
A Comparative Study of Flash Translation Layer
Techniques

Shailesh Kumar1 and P.K. Singh2

1,2Computer Science & Engineering Department, Madan Mohan Malaviya University of Technology, Gorakhpur, India.
Email: 1shailesh23jan@gmail.com, 2topksingh@gmail.com

Abstract: Flash memory with characteristics such as lightweight, shock resistance and low power consumption will be
better candidate to use as storage device in IoT-based appliances. However due to the erase and then write constraints,
write operation is expansive. To avoid, frequent write and erase operation the flash layer translation technique has been
adopted. In this paper we surveys the different FTL techniques on the base of six parameter, mapping table size, address
computational overhead, read cost, write cost, erase cost, space utilization, and energy consumption.

Keywords: Flash Memory; Flash translation layer; Log block; Data block.

layer translation techniques have been adopted. Flash
layer translation is the layer of software which will map
the logical address generated by cup with the physical
address of flash memory. Table 1 (Li, Yang, & Tseng,
2008) shows the energy consumption of read, write and
erase operation. Write and erase operation consumes
more time as well as more energy. So minimization of
write and erase operation will improve the performance
of IoT-based appliances which uses flash memory as
storage media.

Table 1
NAND Flash characteristics

Operation Time Energy Consumption
Read 47.2 ms 679 nJ
Write 533 ms 7.66 mJ
Erase 3 ms 43.2 mJ

Related Work2.	

In flash memory page overwriting is not possible so
when write operation on the flash memory is issued
by file system the requested page have to erase before
performing write operation. In flash memory the
write operation performs on page unit, but the erase
operation can only perform on the block unit, which

Introduction1.	

There are basically two types of flash memory: NOR
and NAND flash memory. The read speed of NOR
flash memory is much more faster than NAND flash
memory but the write speed and the erase speed
of NAND flash memory is faster than NOR flash
memory (Aritome, 2013). The bit density of NAND
flash memory is higher than NOR flash memory.
Therefore NAND flash memory prefers over NOR
flash memory as secondary storage. Flash memory with
characteristics such as shock resistance, lightweight
and low power consumption will be better candidate
to as storage device (Kuo, Chang, Huang, & Chang,
2008). The main concern with flash memory is read and
write asymmetric speeds (J. Hu, Xue, Tseng, Zhuge, &
Sha, 2010); out-place updates, and a limited lifetime.
NAND flash memory write speed is approximately
eight times slower than its read speed. One other
drawback of flash memory is its erase than write
constrain. Whenever it is required to update any page
, the block that containing that page have to erase
(Takeuchi, 2013). Write operation on flash memory
is costly due to erase than write constrain (X.-Y. Hu,
Eleftheriou, Haas, Iliadis, & Pletka, 2009). To avoid
the frequent erase of flash memory blocks the flash

ISSN: 0973-5704International Journal of Computing and Applications
Volume 13, Number 2, (July-December 2018), pp 397-404

© Serials Publications, New Delhi (India)

398 Shailesh Kumar and P.K. Singh

Figure 2:	 Sector Mapping

Block Mapping FTL

In sector mapping, mapping table takes bulk amount
of memory. Block mapping is used to shrink the size
of mapping table. It is similar to sector mapping in
which logical block is mapped with physical block.
Logical sector address is divided by block size of flash
memory (Ban, 1999).

Figure 3:	 Block Mapping

The quotient of this division operation gives logical
block number, which will be mapped to the physical
block number by mapping table. The remainder of
this division operation gives physical sector number
in physical block of flash memory. This approach
successfully reduces the mapping table size but the
main disadvantage of this technique is that if the file
system issues similar logical sector address it would be
take many erase and copy operation.

contains numbers of pages. Erase cost of flash block,
generally containing 32 pages, is very expensive. Erase
operation of flash memory block takes approximately
2ms. To avoid, frequent write and the erase operation
of the flash layer translation technique has been
adopted(Qin, Wang, Liu, & Shao, 2012).

