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1. INTRODUCTION

Let T *(p) the class of functions f (z) of the form

f (z) = z–p + 
1n

�

�
� an z

n – p, p � IN = {1, 2, ...} (1)

which are analytic and multivalent in the punctured unit disk U* = {z : z � � and 0 < | z | < 1}.

The Hadamard product of f and g where f definedd by (1) and g (z) = z–p + 
1n

�

�
� bn z

n–p

denote by f * g defined as:

( f * g) (z) = z–p + 
1n

�

�
� an bn z

n–p. (2)

Now let

�p (a, c; z) = z–p + 
1

( )

( )
n pn

n n

a
z

c

�
�

�
� (3)

(z � U*, a � IR, c � IR, c � 0, –1, –2, ...) (a)0 = 1 and (a)n = a (a + 1) ... (a + n – 1), n � IN
which is called shifted factorial.

Consider the class Ka, c ( p; A, B, �), a function f � T*( p) belongs to Ka, c ( p; A, B,  �) if
it satisfies the following condition
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( ( , ) ( )) ( , ) ( )
1

( ( , ) ( )) [ ( )(1 )] ( , ) ( )
p p

p p

z L a c f x pL a c f z

Bz L a c f z p B A B L a c f z

� �
�

� � � � � �
(4)

where (–1 � B < A � 1, 0 � � < 1, p � IN, z � U, a � IR, c � IR, c � 0, –1, –2, ...) and

Lp (a, c) f (z) = �p(a, c, z) * f (z), f � T*( p). (5)

The Definition of Lp (a, c) f (z) is motivated by Carlson – Shaffer [2] and the class
Ka, c ( p; A, B, �) is generalized to the class studied by Liu and Srivastava [5].

The function f (z) � Ka, c ( p; A, B, �) is in the class K+
a, c (p; A, B, �) such that

f (z) = z–p + 
n p

�

�
� | an | z

n, (p � IN). (6)

Special cases of the classes K+
a, c (p; A, B, �) and Ka, c (p; A, B, �)

(1) If a = c = 1; � = 0 we get the class K+
1,1 (p; A, B) was investigated by Mogra [6].

(2) If � = 0 we get the class Ka, c (p; A, B) was studied by Liu and Srivastava [5].

2. INCLUSION PROPERTIES OF THE CLASS Ka, c (p; A, B, )

In order to prove our results we need the following Lemma.

Lemma (Jack [4]): Let w (z) be analytic non constant function in U with w (0) = 0. If
w (z) attains its maximum value on the circle | z | = r < 1 at a point z0 � U, then

z0w�(z0) = �w (z0), where � � IR and � � 1. (7)

Theorem 2.1: Let a � (1 )( )
1

p A B
B

� � �
� , then Ka + 1, c (p; A, B, �) � Ka, c (p; A, B, �) where

(–1 < B < A � 1; 0 � � < 1, p � IN).

Proof. Assume that f � Ka + 1, c (p; A, B, �) and suppose that

( ( , ) ( ))

( , ) ( )
p

p

z L a c f z

L a c f z

�
 = 

1 [ ( )(1 )] ( )
1 ( )

B A B w z
p

Bw z
� � � � �� �

� � ��� �
(8)

for w (z) is analytic or meromorphic in U, with w (0) = 0. From (3) and (5) we have

z (Lp (a, c) f (z))� = aLp (a + 1, c) f (z) – (a + p) Lp (a, c) f (z). (9)

Now from (9) and (8), we get

( 1, ) ( )

( , ) ( )
p

p

aL a c f z

L a c f z

�
 = 

[ ( )(1 )] ( )

1 ( )

a aB p A B w z

Bw z

� � � � �
�

(10)
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then

( ( 1, ) ( ))

( 1, ) ( )
p

p

L a c f z

L a c f z

��

�
 = 

( ( , ) ( )) [ ( )(1 )] ( )
( , ) ( ) [ ( )(1 )] ( )

p

p

z L a c f z aB p A B zw z

L a c f z a aB p A B w z

� �� � ��
�

� � � ��
 – 

( )

1 ( )

Bzw z

Bw z

�
�

. (11)

The last expression obtained by differentiating logarithmically with respect to z of
(10), so

( ( 1, ) ( ))

( 1, ) ( )
p

p

z L a c f z

L a c f z

��

�
 =

1 [ ( )(1 )] ( )
1 ( )

B A B w z
p

Bw z
� � � � �� �

� � ��� �

(1 )( ) ( )

(1 ( )) [ ( ( )(1 )) ( )]

p A B zw z

Bw z a aB p A B w z

�� � �
�

� � � � � �
. (12)

Now suppose that there exists z0 � U such that 
0

0
| | | |
max | ( ) | | ( ) | 1
z z

w z w z
�

� � , then by

Jack’s lemma we have z0w�(z0) = �w (z0); (� � 1).

