TRIANGULAR NUMBERS IN THE GENERALIZED PELL SEQUENCE AND GENERALIZED ASSOCIATED PELL SEQUENCE

B.Krishna Gandhi & G. Upender Reddy

Abstract

A positive integer N is called a "Triangular Number" if it is of the form $N = \frac{m(m+1)}{2}$, where *m* is an integer greater than zero. A positive integer N is called Generalized Triangular Number for any integer *m*. For a fixed integer $\alpha > 0$, a new sequence is called Generalized Pell Sequence $\{P_n^{(\alpha)}\}$ is defined by

$$P_0^{(\alpha)} = 0, P_1^{(\alpha)} = 1 \text{ and } P_{n+2}^{(\alpha)} = (\alpha+1)P_{n+1}^{(\alpha)} + \frac{\alpha(3\alpha-1)}{2}P_n^{(\alpha)} \text{ for } n \ge 0$$

and Generalized Associated Pell Sequence $\{Q_n^{(\alpha)}\}$ is defined by

$$Q_0^{\left(\alpha\right)} = 1, Q_1^{\left(\alpha\right)} = 1 \text{ and } Q_{n+2}^{\left(\alpha\right)} = (\alpha+1)Q_{n+1}^{\left(\alpha\right)} + \frac{\alpha(3\alpha-1)}{2}Q_n^{\left(\alpha\right)} \text{ for } n \ge 0$$

We proved that there exists Generalized Triangular Numbers in the sequence $\{P_n^{(\alpha)}\}\$ for n = 0, 1 and there exists Triangular Numbers in the sequence $\{Q_n^{(\alpha)}\}\$ for n=0,1 and some other results relative to triangular numbers

INTRODUCTION

It is well known that a positive integer N is called a "Triangular Number" if it is of the form $N = \frac{m(m+1)}{2}$, where m is an integer greater than zero.

2000 Mathematics Subject Classification: 11B37, 11B50.

Key words and Phrases: Triangular Numbers, Generalized Triangular Numbers, Generalized Pell Sequence, Generalized Associated Pell Sequence, Perfect Square.

A positive integer N is called a Generalized Triangular Number for any integer m.

Mc Daniel has shown that 1 is the only triangular number in the Pell sequence $\{P_n\}$ is defined by

$$P_0 = 0, P_1 = 1 \text{ and } P_{n+2} = 2 P_{n+1} + P_n \text{ for } n \ge 0.$$
 (1)

B. Srinivasa Rao proved that 1 and 3 are the only triangular numbers in the Associated Pell Sequence $\{Q_n\}$ is defined by

$$Q_0 = 1, Q_1 = 1 \text{ and } Q_{n+2} = 2Q_{n+1} + Q_n \text{ for } n \ge 0.$$
 (2)

Now we define for a fixed integer $\alpha > 0$, a new sequence called the Generalized Pell sequence $\{P_n^{(\alpha)}\}$ by

$$P_0^{(\alpha)} = 0, P_1^{(\alpha)} = 1 \text{ and } P_{n+2}^{(\alpha)} = (\alpha+1) P_{n+1}^{(\alpha)} + \frac{\alpha(3\alpha-1)}{2} P_n^{(\alpha)} \text{ for } n \ge 0$$
(3)

and a Generalized Associated pell sequence $\{Q_n^{(\alpha)}\}\$ is defined by the recursive relation

$$Q_0^{\left(\alpha\right)} = 1, Q_1^{\left(\alpha\right)} = 1 \text{ and } Q_{n+2}^{\left(\alpha\right)} = \left(\alpha+1\right) \quad Q_{n+1}^{\left(\alpha\right)} + \frac{\alpha(3\alpha-1)}{2}Q_n^{\left(\alpha\right)} \text{ for } n \ge 0$$
(4)

Note that $P_n^{(1)} = P_n$ and $Q_n^{(1)} = Q_n$ for n = 0, 1, 2, 3, ...

In this paper, we proved that there exist triangular numbers in the sequence $\{P_n^{(\alpha)}\}$ and $\{Q_n^{(\alpha)}\}$ for n = 0, 1.

An integer *N* is triangular number if and only if 8N + 1 is a perfect square. To find triangular numbers in the Generalized Pell Sequence and Generalized Associated Pell Sequence we have to identify those n for which $8P_n^{(\alpha)} + 1$ and $8Q_n^{(\alpha)} + 1$ are perfect squares.

