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THE ANALYSIS OF VALUE AT RISK FOR
PRECIOUS METAL RETURNS BY APPLYING
EXTREME VALUE THEORY, COPULA MODEL AND
GARCH MODEL

Kritsana Khemawanit' and Roengchai Tansuchat?

Abstract: This paper examines Value at Risk by applying GARCH-EVT-Copula model
and finds the optimal portfolio for the precious metal. The 4,077 precious metal price
observations are collected from 3 January 2000 to 18" August 2015, traded in the London
Metal Exchange, and all prices are traded in US dollars per troy ounce. First, we estimate
the coefficients of the ARMA-GARCH equations based on the student t distribution.
Second, we extract the filtered residuals from such estimation and then apply the extreme
value distribution (EVT) for fitting the residual tails in order to model marginal residual
distributions. Third, we use multivariate Student t-copula to construct the precious metal
portfolio risk dependence structure. Finally, we simulate 10,000 portfolios and estimate
value at risk (VaR) and Expected shortfall (ES). The empirical results displayed the VaR
and ES values for an equally weighted portfolio of four precious metals. In addition, we
found that the optimal investment focuses on the gold and silver investment due to high
investment proportion, whereas palladium and platinum have little investment proportion.

Keywords: Value at Risk, Precious metal price, GARCH-EVT-Copula, Portfolio
Optimization
JEL Classification: C22, G11, G17

1.INTRODUCTION

Precious metals has been attracted great attention since it has never been valueless
like gold. It could provide the investor a “safe haven” in terms of economic
uncertainty and financial instability and also serve as ahedge against an unexpected
inflation. Moreover, it is described as a proven asset diversifier when they included
in an investment portfolio, they can reduce the overall risk of investment portfolio.

Even though precious metal is a good asset to hedge from many poor situations,
precious metal price still has uncertainty situation in 2014. Precious metals prices
can be shown in figure 1, representing the average percent change of each precious
metal price in 2014. This figure illustrates that silver prices lost more than 19%,
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platinum prices decreased by more than 11%, palladium prices increased by
around 11% and gold prices lost only 1.4% compared with the previous year. This
precious metal prices demonstrate the prices from the first half through the second
half of the year. For the first half of 2014, the figure shows strength of precious
metal prices with increased rate of 7% to 17% due to a neutral US dollar and the
stability of demand for precious metals. In the second half of 2014, precious metal
lost between 5% and 25%, of palladium and silver respectively. This had a huge
impact throughout the year. The main reason for this weakness in the second half
of 2014 was US dollar strength. However, silver, gold and platinum had a strong
start to 2015.

Figure 1: Precious metal prices
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Source: Thomson Reuter Data Stream, 2015.

Value at Risk (VaR) estimation is a way to measure risk. It is a financial market
instrument for measurement and evaluation of the portfolio market risk associated
with financial asset and commodity price movements. It represents in the form
of the expected worst loss of a portfolio over a given time horizon at a given
confidence level. There are three approaches that are used to estimate portfolio
VaR, such as Historical Simulation (HS), Variance Covariance (VC), and Monte
Carlo Simulation approaches.
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There are many examinations about VaR which have a difference way in the
applying to estimate VaR and in each of these work, there are advantages and
disadvantages of different. For the literature review, we show the works that
apply VaR with other model. Hammoudeh et al. (2011) examines the volatility
and correlation dynamics in price returns of gold, silver, platinum and palladium
using Value at Risk estimation. The results are useful for participants in the global
financial markets that are needed for investment in precious metals remains
high volatility. Demiralay and Ulusoy (2014) predict the Value at Risk of four
major precious metals (gold, silver, platinum, and palladium) with FIGARCH,
FIAPARCH and HYGARCH or long memory volatility models, under normal
and student-t innovations” distributions. The results showed that these models
perform well in forecasting a one-day-ahead VaR and have potential implications
for portfolio managers, producers, and policy makers. Chen and Giles (2014)
analyze the risk of investment in gold, silver, and platinum by applying Extreme
Value Theory and adopted Value at Risk and Expected Shortfall. These measures
are obtained by fitting the Generalized Pareto Distribution, using the Peaks-Over-
Threshold method, to the extreme daily price changes. The results show that silver
is the most risky metal among the three considered and platinum is riskier than
gold.