Let w (z0) = ei�(0 � � < 2�) in (12), we get after setting z = z0

2
0 0 0

0 0 0

( ( , ) ( )) ( , ) ( )
1

( ( , ) ( )) [ ( ) (1 ) ] ( , ) ( )
p p

p p

z L a c f z pL a c f z

Bz L a c f z Bp A B p L a c f z

� �
�

� � � � � �

=
2

( ) [( ( ) (1 ))]
1

[ ( ) (1 )]

i

i

p a aB p A B e

a aB B p A B e

�

�

� � � � � � � � �
� � � � � � �

�
2

[ ( ) (1 )]
1

[ ( ) (1 )]

i

i

a aB p A B e

a aB p A B e

�

�

� � � � � � �
�

� � � � � � �

=
2

2 (1 cos ) [ ( 1) ( ) (1 )]
0

| [ ( ) (1 )] |i

a B p A B

a aB p A B e �

� � � � � � � �
�

� � � � � � �
,

since ( ) (1 )
1

p A B
Ba � � �

�� .

This is a contradiction with our hypothesis that f � Ka + 1, c (p; A, B, �), then | w (z) | < 1,
(z � U) and we have f � Ka, c (p; A, B, �).

Theorem 2.2: Let f (z) � Ka, c (p; A, B, �), then g (z) definedd by

Lp (a, c) g (z) = 
1/

1

0
[ ( , ) ( )]

z k
pk

k p
t L a c f t dt

z

�
� �� �� �

� �
� �

� (13)

where � > 0, R (k) � p�� �1 [ ( ) (1 )]
1

B A B
B

� � � � �
�  > 0, p � IN is also in the class Ka, c (p; A, B,  �).
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Proof: Consider f (z) � Ka, c (p; A, B, �) and by using (13), we have

[Lp(a, c) g (z)]� = 1

0
[ ( , ) ( )]

z k
pk

k p
t L a c f t dt

z
� �� �

� . (14)

After differentiating logarithmically both sides of (14), we get

( ( , ) ( ))

( , ) ( )
p

p

z L a c g z

L a c g z

�
 = 

( , ) ( )

( , ) ( )
p

p

L a c f zk k p
L a c g z

�
� �� �

� � � �
� � � �� �

. (15)

Let

( ( , ) ( ))

( , ) ( )
p

p

z L a c g z

L a c g z

�
 = 

1 [ ( ) (1 )] ( )
1 ( )

B A B w z
p

Bw z
� � � � �� �

� � ��� �
. (16)

then from (15) and (16), we get

( ( , ) ( )) ( )( ( , ) ( ))

( ( , ) ( ))
p p

p

k L a c f z p k L a c f z

L a c g z

� �

�

� � �
 = 

[ ( )(1 )] ( )

1 ( )

p p B A B w z

Bw z

� �� � � ��
�

. (17)

Differentiating both sides of (17), we have

( ( , ) ( ))

( , ) ( )
p

p

z L a c f z

L a c f z

�
 = 

(1 [ ( )(1 )] ( ))

(1 [ ( )(1 )] ( )) (1 ( ))

p B A B w z

p B A B w z k Bw z

� � � � �
� � � � � � � �

1 [ ( )(1 )] ( ) ( ) [ ( )(1 )] ( )
1 ( ) 1 [ ( )(1 )] ( )

B A B w z Bzw z B A B zw z
k p

Bw z B A B w z

�� ��� � � �� � � � ��� �
� �� �� �� �� � � � ��� �� �

. (18)

By making necessary changes in previous theorem and suppose that 
0| | | |

max | ( ) |
z z

w z
�

 =

| w (z0) | = 1, we find z0w�(z0) = �w (z0) by applying Jack’s Lemma, where z0 � U, � � 1 and
� � IR. Let w (z0) = ei�(� � p), in (18), we have

2
0 0 0

0 0 0

( ( , ) ( )) ( , ) ( )
1

( ( , ) ( )) [ ( ) (1 )] ( , ) ( )
p p

p p

z L a c f z L a c f z

Bz L a c f z p B A B L a c f z

� �
�

� � � � � �

=
2

[ ( ( ) (1 )]
1

[ ( ( ) (1 )]

i

i

k p Bk p B A B e

k p Bk B p B A B e

�

�

� � � � � � � � � � � �
� � � � � � � � � � �

=
2

( )

|( ) [ ( ( ) (1 )] |i

h

k p Bk B p B A B e �

�
� � � � � � � � � � �
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where

h (�) = �2(1 – B2) + 2� [(1 + B2) k – �p (1 + B (B + (A – B)(1 – �)))]

+ 2��[2BRe (k) – p� (2B + (A – B) (1 – �))] cos �

where

0 � � < 2�, –1 � B < A � 1, � � 1, 0 � � < 1.