For the first few values of n, the terms of Generalized Pell Sequence $\{P_n^{(\alpha)}\}\$ and Generalized Associated Pell Sequence $\{Q_n^{(\alpha)}\}\$ are given in

Table 1 (a)						
п	$P_n^{(\alpha)}$	$Q_n^{(lpha)}$				
0	0	1				
1	1	1				
2	$(\alpha + 1)$	$\frac{1}{2} (3\alpha^2 + \alpha + 2)$				
3	$\frac{1}{2} (5\alpha^2 + 3\alpha + 2)$	$\frac{1}{2}\left(3\alpha^3+7\alpha^2+2\alpha+2\right)$				
4	$\frac{1}{2}$ (8 α^3 + 10 α^2 + 4 α + 2)	$\frac{1}{4} (15\alpha^4 + 20\alpha^3 + 23\alpha^2 + 6\alpha + 4)$				
5	$\frac{1}{4} \left(31\alpha^4 + 40\alpha^3 + 31\alpha^2 + 10\alpha + 4 \right)$	$\frac{1}{4} (24\alpha^5 + 53\alpha^4 + 42\alpha^3 + 33\alpha^2 + 8\alpha + 4)$				

For certain values of α , the values of $P_n^{(\alpha)}$, $8P_n^{(\alpha)} + 1$, $Q_n^{(\alpha)}$ and $8Q_n^{(\alpha)} + 1$ are given in the following tables.

					Table 1(b)				
α	1	2	3	4	5	6	7	8	9	10
$P_0^{(\alpha)}$	0	0	0	0	0	0	0	0	0	0
$P_1^{\ (\alpha)}$	1	1	1	1	1	1	1	1	1	1
$P_2^{\ (\alpha)}$	2	3	4	5	6	7	8	9	10	11
$P_{3}^{\ (\alpha)}$	5	14	28	47	71	100	134	173	217	266
$P_4^{(\alpha)}$	12	57	160	345	636	1057	1632	2385	3340	4521
$P_5^{\ (\alpha)}$	29	241	976	2759	6301	12499	22436	37381	58789	88301
$8P_{0}^{(\alpha)} + 1$	1	1	1	1	1	1	1	1	1	1
$8P_{1}^{(\alpha)} + 1$	9	9	9	9	9	9	9	9	9	9
$8P_{2}^{(\alpha)} + 1$	17	25	33	41	49	57	65	73	81	89
$8P_{3}^{(\alpha)} + 1$	41	113	225	377	569	801	1073	1385	1737	2129
$8P_4^{(\alpha)} + 1$	97	457	1281	2761	5089	8457	13057	19081	26721	36169
$8P_{5}^{(\alpha)} + 1$	233	1929	7809	22073	50409	99993	179489	299049	470313	706409

Table 1(c)							
α	11	12	13	14	15		
$\mathbf{P}_{0}^{(\alpha)}$	0	0	0	0	0		
$\mathbf{P}_{1}^{(\alpha)}$	1	1	1	1	1		
$\mathbf{P}_{2}^{(\alpha)}$	12	13	14	15	16		
$\mathbf{P}_{2}^{(\alpha)}$	320	379	443	512	586		
$\mathbf{P}_{A}^{J(\alpha)}$	5952	7657	9660	11985	14656		
$\mathbf{P}_{\boldsymbol{z}}^{\dagger(\alpha)}$	127744	179131	244661	326719	427876		
$\vec{8P}_{0}^{(\alpha)} + 1$	1	1	1	1	1		
$8P_{1}^{(\alpha)} + 1$	9	9	9	9	9		
$8P_{2}^{(\alpha)} + 1$	97	105	113	121	129		
$8P_{2}^{(\alpha)} + 1$	2561	3033	3545	4097	4689		
$8P_{4}^{(\alpha)} + 1$	47617	61257	77281	95881	117249		
$8P_{5}^{\hat{a}(\alpha)} + 1$	102195	1433049	1957289	2613753	3423009		

Table 1(d)

