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PRECIOUS METAL RETURNS BY APPLYING 

EXTREME VALUE THEORY, COPULA MODEL AND 
GARCH MODEL
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Abstract: This paper examines Value at Risk by applying GARCH-EVT-Copula model 
and finds the optimal portfolio for the precious metal. The 4,077 precious metal price 
observations are collected from 3rd January 2000 to 18th August 2015, traded in the London 
Metal Exchange, and all prices are traded in US dollars per troy ounce. First, we estimate 
the coefficients of the ARMA-GARCH equations based on the student t distribution. 
Second, we extract the filtered residuals from such estimation and then apply the extreme 
value distribution (EVT) for fitting the residual tails in order to model marginal residual 
distributions. Third, we use multivariate Student t-copula to construct the precious metal 
portfolio risk dependence structure. Finally, we simulate 10,000 portfolios and estimate 
value at risk (VaR) and Expected shortfall (ES). The empirical results displayed the VaR 
and ES values for an equally weighted portfolio of four precious metals. In addition, we 
found that the optimal investment focuses on the gold and silver investment due to high 
investment proportion, whereas palladium and platinum have little investment proportion.

Keywords: Value at Risk, Precious metal price, GARCH-EVT-Copula, Portfolio 
Optimization

JEL Classification: C22, G11, G17

1. INTRODUCTION
Precious metals has been attracted great attention since it has never been valueless 
like gold. It could provide the investor a “safe haven” in terms of economic 
uncertainty and financial instability and also serve as a hedge against an unexpected 
inflation. Moreover, it is described as a proven asset diversifier when they included 
in an investment portfolio, they can reduce the overall risk of investment portfolio.

Even though precious metal is a good asset to hedge from many poor situations, 
precious metal price still has uncertainty situation in 2014. Precious metals prices 
can be shown in figure 1, representing the average percent change of each precious 
metal price in 2014. This figure illustrates that silver prices lost more than 19%, 
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platinum prices decreased by more than 11%, palladium prices increased by 
around 11% and gold prices lost only 1.4% compared with the previous year. This 
precious metal prices demonstrate the prices from the first half through the second 
half of the year. For the first half of 2014, the figure shows strength of precious 
metal prices with increased rate of 7% to 17% due to a neutral US dollar and the 
stability of demand for precious metals. In the second half of 2014, precious metal 
lost between 5% and 25%, of palladium and silver respectively. This had a huge 
impact throughout the year. The main reason for this weakness in the second half 
of 2014 was US dollar strength. However, silver, gold and platinum had a strong 
start to 2015. 

Figure 1: Precious metal prices
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  Even though precious metal is a good asset to hedge from many poor situations, precious 
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palladium prices increased by around 11% and gold prices lost only 1.4% compared with the 

previous year. This precious metal prices demonstrate the prices from the first half through the 

second half of the year. For the first half of 2014, the figure shows strength of precious metal 

prices with increased rate of 7% to 17% due to a neutral US dollar and the stability of demand 
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for this weakness in the second half of 2014 was US dollar strength. However, silver, gold and 

platinum had a strong start to 2015.  

Source: Thomson Reuter DataStream, 2015.
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Value at Risk (VaR) estimation is a way to measure risk. It is a financial market 
instrument for measurement and evaluation of the portfolio market risk associated 
with financial asset and commodity price movements. It represents in the form 
of the expected worst loss of a portfolio over a given time horizon at a given 
confidence level. There are three approaches that are used to estimate portfolio 
VaR, such as Historical Simulation (HS), Variance Covariance (VC), and Monte 
Carlo Simulation approaches. 
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There are many examinations about VaR which have a difference way in the 
applying to estimate VaR and in each of these work, there are advantages and 
disadvantages of different. For the literature review, we show the works that 
apply VaR with other model. Hammoudeh et al. (2011) examines the volatility 
and correlation dynamics in price returns of gold, silver, platinum and palladium 
using Value at Risk estimation. The results are useful for participants in the global 
financial markets that are needed for investment in precious metals remains 
high volatility. Demiralay and Ulusoy (2014) predict the Value at Risk of four 
major precious metals (gold, silver, platinum, and palladium) with FIGARCH, 
FIAPARCH and HYGARCH or long memory volatility models, under normal 
and student-t innovations’ distributions. The results showed that these models 
perform well in forecasting a one-day-ahead VaR and have potential implications 
for portfolio managers, producers, and policy makers. Chen and Giles (2014) 
analyze the risk of investment in gold, silver, and platinum by applying Extreme 
Value Theory and adopted Value at Risk and Expected Shortfall. These measures 
are obtained by fitting the Generalized Pareto Distribution, using the Peaks-Over-
Threshold method, to the extreme daily price changes. The results show that silver 
is the most risky metal among the three considered and platinum is riskier than 
gold.