By hypothesis we have Re (k) � p�� �1 [ ( ) (1 )]
1

B A B
B

� � � � �
�  thus h(0) � 0 and h (�) � 0 which

shows that h (�) � 0 (0 � � < 2�). So we get contradiction with our hypothesis. Therefore, |
w (z) | < 1, z � U, then g (z) � Ka, c (p; A, B, �).

3. COEFFICIENT BOUNDS

To investigate the coefficient bounds and some other results we assume that a > 0, c > 0
and A + B � 0, (–1 � B < A � 1).

Theorem 3.1: If f (z) � T*(p) definedd by (6), then f � K+
a, c (p; A, B, �) if and only if

n p

�

�
� [(1 – B) (n + p) – p (A – B) (1 – �)] 

( )
| |

( )
n p

n
n p

a
a

c
�

�

 � p (1 – �) (A – B). (19)

The result is sharp for f (z) given by

f (z) = 
( )(1 )( )

(1 ) (1 ( )(1 )) ( )
n pp n

n p

cp A B
z z

n B p B A B a
��

�

� � �� �
� � �� � � � � � �� �

, n = p, p + 1, ... (20)

Proof: Let f � K+
a, c (p; A, B, �) given by (6), then

( ( , ) ( )) ( , ) ( )

( ( , ) ( )) ( ( )(1 )) ( , ) ( )
p p

p p

z L a c f z pL a c f z

Bz L a c f z p B A B L a c f z

� �
� � � � � �

= 

( )
( ) | |

( )
1

( )
( )(1 ) ( ( ) ( )(1 )) | |

( )

n p n p
n

n p n p

n p n p
n

n p n p

a
n p a z

c

a
p A B B n p p A B a z

c

�
� �

� �

�
� �

� �

�

�
� � � � � � � � �

�

�
.

choose z to be real and z � 1–, we obtain

( ) ( )
( )| | ( )(1 ) ( ( ) ( )(1 )| |

( ) ( )
n p n p

n n
n p n pn p n p

a a
n p a p A B B n p p A B a

c c

� �
� �

� �� �

� � � � � � � � � � �� �
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then,

n p

�

�
� [(1 – B)(n + p) – p (A – B) (1 – �)] 

( )
| |

( )
n p

n
n p

a
a

c
�

�

 � p (A – B)(1 – �).

Conversely, assume that the inequality (10 ) holds true then

( ( , ) ( )) ( , ) ( )

( ( , ) ( )) ( ( )(1 )) ( , ) ( )
p p

p p

z L a c f z pL a c f z

Bz L a c f z p B A B L a c f z

� �
� � � � � �

� 

( )
( ) | | | |

( )
1

( )
( )(1 ) ( ( ) ( )(1 )) | |

( )

n p
n n

n p n p

n p
n

n p n p

a
n p a a

c

a
p A B B n p p A B a

c

�
�

� �

�
�

� �

�

�
� � � � � � � � �

�

�

(z � U; z � �; | z | = 1).

Here, by Maximum Modulus Theorem we get f (z) � K+
a, c (p; A, B, �). Finally, we

observe that the function given by (20) is an extremal function.

Next we investigate the extreme points of the class K+
a, c (p; A, B, �).

Theorem 3.2: f (z) � K+
a, c (p; A, B, �) of the form (6) if and only if it can be expressed

of the form

f (z) = 
1n p

�

� �
� �n fn (z), �n � 0, n = p – 1, p, ... (21)

where fp – 1 (z) = z– p, fn (z) = z– p + 
( )(1 )( )

(1 ) (1 ( )(1 )) ( )
n p

n p

cp A B n
n B p B A B a z�

�

� � �
� � � � � � � , n = p, p + 1, ... and

1

1n
n p

�

� �
� �� .

