TRIANGULAR NUMBERS IN THE GENERALIZED PELL SEQUENCE AND GENERALIZED ASSOCIATED PELL SEQUENCE

B.Krishna Gandhi \& G. Upender Reddy

Abstract

A positive integer N is called a "Triangular Number" if it is of the form $N=\frac{m(m+1)}{2}$, where m is an integer greater than zero. A positive integer N is called Generalized Triangular Number for any integer m. For a fixed integer $\alpha>0$, a new sequence is called Generalized Pell Sequence $\left\{P_{n}{ }^{(\alpha)}\right\}$ is defined by $\mathrm{P}_{0}^{(\alpha)}=0, \mathrm{P}_{1}^{(\alpha)}=1$ and $P_{n+2}^{(\alpha)}=(\alpha+1) P_{n+1}^{(\alpha)}+\frac{\alpha(3 \alpha-1)}{2} P_{n}^{(\alpha)}$ for $n \geq 0$ and Generalized Associated Pell Sequence $\left\{Q_{n}^{(\alpha)}\right\}$ is defined by $Q_{0}^{(\alpha)}=1, Q_{1}^{(\alpha)}=1$ and $Q_{n+2}^{(\alpha)}=(\alpha+1) Q_{n+1}^{(\alpha)}+\frac{\alpha(3 \alpha-1)}{2} Q_{n}^{(\alpha)}$ for $\mathrm{n} \geq 0$

We proved that there exists Generalized Triangular Numbers in the sequence $\left\{\mathrm{P}_{\mathrm{n}}{ }^{(\alpha)}\right\}$ for $\mathrm{n}=0,1$ and there exists Triangular Numbers in the sequence $\left\{\mathrm{Q}_{\mathrm{n}}{ }^{(\alpha)}\right\}$ for $\mathrm{n}=0,1$ and some other results relative to triangular numbers

INTRODUCTION

It is well known that a positive integer N is called a "Triangular Number" if it is of the form $N=\frac{m(m+1)}{2}$, where m is an integer greater than zero.

2000 Mathematics Subject Classification: 11B37, 11B50.
Key words and Phrases: Triangular Numbers, Generalized Triangular Numbers, Generalized Pell Sequence, Generalized Associated Pell Sequence, Perfect Square.

A positive integer N is called a Generalized Triangular Number for any integer m.

Mc Daniel has shown that 1 is the only triangular number in the Pell sequence $\left\{\mathrm{P}_{\mathrm{n}}\right\}$ is defined by

$$
\begin{equation*}
\mathrm{P}_{0}=0, \mathrm{P}_{1}=1 \text { and } \mathrm{P}_{\mathrm{n}+2}=2 \mathrm{P}_{\mathrm{n}+1}+\mathrm{P}_{\mathrm{n}} \text { for } n \geq 0 . \tag{1}
\end{equation*}
$$

B. Srinivasa Rao proved that 1 and 3 are the only triangular numbers in the Associated Pell Sequence $\left\{Q_{n}\right\}$ is defined by

$$
\begin{equation*}
\mathrm{Q}_{0}=1, \mathrm{Q}_{1}=1 \text { and } \mathrm{Q}_{\mathrm{n}+2}=2 \mathrm{Q}_{\mathrm{n}+1}+\mathrm{Q}_{\mathrm{n}} \text { for } n \geq 0 . \tag{2}
\end{equation*}
$$

Now we define for a fixed integer $\alpha>0$, a new sequence called the Generalized Pell sequence $\left\{\mathrm{P}_{\mathrm{n}}{ }^{(\alpha)}\right\}$ by

$$
\begin{equation*}
\mathrm{P}_{0}^{(\alpha)}=0, \mathrm{P}_{1}{ }^{(\alpha)}=1 \text { and } P_{n+2}^{(\alpha)}=(\alpha+1) P_{n+1}^{(\alpha)}+\frac{\alpha(3 \alpha-1)}{2} P_{n}^{(\alpha)} \text { for } n \geq 0 \tag{3}
\end{equation*}
$$

and a Generalized Associated pell sequence $\left\{Q_{n}^{(\alpha)}\right\}$ is defined by the recursive relation

$$
\begin{equation*}
Q_{0}^{(\alpha)}=1, Q_{1}^{(\alpha)}=1 \text { and } Q_{n+2}^{(\alpha)}=(\alpha+1) \quad Q_{n+1}^{(\alpha)}+\frac{\alpha(3 \alpha-1)}{2} Q_{n}^{(\alpha)} \text { for } n \geq 0 \tag{4}
\end{equation*}
$$

Note that $P_{n}^{(1)}=P_{n}$ and $Q_{n}^{(1)}=Q_{n}$ for $\mathrm{n}=0,1,2,3, \ldots \ldots$
In this paper, we proved that there exist triangular numbers in the sequence $\left\{\mathrm{P}_{\mathrm{n}}{ }^{(\alpha)}\right\}$ and $\left\{\mathrm{Q}_{\mathrm{n}}{ }^{(\alpha)}\right\}$ for $\mathrm{n}=0,1$.

An integer N is triangular number if and only if $8 \mathrm{~N}+1$ is a perfect square. To find triangular numbers in the Generalized Pell Sequence and Generalized Associated Pell Sequence we have to identify those n for which $8 \mathrm{P}_{\mathrm{n}}{ }^{(\alpha)}+1$ and $8 \mathrm{Q}_{\mathrm{n}}{ }^{(\alpha)}+1$ are perfect squares.