α	1	2	3	4	5	6	7	8	9	10
$\overline{\mathbf{Q}_{0}^{(\alpha)}}$	1	1	1	1	1	1	1	1	1	1
$Q_1^{(\alpha)}$	1	1	1	1	1	1	1	1	1	1
$Q_2^{(\alpha)}$	3	8	16	27	41	58	78	101	127	156
$Q_3^{(\alpha)}$	7	29	76	157	281	457	694	1001	1387	1861
$Q_4^{(\alpha)}$	17	127	496	1379	3121	6157	11012	18301	28729	43091
$Q_5^{(\alpha)}$	41	526	2896	10349	28561	66406	136676	281801	449569	743846
$8\dot{Q}_{0}^{(\alpha)} + 1$	9	9	9	9	9	9	9	9	9	9
$8Q_{1}^{(\alpha)} + 1$	9	9	9	9	9	9	9	9	9	9
$8Q_{2}^{(\alpha)} + 1$	25	65	129	217	329	465	625	809	1017	1249
$8Q_{3}^{(\alpha)} + 1$	57	233	609	1257	2249	3656	5553	8009	11097	14889
$8Q_{4}^{(\alpha)} + 1$	137	1017	3969	11033	24969	49257	88097	146409	229833	344729
$8Q_{5}^{(\alpha)} + 1$	329	4209	23169	82793	228489	531249	1093409	2254409	3596553	5950769

Table 1(e)

α	11	12	13	14	15
$\overline{\mathbf{Q}_{0}^{(\alpha)}}$	1	1	1	1	1
$\mathbf{Q}_{1}^{(\alpha)}$	1	1	1	1	1
$\mathbf{Q}_{2}^{(\alpha)}$	188	223	261	302	346
$\tilde{\mathbf{Q}_{a}^{(\alpha)}}$	2432	3109	3901	4817	5866
$\mathbf{Q}_{4}^{(\alpha)}$	62272	87247	119081	158929	208036
$\mathbf{Q}_{\mathbf{s}}^{\mathbf{q}}(\alpha)$	1175296	1787101	2630681	3766414	5264356
$8\dot{Q}_{0}^{(\alpha)} + 1$	9	9	9	9	9
$8Q_{1}^{(\alpha)} + 1$	9	9	9	9	9
$8Q_{2}^{(\alpha)} + 1$	1505	1785	2089	2417	2769
$8Q_{2}^{2}(\alpha) + 1$	19457	24873	31209	38537	46929
$8Q_4^{(\alpha)} + 1$	498177	697977	952649	1271433	1664289
$8Q_{5}^{(\alpha)} + 1$	9402369	14296809	21045449	30131313	42114849

The following properties of the sequences { $P_{_n}$ } and { $Q_{_n}$ }given as

$$P_{-n} = (-1)^{n+1} P_n$$
 and $Q_{-n} = (-1)^n Q_n$ (5)

$$P_{-n} = \frac{a^n - b^n}{2\sqrt{2}}$$
 and $Q_{-n} = \frac{a^n + b^n}{2}$ (6)

where $a = 1 + \sqrt{2}$ and $b = 1 - \sqrt{2}$

$$P_{m+n} = 2P_m Q_n - (-1)^n P_{m-n}$$
(7)

$$P_{m+n} = P_m P_{n+1} + P_{m-n} P_n$$
(8)

$$Q_n^2 = 2 P_n^2 + (-1)^n$$
(9)

$$Q_{2n} = 2Q_n^2 - (-1)^n \tag{10}$$

As a direct consequence of (6) we have

$$Q_{m+n} = 2Q_m Q_n - (-1)^n Q_{m-n} \text{ for all integers m and n.}$$
(11)
Lemma 1 : If n, k and t are integers then $P_{n+2kt} \equiv (-1)^{t (k-1)} P_m \pmod{Q_k}.$

Proof: If t = 0, the lemma is trivial.

We prove this lemma for t > 0 by using induction hypothesis on t. By using (7)

$$\begin{split} P_{2k+n} &= 2P_{n+k} \ Q_k - (-1)^k \ P_{(n+k)-k} \equiv 2P_{n+k} \ Q_k - (-1)^k \ P_n \\ &\equiv - \ (-1)^k \ P_n \ (\text{mod} \ Q_k) \\ &\equiv (-1)^{k+1} \ P_n \ (\text{mod} \ Q_k). \end{split}$$

Proving the lemma for t = 1.