Bob (2013) uses VaR to estimate portfolio applying an approach combining 
Copula functions, Extreme Value Theory (EVT), and GARCH models. The result 
in this application has a better performance than a general estimation. Besides, 
Ghorbel and Trabelsi (2009) used ARMA-GARCH-EVT Copula approach to 
estimate VaR in multivariate financial data. They found that their approach can 
provide a better dependence structure in the multivariate data and obtain accurate 
VaR estimates. Leonard (2007), otherwise stated that the risk measure of VaR is 
not an identity method in estimation because its accuracy depends on the ability 
to analyze the true portfolio loss distribution, and the models of estimation such as 
Historical Simulation or Variance-Covariance cannot give the accurate estimates 
with high confidence level. Although Monte Carlo simulation has the advantages 
in modelling the loss distribution and potential in accurate estimates, it is hard to 
compute for portfolios that have a high number of risk factors. 

Further, Artzner et al. (1997) states that VaR estimate cannot tell anything 
about the potential size of the loss and it has some failing. They propose “Expected 
Shortfall (ES)” to measure the expected loss given which the loss exceeds VaR. This 
ES has a closely relationship with VaR. Yamai and Yamai (2002) illustrated that ES 
is easily decomposed and optimized while VaR is not and they also showed that 
ES requires a larger sample size than VaR for the same level of accuracy. Therefore, 
this paper studies the risk that occurs in the investing precious metals which 
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focus on gold, silver, platinum, and palladium using VaR estimate and Expected 
Shortfall (ES). This paper also estimates VaR and ES by applying with ARMA-
GARCH models, Extreme Value Theory, and Copula model for more efficiency 
and precision. Moreover, there are also find portfolio optimization based on ES, 
and compare portfolio to choose optimal portfolio because of commercial banks 
and individual investors, one of the major concerns is to minimize the risk of the 
investment portfolio.

In this paper is the examining of risk in precious metal portfolio, which has the 
analysis in key situation in the past along with the literature review of the model 
used and the circumstances. For section 2 is the review of each methodology. 
Section 3 is the explaining of data, descriptive statistics, and unit root tests. Section 
4 describes the empirical result estimates about the risk; there are analysis in VaR 
and ES, optimal portfolio, implications for optimal hedge ratios, and optimal 
portfolio weights. Finally, Section 5 provides some concluding remarks.

2. METHODOLOGY

2.1 Marginal Distribution 

Bollerslev (1986) proposes the Generalized Autoregressive Conditional Heteroske-
dasticity (GARCH), which in this paper we use GARCH model for precious metal 
price to obtain the marginal distribution. We use ARMA (p,q) with univariate 
standard GARCH (1,1) form which model is defined as follows:

  1 1

p q

t i t i i t i t
i i

r rµ φ ψ ε ε− −
= =

= + + +∑ ∑  (1)

 t t tzε σ=  (2) 

 

2 2 2

1 1

k l

t i i t i t i
i i

σ ϖ α ε β σ− −
= =

= + +∑ ∑  (3)

where εt is the innovation at time t. νt is a sequence of i.i.d. random variables with 

mean 0 and variance 1. ϖ > 0, ai, bi > 0 and 
1 1

1
k l

i i
i i
α β

= =

+ ≤∑ ∑ . In this case, zt is assumed 

to be t distribution because financial data usually have a heavy tail distribution. 
The ai and bi are known as ARCH and GARCH parameters, respectively.
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In order to better estimate the tails of the distribution, we applied EVT to the 
residuals that we obtained from the ARMA-GARCH model. We use the generalized 
Pareto distribution (GPD) estimate to model residuals for the upper and lower 
tails and Gaussian kernel estimate for the remaining part. The CDF of generalized 
Pareto distribution given by: 
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 (4)

where ξ is the shape parameter, b is the scale parameter, and mL (mR) is the lower 
(upper) threshold. We have to choose one approach between high precision 
and low variance, which the critical step is the choice of the optimal threshold. 
Following DuMouchel (1983), we chose the exceedances to be the 10th percentile 
of the sample.