For the first few values of n, the terms of Generalized Pell Sequence $\left\{P_{n}{ }^{(\alpha)}\right\}$ and Generalized Associated Pell Sequence $\left\{Q_{n}{ }^{(\alpha)}\right\}$ are given in

Table 1 (a)

n	$P_{n}^{(\alpha)}$	$Q_{n}^{(\alpha)}$
0	0	1
1	1	1
2	$(\alpha+1)$	$\frac{1}{2}\left(3 \alpha^{2}+\alpha+2\right)$
3	$\frac{1}{2}\left(5 \alpha^{2}+3 \alpha+2\right)$	$\frac{1}{2}\left(3 \alpha^{3}+7 \alpha^{2}+2 \alpha+2\right)$
4	$\frac{1}{2}\left(8 \alpha^{3}+10 \alpha^{2}+4 \alpha+2\right)$	$\frac{1}{4}\left(15 \alpha^{4}+20 \alpha^{3}+23 \alpha^{2}+6 \alpha+4\right)$
5	$\frac{1}{4}\left(31 \alpha^{4}+40 \alpha^{3}+31 \alpha^{2}+10 \alpha+4\right)$	$\frac{1}{4}\left(24 \alpha^{5}+53 \alpha^{4}+42 \alpha^{3}+33 \alpha^{2}+8 \alpha+4\right)$

For certain values of α, the values of $P_{n}{ }^{(\alpha)}, 8 P_{n}{ }^{(\alpha)}+1, Q_{n}{ }^{(\alpha)}$ and $8 Q_{n}{ }^{(\alpha)}+1$ are given in the following tables.

Table 1(b)

α	1	2	3	4	5	6	7	8	9	10
$\mathrm{P}_{0}{ }^{(\alpha)}$	0	0	0	0	0	0	0	0	0	0
$\mathrm{P}_{1}{ }^{(\alpha)}$	1	1	1	1	1	1	1	1	1	1
$\mathrm{P}_{2}{ }^{(\alpha)}$	2	3	4	5	6	7	8	9	10	11
$\mathrm{P}_{3}{ }^{(\alpha)}$	5	14	28	47	71	100	134	173	217	266
$\mathrm{P}_{4}{ }^{(\alpha)}$	12	57	160	345	636	1057	1632	2385	3340	4521
$\mathrm{P}_{5}{ }^{(\alpha)}$	29	241	976	2759	6301	12499	22436	37381	58789	88301
$8 \mathrm{P}_{0}{ }^{(\alpha)}+1$	1	1	1	1	1	1	1	1	1	1
$8 \mathrm{P}_{1}{ }^{(\alpha)}+1$	9	9	9	9	9	9	9	9	9	9
$8 \mathrm{P}_{2}{ }^{(\alpha)}+1$	17	25	33	41	49	57	65	73	81	89
$8 \mathrm{P}_{3}{ }^{(\alpha)}+1$	41	113	225	377	569	801	1073	1385	1737	2129
$8 \mathrm{P}_{4}{ }^{(\alpha)}+1$	97	457	1281	2761	5089	8457	13057	19081	26721	36169
$8 \mathrm{P}_{5}{ }^{(\alpha)}+1$	233	1929	7809	22073	50409	99993	179489	299049	470313	706409

Table 1(c)

α	11	12	13	14	15
$\mathrm{P}_{0}{ }^{(\alpha)}$	0	0	0	0	0
$\mathrm{P}_{1}{ }^{(\alpha)}$	1	1	1	1	1
$\mathrm{P}_{2}{ }^{(\alpha)}$	12	13	14	15	16
$\mathrm{P}_{3}{ }^{(\alpha)}$	320	379	443	512	586
$\mathrm{P}_{4}{ }^{(\alpha)}$	5952	7657	9660	11985	14656
$\mathrm{P}_{5}{ }^{(\alpha)}$	127744	179131	244661	326719	427876
$8 \mathbf{P}_{0}{ }^{(\alpha)}+1$	1	1	1	1	1
$8 \mathbf{P}^{(\alpha)}+1$	9	9	9	9	9
$8 \mathbf{P}^{(\alpha)}+1$	97	105	113	121	129
$8 \mathbf{P}_{3}{ }^{(\alpha)}+1$	2561	3033	3545	4097	4689
$8 \mathbf{P}_{4}{ }^{(\alpha)}+1$	47617	61257	77281	95881	117249
$8 \mathbf{P}_{5}{ }^{(\alpha)}+1$	102195	1433049	1957289	2613753	3423009

Table 1(d)

α	1	2	3	4	5	6	7	8	9	10
$\mathrm{Q}_{0}{ }^{(\alpha)}$	1	1	1	1	1	1	1	1	1	1
$\mathrm{Q}_{1}^{(\alpha)}$	1	1	1	1	1	1	1	1	1	1
$\mathrm{Q}_{2}^{(\alpha)}$	3	8	16	27	41	58	78	101	127	156
$\mathrm{Q}_{3}{ }^{(\alpha)}$	7	29	76	157	281	457	694	1001	1387	1861
$\mathrm{Q}_{4}{ }^{(\alpha)}$	17	127	496	1379	3121	6157	11012	18301	28729	43091
$\mathrm{Q}_{5}{ }^{(\alpha)}$	41	526	2896	10349	28561	66406	136676	281801	449569	743846
$8 \mathrm{Q}_{0}{ }^{(\alpha)}+1$	9	9	9	9	9	9	9	9	9	9
$8 \mathrm{Q}_{1}{ }^{(\alpha)}+1$	9	9	9	9	9	9	9	9	9	9
$8 \mathrm{Q}_{2}^{(\alpha)}+1$	25	65	129	217	329	465	625	809	1017	1249
$8 \mathrm{Q}_{3}^{(\alpha)}+1$	57	233	609	1257	2249	3656	5553	8009	11097	14889
$8 \mathrm{Q}_{4}^{(\alpha)}+1$	137	1017	3969	11033	24969	49257	88097	146409	229833	344729
$8 \mathrm{Q}_{5}{ }^{(\alpha)}+1$	329	4209	23169	82793	228489	531249	1093409	2254409	3596553	5950769

Table 1(e)

