-1}, t/2^{2}) \\ &\quad * \mathcal{M}(x_{m}, x_{m-1}, x_{m-1}, t/2) \\ &\geq \mathcal{M}(x_{n}, x_{n}, x_{n}, t/2^{m-n}) * \mathcal{M}(x_{n}, x_{n}, x_{n+1}, t/2^{m-n-1}) \\ &\quad * \dots \dots \dots * \mathcal{M}(x_{m-1}, x_{m-1}, x_{m}, t/2) \\ &= 1 * 1 * \dots * 1 \\ &= 1. \end{split}$$

Thus $\mathcal{M}(x_n, x_n, x_{n+1}) \to 1 \text{ as } m, n \to \infty.$

Therefore $\{x_n\}$ is a Cauchy sequence in X and X is generalized complete \mathcal{M} -fuzzy metric space and we have $\{x_n\} \to x$ in X.

Hence $\{x_{3n}\}$, $\{x_{3n+1}\}$ and $\{x_{3n+2}\}$ are all converges to X.

Now, we prove that x is a fixed point of T_1 .

Now, we have

$$\begin{split} \mathcal{M}\left(T_{1}x,\,x,\,x,\,t\right) &\geq \lim_{n \to \infty} \,\mathcal{M}(T_{1}x,\,x_{3n+2},\,x_{3n+3},t) \\ &\geq \lim_{n \to \infty} \,\mathcal{M}(T_{1}x,\,T_{2}x_{3n+1},\,T_{3}x_{3n+2},t) \\ &\geq \lim_{n \to \infty} \,\min\left\{\mathcal{M}(x,\,x_{3n+1},\,x_{3n+2},\,t/r),\,\mathcal{M}(x,\,T_{1}x,\,T_{2}x_{3n+1},t/r),\right. \\ &\left.\mathcal{M}(x_{3n+1},\,T_{2}x_{3n+1},\,T_{3}x_{3n+2},\,t/r),\,\mathcal{M}(x_{3n+2},\,T_{3}x_{3n+2},\,T_{1}x,\,t/r)\right\} \end{split}$$

$$= \lim_{n \to \infty} \min \left\{ \mathcal{M}(x, x_{3n+1}, x_{3n+2}, t/r), \, \mathcal{M}(x, T_1 x, x_{3n+2}, t/r), \right.$$

$$\mathcal{M}(x_{3n+1}, x_{3n+2}, x_{3n+3}, t/r), \, \mathcal{M}(x_{3n+2}, x_{3n+3}, T_1 x, t/r) \right\}$$

$$\geq \lim_{n \to \infty} \min \left\{ 1, \, \mathcal{M}(x, T_1 x, x, t/r), \, \mathcal{M}(x, x, x, t/r), \, \mathcal{M}(x, x, T_1 x, t/r) \right\}$$

$$\geq \mathcal{M}(x, x, T_1 x, t/r)$$

$$\cdot$$

$$\cdot$$

$$\geq \mathcal{M}(x, x, T_1 x, t/r^n)$$

$$\rightarrow 1 \text{ as } n \to \infty$$

Thus $\mathcal{M}(T_1x, x, x, t) = 1$ for all t > 0

Hence $T_1 x = x$.

Similarly we can prove for $T_2x = x \& T_3x = x$.

Therefore x is common fixed point of T_1 , T_2 and T_3

Uniqueness: Suppose y is another common fixed point of T_1 , T_2 and T_3 .