Proof: Let f (z) of the form (21), then

f (z) = 1

(1 )( ) ( )

(1 ) (1 ( )(1 )) ( )
n pp np

p n
n p n p

p A B c
z zz

n B p B A B a

� ���
�

� �

� � �� �
�� � � � �� � � � � � �� �� �

�

=
(1 )( ) ( )

[ (1 ) (1 ( )(1 ))] ( )
n pp n

n
n p n p

p A B c
z z

n B p B A B a

�
��

� �

� � �� �
� �� �� � � � � � �� �� �
�

then by Theorem 3.1 we have f(z) � K+
a, c (p; A, B, �).
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Conversely, let f (z) � K+
a, c (p; A, B, �) where f (z) given by (6) then

[ (1 ) (1 ( )(1 ))] ( )
| | 1

(1 )( ) ( )
n p

n
n p n p

n B p B A B a
a

p A B c

�
�

� �

� � � � � � �
�

� � ��

so we obtain 1 1p n
n p

�

�
�

� � � ��  where

�n = 
[ (1 ) (1 ( )(1 ))] ( )

| |, , 1, ...
(1 )( ) ( )

n p
n

n p

n p B A B a
a n p p

p A B c
�

�

� � � � � � � �
� �

� � �

then

f (z) = 1
1

( ) ( )p
p n n n n

n p n p

z f z f z
� �

�
�

� � �
� � � � �� � .

Theorem 3.3: Let fi (z) = z– p +
n p

�

�
�  | an, i | z

n for i = 1, ..., belongs to K+
a, c (p; A, B, �) then

G (z) = 
1i�

�
�

gi fi (z) � K+
a, c (p; A, B, �) where 

1i�
�
�

gi = 1.

Proof: By Theorem 3.1 and for every i = 1, ..., � we have

n p

�

�
� [(1 – B) (n + p) – p (A – B) (1 – �)] ,

( )
| |

( )
n p

n i
n p

a
a

c
�

�

 � p (A – B) (1 – �)

then

G (z) = ,
1

| |p n
n ii

n pi

z a zg
�

�

��

� �
�� �

� �
��

�

 = Z–P+ ,
1

| | n
i n i

in p

g a z
�

��

� �
� �
� �
��
�

Since

,
1

( )(1 )( ) ( )(1 )
| |

( )(1 ) ( )
n p

i n i
in p n p

aB n p p A B
g a

P A B c

�
�

�� �

� �� � � � � �� �
� �� �� � �� � � �
��
�

= ,
1

( )(1 )( ) ( )(1 )
| |

( )(1 ) ( )
n p

n ii
n pi n p

aB n p p A B
ag

P A B c

�
�

�� �

� �� � � � � �� �
� �� �� �� � �� �� �
��

�

.
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4. NEIGHBOURHOODS

Definition 4.1: Let a > 0, c > 0, –1 � B < A � 1 and � � 0, we defined �-neighbourhood of

a function f � T*(p) and denote by N��( f ) contains all functions g(z) = z– p + 
1n

�

�
� bn z

n–p � T*(p)

satisfying

1

( )[(1 | |) ( )(1 )]
| |

( )(1 ) ( )
n

n n
n n

aB n p A B
a b

P A B c

�

�

� � � � �
� � �

� � �
� . (22)

Theorem 4.1: Let f � Ka, c (p; A, B, �), then N��( f ) � Ka, c (p; A, B, �) for every � � �

with | � | < �, � > 0, ( )
1

pf z z�� �
� �  � Ka, c (p; A, B, �).

Proof: Let g � Ka, c (p; A, B, �), then by (4) we have

( ( , ) ( )) ( , ) ( )

( ( , ) ( )) ( ( )(1 )) ( , ) ( )
p p

p p

z L a c g z pL a c g z

Bz L a c g z p B A B L a c g z

� �
� �

� � � � � �
(23)

(� � �; |�| = 1), equivalently we must have �

��
� � *( )( )

0,
p

f z
z U

z
, where

��(z) =
1

p n p
n

n

z d z
�

� �

�
� �

=
1

(1 ) ( )(1 ) ( )
( )(1 ) ( )

p n pn

n n

n B p A B a
z z

p A B c

�
� �

�

� � � � � � �� �
� � �� � � �� �
� .

So that

( )(1 | |) ( )(1 )
| | , , 1, ...