Bob (2013) uses VaR to estimate portfolio applying an approach combining
Copula functions, Extreme Value Theory (EVT), and GARCH models. The result
in this application has a better performance than a general estimation. Besides,
Ghorbel and Trabelsi (2009) used ARMA-GARCH-EVT Copula approach to
estimate VaR in multivariate financial data. They found that their approach can
provide a better dependence structure in the multivariate data and obtain accurate
VaR estimates. Leonard (2007), otherwise stated that the risk measure of VaR is
not an identity method in estimation because its accuracy depends on the ability
to analyze the true portfolio loss distribution, and the models of estimation such as
Historical Simulation or Variance-Covariance cannot give the accurate estimates
with high confidence level. Although Monte Carlo simulation has the advantages
in modelling the loss distribution and potential in accurate estimates, it is hard to
compute for portfolios that have a high number of risk factors.

Further, Artzner et al. (1997) states that VaR estimate cannot tell anything
about the potential size of the loss and it has some failing. They propose “Expected
Shortfall (ES)” to measure the expected loss given which the loss exceeds VaR. This
ES has a closely relationship with VaR. Yamai and Yamai (2002) illustrated that ES
is easily decomposed and optimized while VaR is not and they also showed that
ES requires a larger sample size than VaR for the same level of accuracy. Therefore,
this paper studies the risk that occurs in the investing precious metals which
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focus on gold, silver, platinum, and palladium using VaR estimate and Expected
Shortfall (ES). This paper also estimates VaR and ES by applying with ARMA-
GARCH models, Extreme Value Theory, and Copula model for more efficiency
and precision. Moreover, there are also find portfolio optimization based on ES,
and compare portfolio to choose optimal portfolio because of commercial banks
and individual investors, one of the major concerns is to minimize the risk of the
investment portfolio.

In this paper is the examining of risk in precious metal portfolio, which has the
analysis in key situation in the past along with the literature review of the model
used and the circumstances. For section 2 is the review of each methodology.
Section 3 is the explaining of data, descriptive statistics, and unit root tests. Section
4 describes the empirical result estimates about the risk; there are analysis in VaR
and ES, optimal portfolio, implications for optimal hedge ratios, and optimal
portfolio weights. Finally, Section 5 provides some concluding remarks.

2.METHODOLOGY

2.1 Marginal Distribution

Bollerslev (1986) proposes the Generalized Autoregressive Conditional Heteroske-
dasticity (GARCH), which in this paper we use GARCH model for precious metal
price to obtain the marginal distribution. We use ARMA (p,q) with univariate
standard GARCH (1,1) form which model is defined as follows:

)4 q
B=pA D Br D WE L +E, (1)
i=1 i=1
R )
k /
ol =@+ ael,+>. oL, 3)
i=1 i=1

where ¢, is the innovation at time t. v,is a sequence of i.i.d. random variables with

k ]

mean 0 and variance 1. >0, o, B,>0 and z a + Z B <1 1In this case, z,is assumed
i=1 i=1

to be t distribution because financial data usually have a heavy tail distribution.
The o, and B, are known as ARCH and GARCH parameters, respectively.
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In order to better estimate the tails of the distribution, we applied EVT to the
residuals that we obtained from the ARMA-GARCH model. We use the generalized
Pareto distribution (GPD) estimate to model residuals for the upper and lower
tails and Gaussian kernel estimate for the remaining part. The CDF of generalized
Pareto distribution given by:
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where § is the shape parameter, B is the scale parameter, and m, (m,) is the lower
(upper) threshold. We have to choose one approach between high precision
and low variance, which the critical step is the choice of the optimal threshold.
Following DuMouchel (1983), we chose the exceedances to be the 10th percentile
of the sample.

2.2 Copula Model

Copula is the function that we use to separate the marginal distribution of two or
more than two random variables. So if we can separate the marginal distribution
of that random variables => we can generate the parameter of that copula. That
parameter is very important for model estimation and also important to find the
measurement of dependency.