Then

$$\begin{split} \mathcal{M}(x,\,x,\,y,\,t|r) &= \mathcal{M}(T_1x,\,T_2x,\,T_3\,y,\,t) \\ &\geq \min\left\{\mathcal{M}(x,\,x,\,y,\,t|r),\,\mathcal{M}(x,\,T_1x,\,T_2x,\,t|r),\right. \\ &\left. \mathcal{M}(x,\,T_2x,\,T_3\,y,\,t|r),\,\mathcal{M}(y,\,T_3\,y,\,T_1x,\,t|r)\right\} \\ &\geq \min\left\{\mathcal{M}(x,\,x,\,y,\,t|r),\,1,\,\mathcal{M}(x,\,x,\,y,\,t|r),\,\mathcal{M}(y,\,y,\,x,\,t|r)\right\} \\ &= \mathcal{M}(y,\,y,\,x,\,t|r) \\ &\geq \mathcal{M}(x,\,x,\,y,\,t|r^2) \\ &\cdot \\ &\cdot \\ &\geq \mathcal{M}(y,\,y,\,x,\,t|r^n) \\ &\rightarrow 1 \text{as } n \rightarrow \infty \end{split}$$

Therefore $\mathcal{M}(x, x, y, t) = 1$

Hence x = y.

This completes the proof of the theorem.

Corollary 2.2: Let T_1 , T_2 and T_3 be three mappings of a complete first type \mathcal{M} -fuzzy metric space $(X, \mathcal{M}, *)$ satisfying the conditions.

$$\mathcal{M}(T_{1}x, T_{2}y, T_{3}z, t) \ge \{\mathcal{M}(x, y, z, t/r) * \mathcal{M}(x, T_{1}x, T_{2}y, t/r) * \mathcal{M}(y, T_{2}y, T_{3}z, t/r) * \mathcal{M}(z, T_{3}z, T_{1}x, t/r)\}$$
(2.2.1)

Where 0 < r < 1. Then T_1 , T_2 and T_3 have a unique common fixed point.

Theorem 2.3: Let $(X, \mathcal{M}, *)$ be a generalized complete fuzzy metric space and $T: X \to X$ be a mappings such that

$$4 \mathcal{M}(Tx, Ty, Tz, t) \ge \{\mathcal{M}(x, y, z, t_1/ka) + \mathcal{M}(x, Tx, Ty, t_2/kb) + \mathcal{M}(x, y, Ty, t_2/kc) + \mathcal{M}(Tx, z, Tz, t_1/kd)\}$$
(2.3.1)

for all x, y, $z \in X$, and $t = t_1 + t_2 + t_3 + t_4$ and a + b + c + d = 1. Then T has a unique fixed point.

Proof: Let x_0 be an arbitrary fixed element in X and define a sequence $\{x_n\}$ in X as

$$x_{n+1} = Tx_n$$
 for all $n = 0, 1, 2, ...$

Putting $t_1 = at$, $t_2 = bt$, $t_3 = ct$, $t_4 = dt in(2.3.1)$

we get

$$\begin{split} 4\,\mathcal{M}(x_{n},\,x_{n},\,x_{n+1},\,t) &= 4\,\mathcal{M}(Tx_{n-1},\,Tx_{n-1},\,Tx_{n},\,t) \\ &\geq \big\{\mathcal{M}(x_{n-1},\,x_{n-1},\,x_{n},\,t/k) + \mathcal{M}(x_{n-1},\,Tx_{n-1},\,Tx_{n-1},\,t/k) \\ &\quad + \mathcal{M}(x_{n-1},\,x_{n-1},\,Tx_{n-1},\,t/k) + \mathcal{M}(Tx_{n-1},\,x_{n},\,Tx_{n},\,t/k) \big\} \\ &\geq \big\{\mathcal{M}(x_{n-1},\,x_{n-1},\,x_{n},\,t/k) + \mathcal{M}(x_{n-1},\,x_{n},\,x_{n},\,t/k) \\ &\quad + \mathcal{M}(x_{n-1},\,x_{n-1},\,x_{n},\,t/k) + \mathcal{M}(x_{n},\,x_{n},\,x_{n+1},\,t/k) \big\} \\ &3\,\mathcal{M}(x_{n},\,x_{n},\,x_{n+1},\,t) \geq 3\,\mathcal{M}(x_{n-1},\,x_{n-1},\,x_{n},\,t/k) \text{ for all } n \geq 0 \end{split}$$

Thus

$$\mathcal{M}(x_n, x_n, x_{n+1}, t) \geq \mathcal{M}(x_0, x_0, x_1, t/k^n)$$

Hence $\{x_n\}$ is \mathcal{M} -fuzzy Cauchy sequence in X.