Figure 1:	 Architecture of Flash Memory System

Flash memory contains a number of blocks and
each block contains a number of pages. In sector level
mapping, the logical address of a sector is mapped
to a physical sector address of flash memory (Amir
Ban, 1995). Mapping table contains the logical sector
address and its corresponding physical sector address.
When sector update command is generated by file
system, the FTL writes it to any empty location (sector)
in flash memory and maintains mapping information
in the mapping table (Ryu, 2011). If there is no empty
sector (already erased) in flash memory then FTL
selects a victim block, copy data of victim block to
spare free block, update mapping information in
mapping table and then erase that victim block which
will then become spare block. In sector mapping, every
logical sector is mapped with only one physical sector
so mapping table contains the address information
of every logical block and its corresponding physical
block. This mapping table is saved in the flash
memory and main memory as well, because mapping
information is necessary to read sector later. For larger
size flash memory the mapping table will be large and
it will take large amount of memory.

399A Comparative Study of Flash Translation Layer Techniques

Hybrid Mapping FTL

Hybrid mapping is the joined approach of sector
mapping and block mapping (B. Kim, 2002). In this
technique block mapping technique is used to get
physical block number form logical sector address.
After computing the physical block number, sector
mapping technique is used to get free sector in this
block, and write operation will be performed. Spare area
of physical block contains the logical sector number
(logical sector address) because this information is
essential to read data later (Mittal & Vetter, 2015). For
reading the data, after getting the physical block address
form logical block address using mapping table, FTL
algorithm scans logical sector number from spare area
of the physical block and reads the data form sector
area. This approach suffers higher read complexity
then pervious approaches.

Figure 4:	H ybrid Mapping

The Log block Based Hybrid FTL Approach

In log block approach the flash blocks are categorized
in two categories log block and data block. Log block
uses to store temporary data (J. Kim, Kim, Noh, Min,
& Cho, 2002). Log blocks are free blocks which have
been erased in advance and ready to write. Whenever
file system issues a command to update a page of data
block, this update command is redirected to log block.
Log block method utilizes both block level mapping as
well as sector level mapping (S.-W. Lee et. al., 2007).

Figure 5:	L og Block

CASE STUDY3.	

Block Associative Sector Translation

In BAST scheme one log block is associated to one data
block. Whenever write command is issued, one log block
is allocated to this data block and this write operation
is performed on log block from the very first sector
(J. Kim et. al., 2002) (Kang, Park, Jung, Shim, & Cha,
2009). For example, if page p2 have to update then one
log block is allocated to this data block and FTL writes
p2 to very first empty location of the selected log block.

Figure 6:	 BAST

400 Shailesh Kumar and P.K. Singh

data block 8 (PBN = 8). In FAST two or more data
block can share a single log block. The log block, which
having physical block number (PBN=10), is shared
between these two data block PBN 3 and PBN 8, so
write operation is performed on log block (PBN = 10).
When all the pages of the log block are consumed then
the merge operation has to perform in both approaches
BAST and FAST. Merge operation performs to create
free blocks.

There are basically three ways of performing the
merge operations:

	 ∑	 Switch merge: If file system issues command
to update all pages of the data block in
sequential manner then the write operation
performed on log block will also be sequential
and log block contains updated pages of data
block in same sequence as it was in the data
block. In this case, the log block is altered as
data block the data block is erased and become
free block.

Figure 8:	 Switch Merge

	 ∑	P artial merge: In partial merge the file system
issues command to update contiguous subset
of pages of data block in sequential manner.
The log block contains some pages of data
block in sequence as it was in data block. The
pages which are not updated is copied to log
block, log block is then changed as data block
and data block is erased to become free log
block (Chung & Hsu, 2014).

In Figure 6 let file system issued a command Write
(8, A) at time T0, the block mapping technique has
been used and data A has been written in Physical
block number 3 (PBN = 3). Again file system at time
T2 issued a command Write (8, C), means file system
again want to write logical sector number 8 with data C.
In this case the collision occurs in data block 3, so data
is written using sector mapping in a log block (PBN
= 10) which is allocated to the data block (PBN = 3)
with offset 0. At time T4 again collision occurs due to
command Write (8, G) and the data is updated to same
log block number at the next empty location.