α	11	12	13	14	15
$\mathrm{Q}_{0}{ }^{(\alpha)}$	1	1	1	1	1
$\mathrm{Q}_{1}{ }^{(\alpha)}$	1	1	1	1	1
$\mathrm{Q}_{2}{ }^{(\alpha)}$	188	223	261	302	346
$\mathrm{Q}_{3}{ }^{(\alpha)}$	2432	3109	3901	4817	5866
$\mathrm{Q}_{4}{ }^{(\alpha)}$	62272	87247	119081	158929	208036
$\mathrm{Q}_{5}^{(\alpha)}$	1175296	1787101	2630681	3766414	5264356
$8 \mathrm{Q}_{0}{ }^{(\alpha)}+1$	9	9	9	9	9
$8 \mathrm{Q}_{1}{ }^{(\alpha)}+1$	9	9	9	9	9
$8 \mathrm{Q}_{2}{ }^{(\alpha)}+1$	1505	1785	2089	2417	2769
$8 \mathrm{Q}_{3}{ }^{(\alpha)}+1$	19457	24873	31209	38537	46929
$8 \mathrm{Q}_{4}{ }^{(\alpha)}+1$	498177	697977	952649	1271433	1664289
$8 \mathrm{Q}_{5}{ }^{(\alpha)}+1$	9402369	14296809	21045449	30131313	42114849

The following properties of the sequences $\left\{P_{n}\right\}$ and $\left\{Q_{n}\right\}$ given as

$$
\begin{align*}
& \mathrm{P}_{-\mathrm{n}}=(-1)^{\mathrm{n}+1} \mathrm{P}_{\mathrm{n}} \text { and } \mathrm{Q}_{-\mathrm{n}}=(-1)^{\mathrm{n}} \mathrm{Q}_{\mathrm{n}} \tag{5}\\
& \mathrm{P}_{-\mathrm{n}}=\frac{a^{n}-b^{n}}{2 \sqrt{2}} \text { and } \mathrm{Q}_{-\mathrm{n}}=\frac{a^{n}+b^{n}}{2} \tag{6}
\end{align*}
$$

where $\mathrm{a}=1+\sqrt{ } 2$ and $\mathrm{b}=1-\sqrt{ } 2$

$$
\begin{align*}
P_{m+n} & =2 P_{m} Q_{n}-(-1)^{n} P_{m-n} \tag{7}\\
P_{m+n} & =P_{m} P_{n+1}+P_{m-n} P_{n} \tag{8}\\
Q_{n}{ }^{2} & =2 P_{n}{ }^{2}+(-1)^{n} \tag{9}\\
Q_{2 n} & =2 Q_{n}{ }^{2}-(-1)^{n} \tag{10}
\end{align*}
$$

As a direct consequence of (6) we have

$$
\begin{equation*}
Q_{m+n}=2 Q_{m} Q_{n}-(-1)^{n} Q_{m-n} \text { for all integers } m \text { and } n . \tag{11}
\end{equation*}
$$

Lemma 1: If n, k and t are integers then $P_{n+2 k t} \equiv(-1)^{t(k-1)} P_{m}\left(\bmod Q_{k}\right)$.
Proof: If $\mathrm{t}=0$, the lemma is trivial.
We prove this lemma for $\mathrm{t}>0$ by using induction hypothesis on t . By using (7)

$$
\begin{gathered}
P_{2 k+n}=2 P_{n+k} Q_{k}-(-1)^{k} P_{(n+k)-k}=2 P_{n+k} Q_{k}-(-1)^{k} P_{n} \\
\equiv-(-1)^{k} P_{n}\left(\bmod Q_{k}\right) \\
\equiv(-1)^{k+1} P_{n}\left(\bmod Q_{k}\right) .
\end{gathered}
$$

Proving the lemma for $\mathrm{t}=1$.
Now, Assume that the lemma holds all integers $\leq \mathrm{t}$.Then again by (7) and the induction hypothesis, we get

$$
\begin{aligned}
P_{2 k(t+1) n} & =P_{(2 k t+n)+2 k} \\
& \equiv(-1)^{k+1} P_{2 k t+n}\left(\bmod Q_{k}\right) \\
& \equiv(-1)^{k+1}(-1)^{t(k+1)} P_{n}\left(\bmod Q_{k}\right) \\
& \equiv(-1)^{(t+1)(k+1)} P_{n}\left(\bmod Q_{k}\right) .
\end{aligned}
$$

If $\mathrm{t}<0$, say $\mathrm{t}=-\mathrm{m}$, where $\mathrm{m}>0$ by (5) we have

$$
\begin{aligned}
P_{n+2 k t} & =P_{n-2 k m}=P_{n+2(-k) t} \\
& \equiv(-1)^{t(-k+1)} P_{n}\left(\bmod Q_{(-k)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \equiv(-1)^{t(-k+1)} P_{n}\left(\bmod Q_{k}\right) \\
& \equiv(-1)^{t(k-1)} P_{n}\left(\bmod Q_{k}\right)
\end{aligned}
$$

which completes the proof of the lemma.
Lemma 2: If m is even and n, k are any integers then $Q_{n+2 k m} \equiv(-1)^{k} Q_{n}\left(\bmod Q_{m}\right)$
Proof: For $\mathrm{k}=0$, the lemma is trivial.
We prove this lemma for $\mathrm{k}>0$ by using induction on k , by (11)

$$
Q_{n+2 m}=2 Q_{n+m} Q_{m}-(-1)^{m} Q_{n}
$$

Because m is even, this gives the lemma for $\mathrm{k}=1$.
Assume that the lemma holds all integers $\leq \mathrm{k}$. By (11) and the induction hypothesis, we get

$$
\begin{align*}
\mathrm{Q}_{\mathrm{n}+2(\mathrm{k}+1) \mathrm{m}} & =2 \mathrm{Q}_{\mathrm{n}+2 \mathrm{~km}} \mathrm{Q}_{2 \mathrm{~m}}-\mathrm{Q}_{\mathrm{n}+2(\mathrm{k}-1) \mathrm{m}} \\
& \equiv 2(-1)^{\mathrm{k}} \mathrm{Q}_{\mathrm{n}} \mathrm{Q}_{2 \mathrm{~m}}-(-1)^{k-1} \mathrm{Q}_{\mathrm{n}}\left(\bmod \mathrm{Q}_{\mathrm{m}}\right) \\
& \equiv(-1)^{\mathrm{k}}\left(2 \mathrm{Q}_{2 \mathrm{~m}}-1\right) \mathrm{Q}_{\mathrm{n}}\left(\bmod _{\mathrm{m}}\right) \tag{12}
\end{align*}
$$