Since *X* is complete \mathcal{M} -fuzzy metric space and $\{x_n\}$ is a fuzzy Cauchy sequence in *X*. We have $x_n \to x$ in *X*.

Now, we prove that x is a fixed point of T.

Suppose $x \neq Tx$

Now, we have

$$4\mathcal{M}(Tx, x, x, t) = \lim_{n \to \infty} 4\mathcal{M}(Tx, x_{n+1}, x_{n+2}, t)$$
$$\geq \lim_{n \to \infty} 4\mathcal{M}(Tx, Tx_n, Tx_{n+1}, t)$$

$$\geq \lim_{n \to \infty} \left\{ \mathcal{M}(x, x_n, x_{n+1}, t/k) + \mathcal{M}(x, Tx, Tx_n, t/k) + \mathcal{M}(x, x_n, Tx_n, t/k) + \mathcal{M}(x, x_n, Tx_n, t/k) + \mathcal{M}(Tx, x_{n+1}, Tx_{n+1}, t/k) \right\}$$

$$\geq \lim_{n \to \infty} \left\{ \mathcal{M}(x, x_n, x_{n+1}, t/k) + \mathcal{M}(x, Tx, x_{n+1}, t/k) + \mathcal{M}(x, x_n, x_{n+1}, t/k) + \mathcal{M}(Tx, x_n, t/k) + \mathcal{M}(Tx, t/k)$$

Therefore *x* is fixed point of *T*.

Uniqueness: Suppose $x \neq y$ such that x = Tx and Ty = y.

Now consider

Thus

Hence

$$4\mathcal{M}(x, x, y, t) = 4\mathcal{M}(Tx, Tx, Ty, t)$$

$$\geq \{\mathcal{M}(x, x, y, t/k) + \mathcal{M}(x, Tx, Tx, t/k) + \mathcal{M}(x, x, Tx, t/k) + \mathcal{M}(Tx, y, Ty, t/k)\}$$

$$\geq \mathcal{M}(x, x, y, t/k) + \mathcal{M}(x, x, x, t/k) + \mathcal{M}(x, x, x, t/k)$$

$$+ \mathcal{M}(x, y, y, t/k)$$

$$\geq 2 + \mathcal{M}(x, x, y, t/k) + \mathcal{M}(x, y, y, t/k)$$

$$\geq 2 + 2\mathcal{M}(x, y, y, t/k)$$

$$\mathcal{M}(x, x, y, t) \geq \mathcal{M}(x, y, y, t/k)$$

Which is contradiction.

This completes the proof of the theorem

Corollary 2.4: Let $(X, \mathcal{M}, *)$ be a generalized complete fuzzy metric space and $T: X \to X$ be a mapping such that

$$\mathcal{M}(Tx, Ty, Tz, t) \ge \min \{ \mathcal{M}(x, y, z, t_1/ka), \mathcal{M}(x, Tx, Ty, t_2/kb),$$

$$\mathcal{M}(x, y, Ty, t_3/kc), \mathcal{M}(y, z, Tz, t_4/kd)$$
 (2.4.1)

for all $x, y, z \in X$, and $t = t_1 + t_2 + t_3 + t_4$ and a + b + c + d = 1.

Then T has a unique fixed point.

Putting $t_4 = 0$, $t_1 = at$, $t_2 = bt$, $t_3 = ct$, in (2.4.1). We get the following

Corollary 2.5: Let $(X, \mathcal{M}, *)$ be a generalized complete fuzzy metric space and $T: X \to X$ be a mapping such that $\mathcal{M}(Tx, Ty, Tz, t) \ge \min \{\mathcal{M}(x, y, z, t/k), \mathcal{M}(x, Tx, Ty, t/k), \mathcal{M}(x, y, Ty, t/k)\}$ for all $x, y, z \in X$, and $t = t_1 + t_2 + t_3$ and a + b + c = 1. Then T has a unique fixed point.