Fully Associative Sector Translation

In FAST (Sw Lee, Choi, & Park, 2006) scheme one log
block is associated to many data blocks. By allowing
one log block to multiple data blocks in FAST scheme
the space utilization get increases as compare to BAST
scheme. In Figure 7 when file system issues command
Write (6, H) at time T5, the collision occurs in physical

Figure 7:	F AST

401A Comparative Study of Flash Translation Layer Techniques

Figure 9:	P artial Merge

	 ∑	F ull Merge: If file system issues command
to update the pages of data block randomly,
then the corresponding log block contains
the updated pages of data block but not in
sequence as it was in data block.

Figure 10:	F ull Merge in BAST

So in this merge operation one free block is
allocated and valid pages of data block and updated
pages of data block, which is in log block, will be copy
to free block in sequence as it was in data block. Now
this free block will be the new data block. After than
the log block and original old data block are erased to
create new free block (Sw Lee et. al., 2006).

Superblock FTL Scheme

Superblock approach overcomes the shortcomings of
BAST and FAST by grouping the consecutive logical
blocks into a superblock(Jung, Kang, Jo, Kim, &

Figure 11:	F ull Merge in FAST

Table 2
Cost of Merge Operations

Merge Types
Operation

Write Erase
Switch Yes No
Partial Yes 1 Block Erase

Full BAST Yes 2 Block Erase
FAST Yes 3 Block Erase (if 2 data

block shares 1 log block)

Lee, 2010). In superblock FTL group of consecutive
logical blocks shares same number of log blocks to
enhance the log block utilization and exploits spatial
locality of reference. Superblock FTL uses a three
level mapping technique (Lin, Chiao, & Chang, 2010).
The SRAM stores the first block level mapping table.
Spare area of superblock kept lower two mapping
information. The limitation of this approach is that,
spare area of superblock use to store error correction
code, storing the last two level mapping information in
spare area which will reduces space for error correction
code. Superblock FTL is difficult to implement and
performance is also affected due to OOB and extra
searches.

Locality Aware Sector Translation

This scheme categorizes the log block into two category,
sequential log block and random log block. Each log
block in sequential log block group, is associated with
a data block like BAST approach and each log block
in random write block group, is link up with multiple

402 Shailesh Kumar and P.K. Singh

data block like FAST scheme (Sungjin Lee, Shin, Kim,
& Kim, 2008). On each write request, locality detector
detects type of write request. The LAST scheme
separates the sequential write request and random write
request and sends request to appropriate log buffer
group. By separating write requests this approach
reduces the cost of merge operation. Random write
log block set is divided into hot blocks and cold blocks
to increase temporal locality of reference.

Set Associative Sector Translation

SATA scheme (Park et. al., 2008) divides the flash
block into two group, data block group and log block
group. Data block group have N adjacent logical data
blocks, which can share maximum K log blocks. So the
maximum block associativity will be K for a log block.
The optimal value of K and K is decided by behavior
of workload. SATA stores the page level mapping table
in SRAM so the read cost will be to less compare to
superblock FTL. This approach also suffers with block
thrashing and high block associativity problem.

Adaptive Set-Associative Sector Translation

This approach tries to overcome the shortcomings
of SATA scheme. The size of data block group is not
fixed and it can change adaptively, according to update
pattern, to enhance the spatial locality of reference
(Wu, Lin, & Kuo, 2010).

K-Associative Sector Translations

This approach does not create a group of log blocks
and data blocks as SAST approach (Cho, Shin, & Eom,
2009). KAST only limits the associativity of all log
blocks. The maximum associativity of all log blocks
cannot be more than K. The value of K decides the
performance of KAST because for very small value
of K KAST suffers with block thrashing problem as
BAST, and for very large value of K this approach
behave like FAST scheme (Cho et. al., 2009).

Future Research Directions4.	

The research presented in this paper raised some very
important research areas where further research should

be pursued. There are several issues which still to be
resolve.