But since m is even it follows from (10) that

$$
\begin{equation*}
2 Q_{2 m}+1 \equiv-1\left(\bmod Q_{m}\right) \tag{13}
\end{equation*}
$$

By (12) and (13) together prove the lemma for $\mathrm{k}+1$.
Hence by induction the lemma holds for $\mathrm{k}>0$.
If $k<0$, say $k=-r$, where $r>0$, we have

$$
\begin{aligned}
\mathrm{Q}_{\mathrm{n}+2 \mathrm{~km}} & =\mathrm{Q}_{\mathrm{n}-2 \mathrm{rm}}=2 \mathrm{Q}_{\mathrm{n}} \mathrm{Q}_{2 \mathrm{rm}}-(-1)^{2 \mathrm{rm}} \mathrm{Q}_{\mathrm{n}+2 \mathrm{rm}} \\
& =2 \mathrm{Q}_{\mathrm{n}} \mathrm{Q}_{2 \mathrm{rm}}-\mathrm{Q}_{\mathrm{n}+2 \mathrm{~m}} \\
& \equiv 2 \mathrm{Q}_{\mathrm{n}}(-1)^{r}-(-1)^{r} \mathrm{Q}_{\mathrm{n}}\left(\bmod \mathrm{Q}_{\mathrm{m}}\right) \\
& \equiv(-1)^{r} \mathrm{Q}_{\mathrm{n}}\left(\bmod \mathrm{Q}_{\mathrm{m}}\right) \\
& \equiv(-1)^{\mathrm{k}} \mathrm{Q}_{\mathrm{n}}\left(\bmod \mathrm{Q}_{m}\right)
\end{aligned}
$$

which completes the proof of the Lemma.
First we prove those n for which $8 \mathrm{P}_{\mathrm{n}}{ }^{(1)}+1$ and $8 \mathrm{Q}_{\mathrm{n}}{ }^{(1)}+1$ be perfect squares, i.e., $8 \mathrm{P}_{\mathrm{n}}{ }^{(1)}+1$ is perfect square only when $\mathrm{n}=0$ or 1 and $8 \mathrm{Q}_{\mathrm{n}}{ }^{(1)}+1$ is perfect square only when $\mathrm{n}=0,1$ or 2 . So, $\mathrm{P}_{1}{ }^{(1)}, \mathrm{Q}_{0}^{(1)}, \mathrm{Q}_{1}{ }^{(1)}$ and $\mathrm{Q}_{2}{ }^{(1)}$ are the only triangular numbers.

To prove above results we present the period k of the sequence $\left\{Q_{t}^{(1)}\right\}_{t=0}^{\infty}$ modulo certain integer $\mathrm{M}>0$. That is for all integers $\mathrm{u} \geq 0, Q_{t+k u}^{(\alpha)} \equiv Q_{t}^{(\alpha)}(\bmod \mathrm{M})$. Also if modulo M , the sequence $\left\{Q_{t}^{(\alpha)}\right\}$ has period k , we have R_{t} and U_{t} for $\mathrm{t}=0$, $1,2, \ldots . . k-1$, where $Q_{t}^{(1)} \equiv R_{t}(\bmod M)$ and $8 Q_{t}^{(1)}+1 \equiv U_{t}(\bmod M)$, For certain values of $M>0$, the period k of $\left\{Q_{t}^{(1)}\right\}$, the numbers $R_{t}(t=0,1,2, \ldots . . k-1)$ and the numbers $U_{t}(t=0,1,2, \ldots \ldots k-1)$ are given in

Table 2(a)

I Mod	II	Period	III
M	K	$R_{t}(t=0,1,2, \ldots, k-1)$	$I V$
7	6	$Q_{t}^{(t)} \equiv R_{t}(\bmod M)$	$U_{t}(t=0,1,2, \ldots ., k-1)$ $8 Q_{t}^{(t)}+1 \equiv U_{t}(\bmod M)$
9	24	$1,1,3,7,8,5,0,5,1,7,6,1,8,8$,	$0,0,7,3,2,5,1,5,0,3,4,0$,
		$6,2,1,4,0,4,8,2,3,8$.	$2,2,4,8,0,6,1,6,2,8,7,2$.
10	12	$1,1,3,7,7,1,9,9,7,3,3,9$	$9,9,5,7,7,9,3,3,7,5,5,3$.
23	22	$1,1,3,7,6,8,0,8,5,7,8,1,10$,	$9,9,2,11,22,7,11,4,17,13$,
		$10,8,4,5,3,0,3,6,4,3,10$.	$18,1,18,12,17,21,11,18$,
			$22,14,2,16$.

Lemma 3: Suppose $\mathrm{n} \equiv 0$ or $1(\bmod 4)$. Then $8 \mathrm{Q}_{\mathrm{n}}{ }^{(1)}+1$ is a perfect square if and only if $n=0$ or 1 .