Putting t_4 , $t_3 = 0$, $t_1 = at$, $t_2 = bt$, in (2.4.1). We get the following

Corollary 2.6: Let $(X, \mathcal{M}, *)$ be a generalized complete fuzzy metric space and $T: X \to X$ be a mapping such that $\mathcal{M}(Tx, Ty, Tz, t) \ge \min \{\mathcal{M}(x, y, z, t/k), \mathcal{M}(x, Tx, Ty, t/k)\}$ for all $x, y, z \in X$, and $t = t_1 + t_2$ and a + b = 1. Then T has a unique fixed point.

Putting t_4 , t_3 , t_2 = 0, t_1 = at, in (2.4.1). We get the following

Corollary 2.7: Let $(X, \mathcal{M}, *)$ be a generalized complete fuzzy metric space and $T: X \to X$ be a mapping such that $\mathcal{M}(Tx, Ty, Tz, t) \ge \mathcal{M}(x, y, z, t/k)$ for all $x, y, z \in X$, and $t = t_1$ and $t = t_2$ and $t = t_3$ and $t = t_4$ and $t = t_3$ are $t = t_4$ and $t = t_4$ are $t = t_4$ and $t = t_4$ and $t = t_4$ and $t = t_4$ and $t = t_4$ are $t = t_4$ and $t = t_4$ and $t = t_4$ and $t = t_4$ and $t = t_4$ are $t = t_4$ and $t = t_4$ and $t = t_4$ and $t = t_4$ and $t = t_4$ are $t = t_4$ and $t = t_4$ and $t = t_4$ and $t = t_4$ and $t = t_4$ are $t = t_4$ and $t = t_4$ and $t = t_4$ and $t = t_4$ and $t = t_4$ are $t = t_4$ and $t = t_4$ and $t = t_4$ and $t = t_4$ and $t = t_4$ are $t = t_4$ and $t = t_4$ are $t = t_4$ and $t = t_4$ and $t = t_4$ are $t = t_4$ and $t = t_4$ and $t = t_4$ are $t = t_4$ are $t = t_4$ and $t = t_4$ are $t = t_4$ and $t = t_4$ are $t = t_4$ are $t = t_4$ and $t = t_4$ are $t = t_4$ and $t = t_4$ are $t = t_4$ are $t = t_4$ and $t = t_4$ are $t = t_4$ and $t = t_4$ are $t = t_4$ are $t = t_4$ and $t = t_4$ are $t = t_4$ and $t = t_4$ are $t = t_4$ are $t = t_4$ and $t = t_4$ are $t = t_4$ and $t = t_4$ are $t = t_4$ and $t = t_4$ are $t = t_4$ are $t = t_4$ and $t = t_4$ are $t = t_4$ and $t = t_4$ are $t = t_4$ are $t = t_4$ and $t = t_4$ are $t = t_4$ are $t = t_4$ are $t = t_4$ are $t = t_4$ and $t = t_4$ are $t = t_4$

Putting $t_3 = 0$, $t_1 = at$, $t_2 = bt$, $t_4 = dt$ in (2.4.1). We get the following

Corollary 2.8: Let $(X, \mathcal{M}, *)$ be a generalized complete fuzzy metric space and $T: X \to X$ be a mapping such that $\mathcal{M}(Tx, Ty, Tz, t) \ge \min \{\mathcal{M}(x, y, z, t/k), \mathcal{M}(x, Tx, Ty, t/k), \mathcal{M}(y, z, Tz, t/k)\}$ for all $x, y, z \in X$, and $t = t_1 + t_2 + t_4$ and a + b + d = 1. Then T has a unique fixed point.