	 ∑	 Hybrid mapping resolve the huge mapping
table issue associated with sector mapping and
same sector frequent update issue associated
with block mapping. While resolving issues of
sector mapping and block mapping, the hybrid
mapping suffers the read cost problem. The
spare area of all the pages of any flash memory
block have to scan first to read any page. In
future research can be done to minimize read
cost associated with hybrid mapping.

	 ∑	 Log block approach also uses the hybrid
mapping technique. The limitation of log
block technique is space utilization so further
research work can be done to maximize space
utilization in log block approach.

Conclusion5.	

This paper surveys the different FTL algorithms. In
this paper we categorize the FTL algorithms into four
categories, sector mapping, block mapping, hybrid
mapping and log block based hybrid mapping. The
sector mapping technique seems better than other
approach, but the size of mapping table is huge
so this approach requires a large memory to store
mapping table. Block mapping technique have small
mapping table but this approach have large amount
of erase operation when same sector number is
updated frequently. The hybrid mapping successfully
overcomes the same sector frequent update problem
associated with block mapping. Read cost of hybrid
mapping technique is more than sector mapping
and block mapping because for reading any page the
spare area of block has to be scan. The limitation of
log block based hybrid mapping is space utilization.
NAND flash characteristics table shows the erase
operation takes maximum energy and the technique
which has less erase operation will consume less energy.
Comparison table of different FTL scheme shows
the difference between these schemes based on the
parameters, mapping table size, address computational
overhead, read cost, write cost, space utilization and
energy consumption.

403A Comparative Study of Flash Translation Layer Techniques

Table 3
Comparison table of different FTL scheme

Technique Mapping Table Size
Address

Computational
Overhead

Read Cost Erase Cost Space
Utilization

Energy
Consumption

Sector Mapping (SM) Huge Less Less Less More Less
Block Mapping (BM) Small More than SM Same as SM More More More
Hybrid Mapping (HM) Small Equal to BM More than BM Less than BM More More
Log Block Based Hybrid
Mapping (LBHM)

Less than SM but
more than HM

Same as HM Same as HM Less than HM
and BM

Less Less

Kang, S., Park, S., Jung, H., Shim, H., & Cha, J. (2009). [8]	
Performance trade -offs in using NVRAM write
buffer for flash memory-based storage devices. IEEE
Transactions on Computers, 58(6), 744–758. https://doi.
org/10.1109/TC.2008.224.

Kim, B. (2002). US6381176B1.pdf. [9]	 United States Patent,
US 6381176(Apr. 30,2002).

Kim, J., Kim, J. M., Noh, S. H., Min, S. L., & Cho, Y. [10]	
(2002). A space -efficient flash translation layer for
compactflash systems. IEEE Transactions on Consumer
Electronics, 48(2), 366–375. https://doi.org/10.1109/
TCE.2002.1010143.

Kuo, T.-W. K. T.-W., Chang, Y.-H. C. Y.-H., Huang, [11]	
P.-C. H. P.-C., & Chang, C.-W. C. C.-W. (2008).
Special Issues in Flash. 2008 IEEEACM International
Conference on ComputerAided Design, 821– 826. https://
doi.org/10.1109/ICCAD.2008.4694174.

Lee, S.-W., Park, D.-J., Chung, T.-S., Lee, D.-H., [12]	
Park, S., & Song, H.-J. (2007). A Log Buffer-Based
Flash Translation Layer Using Fully-Associative
Sector Translation. ACM Transactions on Embedded
Computing Systems , 6(3), 18–es. https://doi.
org/10.1145/1275986.1275990.

Lee, S., Choi, W., & Park, D. (2006). FAST: An [13]	
efficient flash translation layer for flash memory.
Emerging Directions in Embedded and …, 879–887.
https://doi.org/10.1007/11807964.

Lee, S., Shin, D., Kim, Y.-J., & Kim, J. (2008). [14]	
LAST: locality-aware sector translation for NAND
flash memory-based storage systems. ACM
SIGOPS Operating Systems Review, 36–42. https://doi.
org/10.1145/1453775.1453783.