Proof: We know that $\mathrm{Q}_{\mathrm{n}}{ }^{(1)}=\mathrm{Q}_{\mathrm{n}}$.

$$
\text { If } \mathrm{n}=0 \text { or } 1 \text { then } 8 \mathrm{Q}_{\mathrm{n}}+1=3^{2} \text {, by table } 1(\mathrm{~d}) .
$$

Conversely, suppose $\mathrm{n} \equiv 0$ or $1(\bmod 4)$ and $\mathrm{n} \notin\{0,1\}$. Then n can be written as $\mathrm{n}=2 \mathrm{~km}+\varepsilon, \mathrm{m}=2^{\mathrm{r}}, \mathrm{r} \geq 1, \mathrm{k}$ is odd and $\varepsilon=0$ or 1 .

Therefore by (11) and by table 1 (d), we get

$$
\mathrm{Q}_{\mathrm{n}}=\mathrm{Q}_{2 \mathrm{km+} \mathrm{\varepsilon}+} \equiv(-1)^{\mathrm{k}} \mathrm{Q}_{\varepsilon}\left(\bmod \mathrm{Q}_{\mathrm{m}}\right) \equiv-1\left(\bmod \mathrm{Q}_{\mathrm{m}}\right)
$$

So that $8 Q_{n}+1 \equiv-7\left(\bmod Q_{m}\right)$
Hence the Jacobi Symbol

$$
\begin{align*}
\left(\frac{8 Q_{n}+1}{Q_{m}}\right) & =\left(\frac{-7}{Q_{m}}\right)=\left(\frac{-1}{Q_{m}}\right) \cdot\left(\frac{7}{Q_{m}}\right) \\
& =\left(\frac{-1}{Q_{m}}\right) \cdot\left(\frac{Q_{m}}{7}\right) \cdot\left(\frac{-1}{Q_{m}}\right)=\left(\frac{Q_{m}}{7}\right) \tag{14}
\end{align*}
$$

Now note that for modulo 7, the sequence $\left\{Q_{n}\right\}$ is periodic with period 6. In fact by (11) and Table 1(d), we have

$$
\begin{aligned}
\mathrm{Q}_{\mathrm{n}+6} & =2 \mathrm{Q}_{3} \cdot \mathrm{Q}_{\mathrm{n}+3}+\mathrm{Q}_{\mathrm{n}}=2(7) \mathrm{Q}_{\mathrm{n}+3}+\mathrm{Q}_{\mathrm{n}} \\
& \equiv \mathrm{Q}_{\mathrm{n}}(\bmod 7) .
\end{aligned}
$$

Also, since $m=2^{\mathrm{r}} \equiv \pm 2(\bmod 6)$, we have from (5) and Table 2(a) that

$$
\begin{align*}
& \mathrm{Q}_{\mathrm{m}} \equiv \mathrm{Q}_{ \pm 2}(\bmod 7) \equiv \mathrm{Q}_{2}(\bmod 7) \equiv 3(\bmod 7) \\
& \therefore \quad\left(\frac{Q_{m}}{7}\right)=\left(\frac{3}{7}\right)=\left(\frac{-4}{7}\right)=\left(-\frac{1}{7}\right)\left(\frac{4}{7}\right)=-1 \tag{15}
\end{align*}
$$

Now (14) and (15) gives $\left(\frac{8 Q_{n}+1}{Q_{m}}\right)=-1$.
Proving that $8 \mathrm{Q}_{\mathrm{n}}+1$ cannot be a square,
which completes the proof of the lemma.
Lemma 4 : Suppose $n \equiv \pm 2(\bmod 36)$. Then $8 Q_{n}^{(1)}+1$ is a perfect square if and only if $n= \pm 2$.

Proof: We know that $Q_{n}{ }^{(1)}=Q_{n}$.
If $\mathrm{n}= \pm 2$ then $8 \mathrm{Q}_{\mathrm{n}}{ }^{(1)}+1=5^{2}$ by (5) and Table $1(\mathrm{~d})$.
Conversely, suppose $\mathrm{n} \equiv \pm 2(\bmod 36)$ and $\mathrm{n} \notin\{-2,2\}$.
Then n can be written as $\mathrm{n}=2.3^{2} \cdot 2^{\mathrm{r}} . \mathrm{g} \pm 2$, where $\mathrm{r} \geq 1$ and g is odd.

$$
\mathrm{m}= \begin{cases}3^{2} \cdot 2^{\mathrm{r}} & \text { if } \mathrm{r} \equiv 3(\bmod 10) \tag{16}\\ 3.2^{r} & \text { if } \mathrm{r} \equiv 1(\operatorname{or}) 6(\bmod 10) \\ 2^{\mathrm{r}} & \text { otherwise }\end{cases}
$$

So that $\mathrm{n}=2 \mathrm{~km} \pm 2$, where k is odd (in fact, $\mathrm{k}=\mathrm{g}, 3 \mathrm{~g}$ or $3^{2} \mathrm{~g}$). Also, since
$2^{t+10} \equiv 2^{\mathrm{t}}(\bmod 22)$ for $\mathrm{t} \geq 1$, it follows that m , defined in (16) is such that

$$
\begin{equation*}
m \equiv \pm 4, \pm 6, \pm 10(\bmod 22) \tag{17}
\end{equation*}
$$

For instance, if $r \equiv 6(\bmod 10)$, then $r=10 u+6$ for some integer u and in this case (16)

$$
\mathrm{m}=3.2^{\mathrm{r}}=3.2^{10 \mathrm{u}+6} \equiv 3.2^{6}(\bmod 22) \equiv 6(\bmod 22)
$$

Now by Lemma (2), (5) and Table 1(d),
we have $Q_{n}=Q_{2 k m \pm 2} \equiv(-1)^{\mathrm{k}} \mathrm{Q}_{2}\left(\bmod \mathrm{Q}_{\mathrm{m}}\right) \equiv-3\left(\bmod \mathrm{Q}_{\mathrm{m}}\right)$.
So that $8 \mathrm{Q}_{\mathrm{n}}+1 \equiv-23\left(\bmod \mathrm{Q}_{\mathrm{m}}\right)$. Therefore

$$
\begin{align*}
\left(\frac{8 Q_{n}+1}{Q_{m}}\right) & =\left(\frac{-23}{Q_{m}}\right)=\left(\frac{-1}{Q_{m}}\right) \cdot\left(\frac{23}{Q_{m}}\right) \\
& =\left(\frac{-1}{Q_{m}}\right) \cdot\left(\frac{Q_{m}}{23}\right) \cdot\left(\frac{-1}{Q_{m}}\right)=\left(\frac{Q_{m}}{23}\right) \tag{18}
\end{align*}
$$