If we know copula parameter => we can generate Kendaul Tau, Spearman Rho,
Low Tail, Upper Tail depend on which copula function we use.

Two copula families:

1. Elliptical Copula = Gaussian and Student-t (used for symmetric tail
dependency)

2. Archimedean Copula = Frank, Gumbel and Clayton (used for asymmetric
tail dependency)

The Copula model is a way to construct a joint distribution function, following
Sklar’s Theorem (1973), which is the most important theorem about copula
functions because it is used in many practical applications.
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For the theorem, let F be an n-dimensional c.d.f. with continuous margins F,
F,...F . Then it has the following unique copula representation

F(x,,Xpe0%,) = C(F (5, Fy (35, F (5,)) )

From Sklar’s Theorem, we see that, for continuous multivariate distribution,
the univariate marginal distribution and the multivariate dependence structure
can be separated. Assuming that the dependence structure does not change with
time, we thus use t copula to estimate the joint distribution. So in this section, we
applied f copula

For the n-variable t Copula, lett ,, be the standardized multivariate t distribution
with correlation matrix X and v degrees of freedom. The ¢ Copula can be defined
as follows:

CSt (ult sUppsees Uy ) = v,Z (t; (ulz )’ t; (u2t )’ RE) tl’/ (unt )) (6)

where t/ denotes the inverse of the Student’s t cumulative distribution function.

From equation (4) we know that the marginal distribution is F(z). Based on the
historic data {z,, z,,...,z }, t =1, 2, ..., T and the given degree of freedom v, we set:

ut = (ult’u2t"">unt) = (Fi (th)’ F‘Z (Zzt)""’ F;’L(Znt))
G =) (uy, ), 1, (uy, )1, (1))
Therefore we have C*(u,) =t ,.(&t). The parameter matrix X is also estimated

using the MLE method which is the same as the Gaussian Copula, and it can be
calculated as follows:

?)

Stepl: The initial matrix is the correlation coefficient matrix of multivariate

A 1<
normal Copula function estimated from 2= ?Z /51 (Gaussian Copula).
t=1

Step2: We can get the correlation coefficient matrix flm of multivariate t Copula
through the following iterative calculation method:

- 1(v+n) & &C)
z,m:?( j-z Co— k=12,
R Eaeb g ®)
14

Step 3: Repeat the above process until ZAM = in, so using MLE we can get the
correlation coefficient matrix ¥ of t Copula which can be =%, .
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2.3. Simulation Algorithm and Portfolio Risk Analysis

2.3.1 Simulating returns via t Copula

In order to simulate return via estimated t copula, stepl: for Y. derived from
equation (8) we use Cholesky decomposition to get X=A'A;

Step 2: Generate m random vectors which are independently and identically
distributed, suchasx=(x,, x,,..., x,)’, x, N(0,1). Let y = A’x, then we produce random
vector s, subject to Chi-square distribution and independent of x. Then we set:

2= (F 0 NS TV (B @y INS TV (B (B9, /N5 TV))) where F), i
=1,2,..., nis the inverse of distribution of F, in equation (4);

Step 3: Repeat the above step M times, we can get the vector (z,,, 2y,---2,,) , M

=1,2...M. Then restoring it into equation (1), (2), and (3) we can get M returns at
time t+1. The returns residuals” joint distribution is this t Copula. The returns can
be deﬁned by 14 er" o rnm’), = (Hl + Zlmal T+ H2 + 2277102 T+17°"° "lun+ anan,TH),;

2.3.2 Value at Risk and Expected Shortfall

In order to analyze the risk, we calculate the empirical VaR and ES of an eqully
weighted portfolio with 4 assets. The equations are follows:

Min ES=E[rlr<r ]

Subject to r=w][

= (M

7’.(1,t+1) + r(2,t+1) + r(3,t+1) + r(4,t+])]