( )(1 ) ( )
n

n
n

an B p A B
d n p p

p A B c
� � � � �

� � �
� � �

·

Hence we have � �� �( )
1

0* ( )
pp f z zz z

�� �
� �

�� , then

1 ( * ) )
0

1 1p

f z

z�

� �
� �

� � � �
(24)

then

1 ( * )( ) 1 1 ( * )( )( * )( )
1 1 1 11 1p pp

f z f zf z

z zz� ��

�� � � ��� � � �
� � � � � � � �� � � �
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to hold (24) we must have ( * )( )1
1 1 0p

f z

z�

� �
� � � �� �  then ( * )( )

p

f z

z�

� � � . Now

�

� �
�

� � �� � � � ��
1

( * )( ) (( ) * )( ) n
n n np p

n

g z f g z
a b d z

z z

1

( )(1 | |) ( )(1 )
( )(1 ) ( )

n
n n

n n

an B p A B
a b

p A B c

�

�

� � � � �
� � ��

� � �
�

thus ( * ) ( ) 0p

g z

z�

� �  and g � Ka, c (p; A, B, �).

Theorem 4.2: Let f � T*(p) and let s1(z) = z– p and s��(z) = z– p + 
1

1n

�

�
�
�

an z
n – p; � = 2, 3, ...,

suppose that 
1n

�

�
� dn | an | � 1 where

dn = 
( )(1 | |) ( )(1 )

( )(1 ) ( )
n

n

an B p A B

p A B c

� � � � �
� � �

(i) if a > 0, c > 0 then f � Ka, c (p; A, B, �), and

(ii) if a > c > 0 then

( ) ( )1
Re 1 , Re , ,

( ) ( ) 1

f z s z d
z U IN

s z d f z d

� �
� � � � �� � �� �

� �

� � �

� .

Proof: It is clear that N1(z
– p) � Ka, c (p; A, B, �), since

1

p pz z� �� �� �
� �

� �� �
 = z– p � Ka, c (p; A, B, �)

then we have f � Ka, c (p; A, B, �), also dn + 1 > dn > 1 thus 
1

1

1n n
n n

da a
� �

� �
� �� �

�

�
�

. Consider

G(z) = � �( ) 1
( )

1f z
ds zd � ���� ���

�  and use the last expression we get

1

( ) 1
1

( ) 1
2

n
n

n n
n n

d a
G z
G z

da a

�

�
� �

� �

�
� �

�
� �

�

� �

�
�

�
�

then (i) is complete, to prove (ii).
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Let F(z) = ( )
( ) 1(1 ) s z d

f z dd �
� �� �� �
� �

�
�  so we have

1

1

(1 )
( ) 1

1
( ) 1

2 2 (1 )

n
n

n n
n n

d a
F z

F z
da a

�

�
� �

� �

�
�

� �
�

� � �

�

� �

�
�

�

�
�

then the proof is complete.

Definition 4.2: Let f (z) � T*(p) given by (6), then �-neighbourhood of f and is denoted

by N+
� ( f ) contains all functions g (z) = z– p + 

n p

�

�
� bn z

n satisfying

( )(1 )( ) ( )(1 )
( )(1 ) ( )

n p
n n

n p n p

aB n p p A B
a b

p A B c

�
�

� �

� � � � � �
� ��

� � �� ,

where a > 0, c > 0, –1 � B < A � 1, 0 � � < 1, � � 0.

Theorem 4.3: If f � K +
a + 1, c (p; A, B, �) then N+

� ( f ) � K +
a, c (p; A, B, �) where A + B � 0

and � = 2
+ 2

p
a p . The result is sharp.

Proof: By using the same procedure as in the proof of Theorem 4.1, with

( )h z  = 
( )(1 )( ) ( )(1 )

( )(1 ) ( )
n p np n p

n
n p n p n p

aB n p p A B
zz e z z

p A B c

� � �� �

� � �

� �� � � � � � � �
� � � � �� � � �� �� �
� �

where A + B � 0 and f � K +
a + 1, c (p; A, B, �), we have ( * ) ( ) 2

+ 2p

f h z p
a pz� � � � .

For sharpness, let

2

2

( )( )(1 )
( )

2 2 ( )(1 ) ( 1)
pp p

p

cA B
f z z z

B A B a
� � � �� �� � � �� � � � � �� �

 � K +
a + 1, c (p; A, B, �)

and

2 2

2 2

( ) ( )( )(1 ) ( )(1 )
( )

2 2 ( )(1 ) ( 1) 2 2 ( )(1 ) ( )
p pp p

p p

c cA B A B
g z z z

B A B a B A B a
� � ��� � � � � � �

� �� � � �� � � � � � � � � � �� �� �

where �� > � = 2
+ 2

p
a p , we get g (z) � N +

� ( f ) but not in K +
a + 1, c (p; A, B, �).
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