Now, Assume that the lemma holds all integers \leq t.Then again by (7) and the induction hypothesis, we get

$$\begin{aligned} \mathbf{P}_{2k\,(t+1)n} &= \mathbf{P}_{(2\,k\,t+n)\,+\,2k} \\ &\equiv (-1)^{k+1} \, \mathbf{P}_{2kt\,+\,n} \,(\text{mod } \mathbf{Q}_k) \\ &\equiv (-1)^{k+1} \, (-1)^{t\,(k+1)} \, \mathbf{P}_n \,(\text{mod } \mathbf{Q}_k) \\ &\equiv (-1)^{(t+1)\,(k+1)} \, \mathbf{P}_n \,(\text{mod } \mathbf{Q}_k). \end{aligned}$$

If t < 0, say t = -m, where m > 0 by (5) we have

$$P_{n+2kt} = P_{n-2 km} = P_{n+2 (-k) t}$$

= (-1)^{t (-k+1)} P_n (mod Q_(-k))

$$\equiv (-1)^{\cdot t (\cdot k+1)} P_n \pmod{Q_k}$$
$$\equiv (-1)^{t (k-1)} P_n \pmod{Q_k}$$

which completes the proof of the lemma.

Lemma 2: If m is even and n, k are any integers then $Q_{n+2km} \equiv (-1)^k Q_n \pmod{Q_m}$

Proof: For k = 0, the lemma is trivial.

We prove this lemma for k > 0 by using induction on k, by (11)

$$Q_{n+2m} = 2Q_{n+m} Q_m - (-1)^m Q_n$$

Because m is even, this gives the lemma for k = 1.

Assume that the lemma holds all integers \leq k. By (11) and the induction hypothesis, we get

$$Q_{n+2(k+1)m} = 2Q_{n+2km}Q_{2m} - Q_{n+2(k-1)m}$$

$$\equiv 2(-1)^{k}Q_{n}Q_{2m} - (-1)^{k-1}Q_{n} \pmod{Q_{m}}$$

$$\equiv (-1)^{k} (2Q_{2m} - 1)Q_{n} \pmod{Q_{m}}$$
(12)

But since m is even it follows from (10) that

$$2Q_{2m} + 1 \equiv -1 \pmod{Q_m} \tag{13}$$

By (12) and (13) together prove the lemma for k + 1.

Hence by induction the lemma holds for k > 0.

If k < 0, say k = -r, where r > 0, we have

$$\begin{aligned} Q_{n+2km} &= Q_{n-2 rm} = 2 Q_n Q_{2 rm} - (-1)^{2 rm} Q_{n+2 rm} \\ &= 2 Q_n Q_{2 rm} - Q_{n+2 rm} \\ &\equiv 2 Q_n (-1)^r - (-1)^r Q_n \pmod{Q_m} \\ &\equiv (-1)^r Q_n \pmod{Q_m} \\ &\equiv (-1)^k Q_n \pmod{Q_m} \end{aligned}$$

which completes the proof of the Lemma.

First we prove those n for which $8P_n^{(1)} + 1$ and $8Q_n^{(1)} + 1$ be perfect squares, i.e., $8P_n^{(1)} + 1$ is perfect square only when n = 0 or 1 and $8Q_n^{(1)} + 1$ is perfect square only when n = 0, 1 or 2. So, $P_1^{(1)}$, $Q_0^{(1)}$, $Q_1^{(1)}$ and $Q_2^{(1)}$ are the only triangular numbers.

To prove above results we present the period k of the sequence $\left\{Q_t^{(1)}\right\}_{t=0}^{\infty}$ modulo certain integer M > 0. That is for all integers $u \ge 0$, $Q_{t+ku}^{(\alpha)} \equiv Q_t^{(\alpha)} \pmod{M}$. Also if modulo M, the sequence { $Q_t^{(\alpha)}$ } has period k, we have R_t and U_t for t = 0, 1, 2, k - 1, where $Q_t^{(1)} \equiv R_t \pmod{M}$ and $8Q_t^{(1)} + 1 \equiv U_t \pmod{M}$, For certain values of M > 0, the period k of $\{Q_t^{(1)}\}$, the numbers R_t (t = 0, 1, 2,, k - 1) and the numbers U_t (t = 0, 1, 2, k – 1) are given in