P |

WS W, S Wy =W, =
0<w,<1,i=1234

where r_is the lower a- quantile and r, +1 is the return on individual asset at time

t+1

2.3.3 Portfolio Optimization with Minimum Risk

From the above section, we can estimate the VaR and ES (or CVaR) of equally
weighted portfolio. In this part, we use the Monte Carlo simulation with estimated
multivariate t copula to generate N sample size. The optimal portfolios weights of
the selected assets then are constructed under minimize expected shortfalls with
respect to maximize returns, which can be given by:

Min ES=E[rlr<r ]

Subject to r =w w w w

1r(l,f+l) * Zr(Z,t+1) + 3r(3,t+1) + 4r(4,t+l)

W+ w,Tw,+w,+ 1

O<w.<1,i=1234
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where r_is the lower a- quantile and 7, +1 is the return on individual asset at time
t+1.

3.DATA

In the first state, we use the precious metal prices (secondary data) to calculate the
natural log returns which are defined as r= In (Pi,j/Pi,j—l) where P, is the i metal
price at time j, 7, is the i" log return of metal price at time j, and i indicated the "
precious metal price. The descriptive statistics is shown in table 1

In table 1, it is clear that mean of each precious metal variable is positive by
the highest mean returns is gold (0.00033), the lowest mean return is palladium
(0.000067), and the standard deviations in palladium is highest (0.0215) and in
gold is lowest (0.0113). For the value of skewness and kurtosis in all of the precious
metal return is not equal to zero and have excess kurtosis, respectively. So these
imply that the distribution of metal returns are fatter tail instead of normal
distribution. Moreover, Jaque-Bera test, which is the normal distribution test of
return series, rejects the null hypothesis, thus the return series of precious metal
price is non-normal distribution. The Augmented Dickey-Fuller (ADF), Phillips
and Perron (PP), and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests are applied
to check unit roots in the series. Unit root test for each variable have a statistical
significance level of 0.01. This means that all of precious metal returns is stationary
characteristics. Therefore, these variables can be used to estimate ARMA-GARCH
model in the next step.

4. EMPIRICAL RESULT

41 MARGINAL MODEL RESULT

Table 2 illustrates the coefficient for the ARMA(p,q)-GARCH(1,1) with normal and
student t distribution for each precious metal price return series. The optimum lag
lenght for ARMA(p,q)-GARCH(1,1) is selected by the minimum value of Akaike
information criteria (AIC) and Bayesian information criterion (BIC) information.
The estimated equation of gold and palladium are ARMA(3,2)-GARCH(1,1), while
platinum and silver is ARMA(1,1)-GARCH(1,1) and ARMA(5,3)-GARCH(1,1),
respectively. In addition, the coefficient of ¢ distribution for each equation is
statistically significant at 1% in most cases, meaning that the assumption of ¢
distribution for ARMA-GARCH estimation is reasonable.

From the estimate of ARMA-GARCH result, the standardize residual of each
precious metal return series are obtained. EVT is then applied to those residuals
which GPD specially is for tail estimation. We choose the exceedances to be the 10th
percentile of the sample for the upper and lower tail of the residual distribution
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of the residuals (see Dumouchel, 1983) because of the appropriateness to choose
10th percentile in the generalize Pareto model and the same biases occurred as in
the stable law analysis. We assume that excess residuals over threshold follow the
GPD and use the Gaussian kernel estimate is for the remaining part. The parameter
estimation for each precious metal’s residuals is demonstrated in Table 3.

Table 3
Parameter estimation for each precious metal’s residual.

Gold Palladium Platinum Silver
Threshold m, -0.0170 -0.0325 -0.0211 -0.0297
& 0.1572 0.0747 0.1589 0.1644
B, 0.0068 0.0160 0.0090 0.0126
Threshold m, 0.0187 0.0334 0.0215 0.0302
& 0.1422 0.0900 0.2582 0.2027
B 0.0081 0.0176 0.0109 0.0171

42ESTIMATE COPULA RESULT

After obtaining the parameters of GPD and the residuals z, 1=1,234,t =
1,2,...,T, we substitute z, into equation (4) and get the marginal distribution u, = f
(z)). According to the parameter estimation method in Section 2.1, we can get the
parameters of Copulas that is the correlation matrix X of student t Copula and
degree of freedom, v, demonstrated in Table 4.