2.2 Copula Model

Copula is the function that we use to separate the marginal distribution of two or 
more than two random variables. So if we can separate the marginal distribution 
of that random variables => we can generate the parameter of that copula. That 
parameter is very important for model estimation and also important to find the 
measurement of dependency. 

If we know copula parameter => we can generate Kendaul Tau, Spearman Rho, 
Low Tail, Upper Tail depend on which copula function we use. 

Two copula families:

1. Elliptical Copula = Gaussian and Student-t (used for symmetric tail 
dependency)

2. Archimedean Copula = Frank, Gumbel and Clayton (used for asymmetric 
tail dependency)

The Copula model is a way to construct a joint distribution function, following 
Sklar’s Theorem (1973), which is the most important theorem about copula 
functions because it is used in many practical applications.
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For the theorem, let F be an n-dimensional c.d.f. with continuous margins F1, 
F2,…Fn. Then it has the following unique copula representation

 1 2 1 1 2 2( , ,..., ) ( ( ), ( ),..., ( ))n n nF x x x C F x F x F x=  (5)

From Sklar’s Theorem, we see that, for continuous multivariate distribution, 
the univariate marginal distribution and the multivariate dependence structure 
can be separated. Assuming that the dependence structure does not change with 
time, we thus use t copula to estimate the joint distribution. So in this section, we 
applied t copula

For the n-variable t Copula, let tν,Σ be the standardized multivariate t distribution 
with correlation matrix Σ and ν degrees of freedom. The t Copula can be defined 
as follows:

 1 2 , 1 2( , ,..., ) ( ( ), ( ),..., ( ))St
t t nt t t ntC u u u t t u t u t uν ν ν νΣ ′ ′ ′=  (6)

where tν́ denotes the inverse of the Student’s t cumulative distribution function.

From equation (4) we know that the marginal distribution is Fi(z). Based on the 
historic data {z1t, z2t,…,znt}, t = 1, 2, …, T and the given degree of freedom ν, we set:

 

1 2 1 1 2 2

1 2

( , ,..., ) ( ( ), ( ),..., ( ))
( ( ), ( ),..., ( ))

t t t nt t t n nt

t t t nt

u u u u F z F z F z
t u t u t uν ν νζ

= =
′ ′ ′=

 (7)

Therefore we have Cst(ut) = tν,Σ(ξt). The parameter matrix Σ is also estimated 
using the MLE method which is the same as the Gaussian Copula, and it can be 
calculated as follows:

Step1: The initial matrix is the correlation coefficient matrix of multivariate 

normal Copula function estimated from 
1

1ˆ
T

t t
tT
ξ ξ

=

′Σ = ∑ (Gaussian Copula).

Step2: We can get the correlation coefficient matrix Σ̂n+1 of multivariate t Copula 
through the following iterative calculation method:

 

1
1

1ˆ 1,2,...1 ˆ1

T
t t

k
t

t k t

n k
T

ζ ζν
ν ζ ζ

ν

+
=

′+ Σ = ⋅ = 
  ′+ Σ

∑
 (8)

Step 3: Repeat the above process until Σ̂n+1 = Σ̂n, so using MLE we can get the 
correlation coefficient matrix Σ of t Copula which can be Σ̂ = Σ̂n.
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2.3. Simulation Algorithm and Portfolio Risk Analysis

2.3.1 Simulating returns via t Copula

In order to simulate return via estimated t copula, step1: for Σ̂ derived from 
equation (8) we use Cholesky decomposition to get Σ̂ = A'A;

Step 2: Generate m random vectors which are independently and identically 
distributed, such as x = (x1, x2,…, xn)’, xi N(0,1). Let y = A’x, then we produce random 
vector s, subject to Chi-square distribution and independent of x. Then we set: 

1
1 1( ( ( / / )),z F t y s ν−=  

1 1
2 2( ( ( ( / / ))),..., ( ( ( / / )))i iF t y s F y sφ ν φ ν− − where F–

i
1, i 

= 1,2,…, n is the inverse of distribution of Fi in equation (4);

Step 3: Repeat the above step M times, we can get the vector (z1m, z2m,…znm)’, m 
= 1,2…M. Then restoring it into equation (1), (2), and (3) we can get M returns at 
time t+1. The returns residuals’ joint distribution is this t Copula. The returns can 
be defined by rT+1 = (r1m, r2m,… rnm,)’ = (µ1 + z1mσ1,T+1, µ2 + z2mσ2,T+1,…,µn+ znmσn,T+1)’;

2.3.2 Value at Risk and Expected Shortfall

In order to analyze the risk, we calculate the empirical VaR and ES of an eqully 
weighted portfolio with 4 assets. The equations are follows:

Min ES = E[r|r ≤ rα]

Subject to  r = w[r(1,t+1) + r(2,t+1) + r(3,t+1) + r(4,t+1)]

w1 = w2 = w3 = w4 = 1–
4

0 ≤ wi ≤ 1, i = 1,2,3,4

where rα is the lower α- quantile and ri,t+1 is the return on individual asset at time 
t + 1

2.3.3 Portfolio Optimization with Minimum Risk

From the above section, we can estimate the VaR and ES (or CVaR) of equally 
weighted portfolio. In this part, we use the Monte Carlo simulation with estimated 
multivariate t copula to generate N sample size. The optimal portfolios weights of 
the selected assets then are constructed under minimize expected shortfalls with 
respect to maximize returns, which can be given by:

Min ES = E[r|r ≤ rα] 

Subject to r = w1r(1,t+1) + w2r(2,t+1) + w3r(3,t+1) + w4r(4,t+1) 

w1 + w2 + w3 + w4 + 1

0 ≤ wi ≤ 1, i = 1,2,3,4
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where rα is the lower α- quantile and ri,t+1 is the return on individual asset at time 
t + 1.

3. DATA
In the first state, we use the precious metal prices (secondary data) to calculate the 
natural log returns which are defined as ri,j = ln (Pi,j/Pi,j–1) where Pi,j is the ith metal 
price at time j, ri,j is the ith log return of metal price at time j, and i indicated the ith 
precious metal price. The descriptive statistics is shown in table 1

In table 1, it is clear that mean of each precious metal variable is positive by 
the highest mean returns is gold (0.00033), the lowest mean return is palladium 
(0.000067), and the standard deviations in palladium is highest (0.0215) and in 
gold is lowest (0.0113). For the value of skewness and kurtosis in all of the precious 
metal return is not equal to zero and have excess kurtosis, respectively. So these 
imply that the distribution of metal returns are fatter tail instead of normal 
distribution. Moreover, Jaque-Bera test, which is the normal distribution test of 
return series, rejects the null hypothesis, thus the return series of precious metal 
price is non-normal distribution. The Augmented Dickey-Fuller (ADF), Phillips 
and Perron (PP), and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests are applied 
to check unit roots in the series. Unit root test for each variable have a statistical 
significance level of 0.01. This means that all of precious metal returns is stationary 
characteristics. Therefore, these variables can be used to estimate ARMA-GARCH 
model in the next step.

4. EMPIRICAL RESULT

4.1 MARGINAL MODEL RESULT 
Table 2 illustrates the coefficient for the ARMA(p,q)-GARCH(1,1) with normal and 
student t distribution for each precious metal price return series. The optimum lag 
lenght for ARMA(p,q)-GARCH(1,1) is selected by the minimum value of Akaike 
information criteria (AIC) and Bayesian information criterion (BIC) information. 
The estimated equation of gold and palladium are ARMA(3,2)-GARCH(1,1), while 
platinum and silver is ARMA(1,1)-GARCH(1,1) and ARMA(5,3)-GARCH(1,1), 
respectively. In addition, the coefficient of t distribution for each equation is 
statistically significant at 1% in most cases, meaning that the assumption of t 
distribution for ARMA-GARCH estimation is reasonable.

From the estimate of ARMA-GARCH result, the standardize residual of each 
precious metal return series are obtained. EVT is then applied to those residuals 
which GPD specially is for tail estimation. We choose the exceedances to be the 10th 
percentile of the sample for the upper and lower tail of the residual distribution 
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of the residuals (see Dumouchel, 1983) because of the appropriateness to choose 
10th percentile in the generalize Pareto model and the same biases occurred as in 
the stable law analysis. We assume that excess residuals over threshold follow the 
GPD and use the Gaussian kernel estimate is for the remaining part. The parameter 
estimation for each precious metal’s residuals is demonstrated in Table 3.

Table 3  
Parameter estimation for each precious metal’s residual. 

Gold Palladium Platinum Silver

Threshold mL -0.0170 -0.0325 -0.0211 -0.0297

ξL 0.1572 0.0747 0.1589 0.1644

βL 0.0068 0.0160 0.0090 0.0126

Threshold mR 0.0187 0.0334 0.0215 0.0302

ξR 0.1422 0.0900 0.2582 0.2027

βR 0.0081 0.0176 0.0109 0.0171

4.2 ESTIMATE COPULA RESULT
After obtaining the parameters of GPD and the residuals zit, i = 1,2,3,4, t = 
1,2,…,T, we substitute zit into equation (4) and get the marginal distribution ui = f 
(zi). According to the parameter estimation method in Section 2.1, we can get the 
parameters of Copulas that is the correlation matrix Σ of student t Copula and 
degree of freedom, ν, demonstrated in Table 4. 