Note that for modulo 23, the sequence $\left\{Q_{j}\right\}$ is periodic with period 22. That is

$$
\begin{equation*}
Q_{j+22 i} \equiv Q_{j}(\bmod 23) \text { for all integers } i \geq 0 \tag{19}
\end{equation*}
$$

Now (17), (18) and (5) imply that $\mathrm{Q}_{\mathrm{m}} \equiv \mathrm{Q}_{4}, \mathrm{Q}_{6}$ or $\mathrm{Q}_{10}(\bmod 23)$.
i.e., $\quad Q_{m} \equiv 17,7$ or $5(\bmod 23)$ by Table 2(a).

Therefore (18) gives

$$
\left(\frac{8 Q_{n}+1}{Q_{m}}\right)=\left(\frac{17}{23}\right),\left(\frac{7}{23}\right) \text { or }\left(\frac{5}{23}\right) \text { showing }\left(\frac{8 Q_{n}+1}{Q_{m}}\right)=-1
$$

Therefore $8 \mathrm{Q}_{\mathrm{n}+1}$ is not a perfect square.
Lemma $5:$ Suppose $n \equiv \pm 1\left(\bmod 2^{2} .3\right)$. Then $8 P_{n}^{(1)}+1$ is a perfect square if and only if $\mathrm{n}= \pm 1$.

Proof: Note that $P_{n}{ }^{(1)}=P_{n}$.

$$
\text { If } \mathrm{n}= \pm 1 \text {, then by }(5) \text { and by Table } 1(\mathrm{~b})
$$

We have $8 \mathrm{P}_{\mathrm{n}}+1=8 \mathrm{P}_{ \pm 1}+1=3^{2}$.
Conversely, suppose $n \equiv \pm 1\left(\bmod 2^{2} .3\right)$ and $n \notin\{-1,1\}$. Then n can be written as $\mathrm{n}=2 \mathrm{~km} \pm 1$ then $\mathrm{m}=2^{\mathrm{r}}, \mathrm{r} \geq 1, \mathrm{k}$ is odd .

Therefore, by (11) and Table 1(d),
we get $\mathrm{Q}_{\mathrm{n}}=\mathrm{Q}_{2 \mathrm{~km}+\varepsilon} \equiv(-1)^{\mathrm{k}} \mathrm{Q}_{\varepsilon}\left(\bmod \mathrm{Q}_{\mathrm{m}}\right) \equiv-1\left(\bmod \mathrm{Q}_{\mathrm{m}}\right)$.
So, that

$$
\begin{aligned}
8 \mathrm{P}_{\mathrm{n}+1} & =8 \mathrm{P}_{2 \mathrm{~km} \pm 1}+1 \\
& \equiv 8(-1)^{\mathrm{m}(k+1)} \mathrm{P}_{ \pm 1}+1\left(\bmod \mathrm{Q}_{\mathrm{m}}\right) \\
& \equiv 8(-1)+1\left(\bmod \mathrm{Q}_{\mathrm{m}}\right) \\
& \equiv-7\left(\bmod _{\mathrm{m}}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{8 P_{n}+1}{Q_{m}}\right)=\left(\frac{-7}{Q_{m}}\right)=\left(\frac{-1}{Q_{m}}\right) \cdot\left(\frac{7}{Q_{m}}\right) \\
& =\left(\frac{-1}{Q_{m}}\right) \cdot\left(\frac{Q_{m}}{7}\right) \cdot\left(\frac{-1}{Q_{m}}\right)=\left(\frac{Q_{m}}{7}\right)
\end{aligned}
$$

By using Lemma 3, We can write $\left(\frac{Q_{m}}{7}\right)=-1$.
$\therefore \quad\left(\frac{8 P_{n}+1}{Q_{m}}\right)=-1$.
Proving that $8 \mathrm{P}_{\mathrm{n}}+1$ cannot be a square,
which completes the proof of the lemma.
Lemma 6 : Suppose $\mathrm{n} \equiv 0,1, \pm 2(\bmod 72)$. Then $8 \mathrm{Q}_{\mathrm{n}}{ }^{(1)}+1$ is a perfect square if and only if $n=0,1, \pm 2$.

Proof: We know that $\mathrm{Q}_{\mathrm{n}}{ }^{(1)}=\mathrm{Q}_{\mathrm{n}}$.
If $\mathrm{n} \equiv 0$ or $1(\bmod 72)$, then $\mathrm{n} \equiv 0$ or $1(\bmod 4)$ and $n \equiv \pm 2(\bmod 36)$.
The proof follows from Lemma (3) and Lemma (4).
Lemma 7: $8 Q_{n+1}^{(1)}$ is not a perfect square if $n=0,1, \pm 2(\bmod 72)$.
Proof: We know that $Q_{n}{ }^{(1)}=Q_{n}$.
We prove this in different steps eliminating at each stage certain integers n modulo 72 for which $8 Q_{n}+1$ is not a square. In each step we choose an integer m such that the period k (of the sequence $\left\{Q_{n}\right\} \bmod m$) is a divisor of 72 and there by eliminating certain residue class modulo k .