Putting $t_2 = 0$, $t_1 = at$, $t_3 = ct$, $t_4 = dt$ in (2.4.1). We get the following

Corollary 2.9: Let $(X, \mathcal{M}, *)$ be a generalized complete fuzzy metric space and $T: X \to X$ be a mapping such that $\mathcal{M}(Tx, Ty, Tz, t) \ge \min \{\mathcal{M}(x, y, z, t/k), \mathcal{M}(x, y, Ty, t/k), \mathcal{M}(y, z, Tz, t/k)\}$ for all $x, y, z \in X$, and $t = t_1 + t_3 + t_4$ and a + c + d = 1. Then T has a unique fixed point.

Putting $t_1 = 0$, $t_2 = bt$, $t_3 = ct$, $t_4 = dt$ in (2.4.1). We get the following

Corollary 2.10: Let $(X, \mathcal{M}, *)$) be a generalized complete fuzzy metric space and $T: X \to X$ be a mapping such that $\mathcal{M}(Tx, Ty, Tz, t) \ge \min \{\mathcal{M}(x, Tx, Ty, t/k), \mathcal{M}(x, y, Ty, t/k), \mathcal{M}(y, z, Tz, t/k)\}$ for all $x, y, z \in X$, and $t = t_2 + t_3 + t_4$ and b + c + d = 1. Then T has a unique fixed point.

REFERENCE

- [1] Ereg M. A., Metric Spaces in Fuzzy Set Theory, Jour. Math., Anal, Appl., 69 (1979), 205-230.
- [2] Hardy G. E., and Rogers J. D., A Generalization of a Fixed Point Theorem of Reich, *Bull. Cal. Math. Soc.*, **16** (1973), 201-206.
- [3] Keleva O., and Seikkala S., On fuzzy Metric Spaces: Fuzzy Sets and Systems, 122 (1984), 215-229.
- [4] Kramosil O., and Michalek J., Fuzzy Metric and Statistical Metric Spaces, *Kybesnetika*, 11 (1975), 336-344.
- [5] Naidu S. V. R, Rao K. P. R., and Srinivasa Rao. N., On the Topology of *D*-Metric Spaces and the Ggeneration of *D*-Metric Spaces from Metric Spaces, *Internet. J. Math. Math. Sci.*, **2004**(51) (2004), 2719-2740.
- [6] Naidu S. V. R, Rao K. P. R., and Srinivasa Rao N., On Convergent Sequences and Fixed Point Theorems in *D*-Metric Spaces, *Internet. J. Math. Math. Sci.*, **2005**(12) (2005), 1969-1988.
- [7] Sangeeta, Rajesh Shrivastava, and Manoj Sharma, Common Fixed Point Theorem in Generalized Fuzzy Metric Space, *Acta Ciencia Indica*, **XXXIIM**(4) (2006), 1804-1804.
- [8] S. Sedghi, and N. Shobe, Fixed Point Theorem in M-Fuzzy Metric Spaces with Property (E), Advances in Fuzzy Mathematics, 1(1) (2006), 55-65.
- [9] S. Sedghi, and N. Shobe, Common Fixed Point Theorems for a Class Maps in *L*-Fuzzy Metric Space, *Applied Mathematical Sciences*, **1**(17) 2007, 834 -842.
- [10] S.Sedghi and N.Shobe, A common fixed point theorem in two *M*-Fuzzy Metric Spaces, *Commun. Korean Math. Soc.*, **27**(4) (2007), 513-526.
- [11] Zadeh L. A., Fuzzy Sets, Information and Control, 8 (1965) 338-353.

T. Veerapandi

Reader in Mathematics P.M.T. College, Melaneelithanallur, India E-mail: vrpnd@yahoo.co.in

M. Jeyaraman

Department of Mathematics Mohamed Sathak Engg. College Kilakarai, India E-mail: jeya.math@gmail.com

J. Paul Raj Josphs

Department of Mathematics Manomaniam Sundaranar University Tirunelveli, India