Table 4 
Empirical t copulas parameters (ρ̂)

Precious Metal GARCH-t EVT Copula

Gold Palladium Platinum Silver

Gold 1.00000 0.35901 0.45797 0.46487

Palladium 0.35901 1.00000 0.63867 0.46504

Platinum 0.45797 0.63867 1.00000 0.54121

Silver 0.46487 0.46504 0.54121 1.00000

ν̂ = 7.2777
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4.3 Portfolio Risk Analysis

In this paper, we focused on the student t copulas, and applying the simulation 
algorithm described in Section 2.3 above, we can simulate the returns at time t+1 
based on correlation structure specified in student t Copula. The calculated VaR 
and ES of the portfolio with an equally weighted portfolio of four precious metals 
(Gold, Palladium, Platinum, and Silver), showed in Table 5. 

In Table 5 shows the estimated VaR and ES at level of 1%, 5% and 10% under 
the equally weighted assumption. In period t + 1, the estimated ES are higher than 
VaR and converges to -2.50, -3.28 and 5.56 at 10%, 5% and 1% level, respectively. 

Table 5 
Value at risk equally weighted portfolios

Portfolio
Expected Value (GARCH-t EVT Copula)

1% 5% 10%

VaR -3.902% -2.087% -1.449%

ES -5.557% -3.283% -2.503%

Figure 2 shows the result of the efficient frontier of the portfolio under different 
expected return at given significant level of 5%, which come from the optimized 
portfolio based on mean-CVaR (ES) model. This result, we applied the Monte 
Carlo simulation to simulate a set of 10,000 samples and to estimate the expected 
shortfall of an optimal weighted portfolio. 

For the discussion above, we focused on estimating the VaR and CVaR of 
an equally weighted portfolio. However, for commercial banks and individual 
investors, one of the major concerns is to minimize the risk of the investment 
portfolio. In order to address this concern, we can find the optimal portfolio weight 
that minimizes the portfolio risk under minimize expected shortfall with respect to 
maximize returns. The result is shown in Table 6. This result illustrate that most of 
investment proportion is gold and silver, whereas palladium and platinum have 
little investment proportion.

As can be seen in table 6 that portfolio one to six focus on gold, while the 
portfolio seven to ten focus on silver which in each portfolio will provide the 
different return on each one. However, in general, portfolio 10 would provide 
the maximum return, which should be the one to invest on. In figure 2, each plot 
in this figure illustrates each portfolio. First plot show that low risk provide low 
return. It means that the more return, the more risky it will be. For the suggestion, 
for risk-averse investors, they better choose the low return with low risk while 
risk-lover investors suit for high risk, high return.
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Table 6  
Optimal investment proportion of precious metal  

portfolio with minimum risk (ES 5%)

Portfolios
Investment proportion

Returns
Gold Palladium Platinum Silver

1 0.728 0.056 0.172 0.045 0.024%

2 0.772 0.090 0.069 0.068 0.025%

3 0.769 0.107 0.000 0.124 0.027%

4 0.698 0.057 0.000 0.245 0.028%

5 0.614 0.018 0.000 0.368 0.030%

6 0.507 0.000 0.000 0.493 0.032%

7 0.381 0.000 0.000 0.619 0.033%

8 0.254 0.000 0.000 0.746 0.035%

9 0.127 0.000 0.000 0.873 0.036%

10 0.000 0.000 0.000 1.000 0.038%
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5. CONCLUSION
In this paper, we focus on the risk that occurs in the investing precious metals 
traded at London Metal Exchange. We examine Value at Risk and Expected 
Shortfall applying with GARCH-EVT-Copula model. Empirical results showed 
that the ARMA-GARCH with student-t distribution is appropriate. Then we 
can obtain the parameter estimation for each precious metal’s residual to get the 
marginal distribution which has been used in multivariate Student t-copula to 
describe the precious metal portfolio risk dependence structure. The estimated VaR 
and ES (CVaR) are calculated based on 10%, 5%, 1% levels, respectively. Finally, 
the optimal portfolio weight illustrate gold and silver share most of investment 
proportion while little share is for palladium and platinum.
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