Step I : Note that modulo 10 , the sequence $\left\{Q_{n}\right\}$ is periodic with period 12 . That is, $\mathrm{Q}_{\mathrm{n}+12 \mathrm{u}} \equiv \mathrm{Q}_{\mathrm{n}}(\bmod 10)$ for all integers $\mathrm{u} \geq 0$. Therefore, if $\mathrm{n} \equiv 3,4,6,7,8$ or $11(\bmod 12)$ then we respectively have $8 \mathrm{Q}_{\mathrm{n}}+1 \equiv 8 \mathrm{Q}_{3}+1,8 \mathrm{Q}_{4}+1,8 \mathrm{Q}_{6}+1,8 \mathrm{Q}_{7}+1$, $8 \mathrm{Q}_{8}+1$ or $8 \mathrm{Q}_{11}+1(\bmod 10)$ so that by periodic table, $8 \mathrm{Q}_{\mathrm{n}}+1 \equiv 3$ or $7(\bmod 10)$ for these values of n, showing $8 Q_{n}+1$ is not a square, since $m^{2} \equiv 0,1,4,5,6$ or 9 $(\bmod 10)$ for any integer $m \geq 1$. Therefore, for the sequence in the form $8 \mathrm{Q}_{\mathrm{n}}+1$ we have to search those n for which $\mathrm{n} \equiv 0,1,2,5,9$ or $10(\bmod 12)$ or equivalently among $\mathrm{n} \equiv 0,1,2,5,9,10,12,13,14,17,21$ or $22(\bmod 24)$.

Step II : Modulo 9, the sequence $\left\{Q_{n}\right\}$ is periodic with period 24 that is $\mathrm{Q}_{\mathrm{n}+12 \mathrm{u}} \equiv \mathrm{Q}_{\mathrm{n}}(\bmod 9)$ for all integers $\mathrm{u} \geq 0$. So that when $\mathrm{n} \equiv 5,9,12,13,17$ or 21 $(\bmod 24)$ we respectively have $\mathrm{Q}_{\mathrm{n}} \equiv \mathrm{Q}_{5}, \mathrm{Q}_{9}, \mathrm{Q}_{12}, \mathrm{Q}_{13}, \mathrm{Q}_{17}$ or $\mathrm{Q}_{21}(\bmod 9)$ and therefore, in view of periodic table, $8 Q_{n}+1 \equiv 2,3,5,6$ or $8(\bmod 9)$, showing $8 Q_{n}+1$ is not a square, since $\mathrm{m}^{2} \equiv 0,1,4$ or $7(\bmod 9)$ for any integer m or ≥ 1.

Thus, there remain $n \equiv 0,1,2,10,14$ or $22(\bmod 24)$.
Step III : Modulo 11, also the sequence $\left\{Q_{n}\right\}$ is periodic with period 24, so that for $\mathrm{n} \equiv 0$ or $14(\bmod 24)$ we have $\mathrm{Q}_{\mathrm{n}} \equiv \mathrm{Q}_{10}$ or $\mathrm{Q}_{14}(\bmod 11)$, showing $8 Q_{n}+1 \equiv 2$ or $10(\bmod 11)$, by periodic table. Therefore $8 Q_{n}+1$ is not a square if n $\equiv 10$ or $14(\bmod 24)$, since 2 and 10 are quadratic nonresidues modulo 11 .

Thus there remain $\mathrm{n} \equiv 0,1,2$ or $22(\bmod 24)$ or equivalently, $\mathrm{n} \equiv 0,1,2,22,24$, $25,26,46,48,49,50$ or $70(\bmod 72)$.

Step IV : Modulo 199, the sequence $\left\{\mathrm{Q}_{\mathrm{n}}\right\}$ has period 18 , so that if $\mathrm{n} \equiv 4,11,13$, 14 or $17(\bmod 18)$ then by periodic table, we respectively have $8 Q_{n}+1 \equiv 137,78$, $71,37,192(\bmod 199)$ giving $8 \mathrm{Q}_{\mathrm{n}}+1$ is not a square, since $71,78,137$ and 192 are quadratic nonresidues modulo 199 .

Hence we eliminate $\mathrm{n} \equiv 22,49$ and $50(\bmod 72)$.
Step V : Modulo 197, the sequence $\left\{\mathrm{Q}_{\mathrm{n}}\right\}$ has period 36, if $\mathrm{n} \equiv \pm 10, \pm 12$ $(\bmod 36)$ then by periodic table, we respectively have $8 Q_{n}+1 \equiv 113$ or 194 (mod 197), showing these n can be eliminated. Thus we can eliminate $n \equiv 24,26$, 46 and $48(\bmod 72)$.

Step VI : Modulo 73 the sequence $\left\{Q_{n}\right\}$ is periodic with period 72 . Therefore if $\mathrm{n} \equiv 25(\bmod 72)$, then $8 \mathrm{Q}_{\mathrm{n}}+1 \equiv 56(\bmod 73)$ by periodic table, showing $8 \mathrm{Q}_{\mathrm{n}}+1$ is not a square,

Since $\left(\frac{56}{73}\right)=-1$
Finally, there remain $n=0,1,2(\bmod 72)$.
Theorem 1: $\mathrm{Q}_{\mathrm{n}}{ }^{(1)}$ is triangular number if and only if $n=0,1, \pm 2$.
Proof : From Lemma 6 and 7 we have $8 Q_{n}{ }^{(1)}+1$ is a perfect square if $n=0,1, \pm 2$.
Therefore we have $\mathrm{Q}_{\mathrm{n}}{ }^{(1)}$ is triangular number.
Observation: (i) From table 1(d) observe that $\mathrm{Q}_{\mathrm{n}}{ }^{(2)}, \mathrm{Q}_{\mathrm{n}}{ }^{(4)}, \mathrm{Q}_{\mathrm{n}}{ }^{(5)}, \mathrm{Q}_{\mathrm{n}}{ }^{(6)}, \mathrm{Q}_{\mathrm{n}}{ }^{(8)}, \mathrm{Q}_{\mathrm{n}}{ }^{(9)}$ and $\mathrm{Q}_{\mathrm{n}}{ }^{(10)}$ are triangular numbers if $\mathrm{n}=0,1$.
(ii) For $\mathrm{Q}_{\mathrm{n}}{ }^{(3)}$ when $\mathrm{n}=0,1$ or 4 and $\mathrm{Q}_{\mathrm{n}}{ }^{(7)}$ when $\mathrm{n}=0,1$ or 2 be triangular numbers.