Li, H.-L., Yang, C.- L., & Tseng, H.-W. (2008). [15]	
Energy-aware flash memory management in virtual
memory system. IEEE Transactions on Very Large Scale

References
Amir Ban. (1995). Flash File System. [1]	 United States
Patent, Patent Num (Apr. 4). Aritome, S. (2013). Flash
Innovations, (November), 21–29.

Ban, A. (1999). Flash File System Optimized for [2]	
Page-mode Flash Technologies. United States Patent,
No. 5, 937.

Cho, H.C.H., Shin, D.S.D., & Eom, Y.I.E.Y.I. [3]	
(2009). KAST: K-associative sector translation
for NAND flash memory in real-time systems.
2009 Design, Automation & Test in Europe Conference
& Exhibition, 507–512. https://doi.org/10.1109/
DATE.2009.5090717.

Chung, C.C., & Hsu, H. H. (2014). Partial parity cache [4]	
and data cache management method to improve
the performance of an SSD-based RAID. IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, 22(7), 1470–1480. https://doi.org/10.1109/
TVLSI.2013.2275737.

Hu, J., Xue, C. J., Tseng, W. C., Zhuge, Q., & Sha, [5]	
E. H. M. (2010). Minimizing write activities to non-
volatile memory via scheduling and recomputation.
Proceedings of the 2010 IEEE 8th Symposium on Application
Specific Processors, SASP’10, 101–106. https://doi.
org/10.1109/SASP.2010.5521139.

Hu, X.-Y., Eleftheriou, E., Haas, R., Iliadis, I., & [6]	
Pletka, R. (2009). Write amplification analysis in flash-
based solid state drives. Proceedings of SYSTOR 2009:
The Israeli Experimental Systems Conference on - SYSTOR
’09, 1. https://doi.org/10.1145/1534530.1534544.

Jung, D., Kang, J.-U., Jo, H., Kim, J.-S., & Lee, [7]	
J. (2010). Superblock FTL. ACM Transactions on
Embedded Computing Systems, 9(4), 1–41. https://doi.
org/10.1145/1721695.1721706.

404 Shailesh Kumar and P.K. Singh

Integration (VLSI) Systems, 16(8), 952–964. https://doi.
org/10.1109/TVLSI.2008.2000517.

Lin, P. K., Chiao, M. L., & Chang, D. W. (2010). [16]	
Improving flash translation layer performance by
supporting large superblocks. IEEE Transactions on
Consumer Electronics, 56(2), 642–650. https://doi.
org/10.1109/TCE.2010.5505982.

Mittal, S., & Vetter, J. S. (2015). A Survey of Software [17]	
Techniques for Using Non-Volatile Memories for
Storage and Main Memory Systems. IEEE Transactions
on Parallel and Distributing Systems, 9219(c), 1–14.
https://doi.org/10.1109/TPDS.2015.2442980.

Park, C., Cheon, W., Kang, J., Roh, K., Cho, [18]	
W., & Kim, J.-S. (2008). A reconfigurable FTL
(flash translation layer) architecture for NAND
flash-based applications. ACM Transactions on
Embedded Computing Systems, 7(4), 1–23. https://doi.
org/10.1145/1376804.1376806.

Qin, Z., Wang, Y., Liu, D., & Shao, Z. (2012). Real-[19]	
time flash translation layer for NAND flash memory
storage systems. Real-Time Technology and Applications
- Proceedings, 2(1), 35–44. https://doi.org/10.1109/
RTAS.2012.27.

Ryu, Y. (2011). A flash translation layer for NAND [20]	
flash-based multimedia storage devices. IEEE
Transactions on Multimedia, 13(3), 563–572. https://
doi.org/10.1109/TMM.2011.2114333.

Takeuchi, K. (2013). Nand flash application and [21]	
solution. IEEE Solid-State Circuits Magazine, 5(4), 34–
40. https://doi.org/10.1109/MSSC.2013.2278087.

Wu, C. H., Lin, H. H., & Kuo, T. W. (2010). An [22]	
adaptive flash translation layer for high-performance
storage systems. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 29(6), 953–965.
https://doi.org/10.1109/TCAD.2010.2048362.