Table 4
Empirical t copulas parameters (p)
Precious Metal GARCH-t EVT Copula
Gold Palladium Platinum Silver
Gold 1.00000 0.35901 0.45797 0.46487
Palladium 0.35901 1.00000 0.63867 0.46504
Platinum 0.45797 0.63867 1.00000 0.54121
Silver 0.46487 0.46504 0.54121 1.00000

v="7.2777



1022 » Kritsana Khemawanit and Roengchai Tansuchat

4.3 Portfolio Risk Analysis

In this paper, we focused on the student ¢ copulas, and applying the simulation
algorithm described in Section 2.3 above, we can simulate the returns at time #+1
based on correlation structure specified in student t Copula. The calculated VaR
and ES of the portfolio with an equally weighted portfolio of four precious metals
(Gold, Palladium, Platinum, and Silver), showed in Table 5.

In Table 5 shows the estimated VaR and ES at level of 1%, 5% and 10% under
the equally weighted assumption. In period t + 1, the estimated ES are higher than
VaR and converges to -2.50, -3.28 and 5.56 at 10%, 5% and 1% level, respectively.

Table 5
Value at risk equally weighted portfolios

Expected Value (GARCH-t EVT Copula)

Portfolio

1% 5% 10%
VaR -3.902% -2.087% -1.449%
ES -5.557% -3.283% -2.503%

Figure 2 shows the result of the efficient frontier of the portfolio under different
expected return at given significant level of 5%, which come from the optimized
portfolio based on mean-CVaR (ES) model. This result, we applied the Monte
Carlo simulation to simulate a set of 10,000 samples and to estimate the expected
shortfall of an optimal weighted portfolio.

For the discussion above, we focused on estimating the VaR and CVaR of
an equally weighted portfolio. However, for commercial banks and individual
investors, one of the major concerns is to minimize the risk of the investment
portfolio. In order to address this concern, we can find the optimal portfolio weight
that minimizes the portfolio risk under minimize expected shortfall with respect to
maximize returns. The result is shown in Table 6. This result illustrate that most of
investment proportion is gold and silver, whereas palladium and platinum have
little investment proportion.

As can be seen in table 6 that portfolio one to six focus on gold, while the
portfolio seven to ten focus on silver which in each portfolio will provide the
different return on each one. However, in general, portfolio 10 would provide
the maximum return, which should be the one to invest on. In figure 2, each plot
in this figure illustrates each portfolio. First plot show that low risk provide low
return. It means that the more return, the more risky it will be. For the suggestion,
for risk-averse investors, they better choose the low return with low risk while
risk-lover investors suit for high risk, high return.
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Figure 2: The efficient frontiers of CVaR under mean
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Table 6
Optimal investment proportion of precious metal
portfolio with minimum risk (ES 5%)
Investment proportion
Portfolios Returns
Gold Palladium Platinum Silver
1 0.728 0.056 0.172 0.045 0.024%
2 0.772 0.090 0.069 0.068 0.025%
3 0.769 0.107 0.000 0.124 0.027%
4 0.698 0.057 0.000 0.245 0.028%
5 0.614 0.018 0.000 0.368 0.030%
6 0.507 0.000 0.000 0.493 0.032%
7 0.381 0.000 0.000 0.619 0.033%
8 0.254 0.000 0.000 0.746 0.035%
9 0.127 0.000 0.000 0.873 0.036%
10 0.000 0.000 0.000 1.000 0.038%
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5.CONCLUSION

In this paper, we focus on the risk that occurs in the investing precious metals
traded at London Metal Exchange. We examine Value at Risk and Expected
Shortfall applying with GARCH-EVT-Copula model. Empirical results showed
that the ARMA-GARCH with student-t distribution is appropriate. Then we
can obtain the parameter estimation for each precious metal’s residual to get the
marginal distribution which has been used in multivariate Student t-copula to
describe the precious metal portfolio risk dependence structure. The estimated VaR
and ES (CVaR) are calculated based on 10%, 5%, 1% levels, respectively. Finally,
the optimal portfolio weight illustrate gold and silver share most of investment
proportion while little share is for palladium and platinum.
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