Theorem 2: (i) $P_{n}^{(1)}$ is triangular number if and only if $n=1$.
(ii) $P_{n}^{(2)}$ is a generalized triangular number if $n=0,1$ or 2 .

Proof : (i) From Lemma 5 the result is proved.
we have $8 P_{n}^{(1)}+1$ is perfect square if $n=1$.
(ii) If N is triangular number then $8 \mathrm{~N}+1$ must be perfect square.
i.e., $\mathrm{N}=\frac{m(m+1)}{2}$

We know that when $8 P_{n}^{(1)}+1$ is perfect square then $P_{n}^{(\alpha)}$ is a generalized triangular number for any integer m .

By table 1(b), $\mathrm{P}_{2}^{(2)}=3$.
We have $8 \mathrm{P}_{2}^{(2)}+1=25=5^{2}$.
Note that zero is not a triangular number for any integer $m>0$.
Therefore $P_{n}^{(2)}$ becomes generalized triangular number if $n=0,1$ or 2 .
Hence the theorem.
Observation: From table 1(b) \& 1(c) observe that $\mathrm{P}_{\mathrm{n}}{ }^{(5)}, \mathrm{P}_{\mathrm{n}}{ }^{(9)}$ and $\mathrm{P}_{\mathrm{n}}{ }^{(14)}$ are generalized triangular numbers when $\mathrm{n}=0,1$ or 2 .

Theorem 3 : $Q_{n}{ }^{(\alpha)}$ is triangular number if $n=0,1$.
Proof : We prove the theorem by proving $8 Q_{n}^{(\alpha)}+1$ is a perfect square. i.e., we have to prove $8 Q_{n}{ }^{(\alpha)}+1$ is a perfect square if $n=0,1$ for all integers $\alpha>0$.

To show this we use the Principle of Mathematical Induction on α.
From Lemmas 6 and 7, We know that $8 Q_{n}^{(\alpha)}+1$ is a perfect square if $n=0,1$.
For $\alpha=1$ the result is true.
Assume that it is true for $\alpha=\mathrm{m}$.
Observing that $8 \mathrm{Q}_{0}{ }^{(\mathrm{m})}+1$ and $8 \mathrm{Q}_{1}{ }^{(\mathrm{m})}+1$ are perfect squares.
We prove that it is also true for $\alpha=m+1$.
Consider $8 \mathrm{Q}_{1}{ }^{(\mathrm{m}+1)}+1=8.1+1=9=3^{2}$.
(From table $1(\mathrm{~d}) \mathrm{Q}_{1}{ }^{(\alpha)}=1$, for all α).
\therefore By the Principle of Mathematical Induction $8 Q_{n}^{(\alpha)}+1$ is a perfect square if $n=0,1$. which completes the proof of the theorem.

Theorem 4: $P_{n}^{(\alpha)}$ is a generalized triangular number if $n=0,1$.
Proof: We prove the theorem by proving $8 P_{n}^{(\alpha)}+1$ is a perfect square.
i.e., we prove $8 P_{n}^{(\alpha)}+1$ is a perfect square if $n=0,1$ for all integers $\alpha>0$.

To show this we use the Principle of Mathematical Induction on α.
From Lemma $5,8 P_{n}^{(1)}+1$ is a perfect square if $n=1$.
When $\mathrm{n}=0,8 \mathrm{P}_{\mathrm{n}}{ }^{(1)}+1=1$ which is a perfect square (from table $1(\mathrm{~b})$).
For $\alpha=1$ the result is true.
Assume that it is true for $\alpha=\mathrm{m}$.
Observing that $8 \mathrm{P}_{0}{ }^{(m)}+1$ and $8 \mathrm{P}_{1}{ }^{(m)}+1$ are perfect squares
We prove that it is also true for $\alpha=m+1$.
Consider $8 \mathrm{P}_{0}{ }^{(\mathrm{m}+1)}+1=1=1^{2}$.
(From table $1(\mathrm{~b}), \mathrm{P}_{0}{ }^{(\alpha)}=0$ for all α).
\therefore By the Principle of Mathematical Induction $8 \mathrm{P}_{\mathrm{n}}{ }^{(\alpha)}+1$ is perfect square if $\mathrm{n}=0,1$.
Hence $\mathrm{P}_{\mathrm{n}}{ }^{(\alpha)}$ is a generalized triangular number if $\mathrm{n}=0,1$.
which completes the proof of the theorem.

REFERENCES

[1] Apostal Tom M, Introduction to Analytic Number Theory, Springer, International Student Edition (1980).
[2] Charles R. Wall, "On Triangular Fibonacci Numbers". The Fibonacci Quaterly 23.1 (Feb. 1985): 77-79.
[3] Luo Ming, "On Triangular Fibonacci Numbers" The Fibonacci Quaterly 27.2 (1989): 98-108.
[4] Luo Ming, "On Triangular Lucas Numbers". Applications of Fibonacci Numbers, Vol. 4, Kluwer Academic Pub. (1991): 231-240.
[5] Mc. Daniel. W. L, "Triangular Numbers in the Pell Sequence". The Fibonacci Quaterly 34.2 (1996): 105-107.
[6] Srinivasa Rao B, Ph.D thesis titled "Special types of integers in certain second order recursive sequences".

Dr. B. Krishna Gandhi

Professor of Mathematics \& Principal
JNTU College of Fine Arts
Masab Tank, Hyderabad- 28

G. Upender Reddy

Asst. Prof. of Mathematics
Mahatma Gandhi Institute of Technology
Chaitanya Bharathi P.O;Gandipet, Hyderabad-75