		Table 2(a)	
I Mod M	II Period K	$IIIR_{t} (t = 0, 1, 2,, k - 1)Q_{t}^{(1)} \equiv R_{t} (mod M)$	$IV \\ U_t (t = 0, 1, 2,, k-1) \\ 8Q_t^{(1)} + 1 \equiv U_t (mod M)$
7	6	1, 1, 3, 0, 3, 6.	2, 2, 4, 1, 4, 0.
9	24	1, 1, 3, 7, 8, 5, 0, 5, 1, 7, 6, 1, 8, 8,	0, 0, 7, 3, 2, 5, 1, 5, 0, 3, 4, 0,
		6, 2, 1, 4, 0, 4, 8, 2, 3, 8.	2, 2, 4, 8, 0, 6, 1, 6, 2, 8, 7, 2.
10	12	1, 1, 3, 7, 7, 1, 9, 9, 7, 3, 3, 9	9, 9, 5, 7, 7, 9, 3, 3, 7, 5, 5, 3.
23	22	1, 1, 3, 7, 6, 8, 0, 8, 5, 7, 8, 1, 10,	9, 9, 2, 11, 22, 7, 11, 4, 17, 13,
		10, 8, 4, 5, 3, 0, 3, 6, 4, 3, 10.	18, 1, 18, 12, 17, 21, 11, 18,
			22, 14, 2, 16.

Lemma 3 : Suppose $n \equiv 0$ or 1 (mod 4). Then $8Q_n^{(1)} + 1$ is a perfect square if and only if n = 0 or 1.

Proof: We know that $Q_n^{(1)} = Q_n$.

If n = 0 or 1 then $8Q_n + 1 = 3^2$, by table 1(d).

Conversely, suppose $n \equiv 0$ or 1 (mod 4) and $n \notin \{0, 1\}$. Then n can be written as $n = 2km + \epsilon$, $m = 2^r$, $r \ge 1$, k is odd and $\epsilon = 0$ or 1.

Therefore by (11) and by table 1(d), we get

 $Q_n = Q_{2km+\epsilon} \equiv (-1)^k Q_\epsilon \pmod{Q_m} \equiv -1 \pmod{Q_m}$

So that $8Q_n + 1 \equiv -7 \pmod{Q_m}$

Hence the Jacobi Symbol

$$\left(\frac{8Q_n+1}{Q_m}\right) = \left(\frac{-7}{Q_m}\right) = \left(\frac{-1}{Q_m}\right) \cdot \left(\frac{7}{Q_m}\right)$$
$$= \left(\frac{-1}{Q_m}\right) \cdot \left(\frac{Q_m}{7}\right) \cdot \left(\frac{-1}{Q_m}\right) = \left(\frac{Q_m}{7}\right)$$
(14)

Now note that for modulo 7, the sequence $\{Q_n\}$ is periodic with period 6. In fact by (11) and Table 1(d), we have

$$Q_{n+6} = 2 Q_3 \cdot Q_{n+3} + Q_n = 2(7) Q_{n+3} + Q_n$$

= $Q_n \pmod{7}$.

Also, since $m = 2^r \equiv \pm 2 \pmod{6}$, we have from (5) and Table 2(a) that

$$\mathbf{Q}_{\mathbf{m}} \equiv \mathbf{Q}_{\pm 2} \pmod{7} \equiv \mathbf{Q}_{2} \pmod{7} \equiv 3 \pmod{7}$$

$$\therefore \qquad \left(\frac{Q_m}{7}\right) = \left(\frac{3}{7}\right) = \left(-\frac{4}{7}\right) = \left(-\frac{1}{7}\right) \left(\frac{4}{7}\right) = -1 \tag{15}$$

Now (14) and (15) gives $\left(\frac{8Q_n + 1}{Q_m}\right) = -1.$

Proving that $8Q_n + 1$ cannot be a square,

which completes the proof of the lemma.

Lemma 4 : Suppose $n \equiv \pm 2 \pmod{36}$. Then $8Q_n^{(1)} + 1$ is a perfect square if and only if $n = \pm 2$.

Proof: We know that $Q_n^{(1)} = Q_n$.

If $n=\pm\,2$ then $8Q_n^{~(1)}+1=5^2$ by (5) and Table 1(d).

Conversely, suppose $n \equiv \pm 2 \pmod{36}$ and $n \notin \{-2, 2\}$.

Then n can be written as $n = 2.3^2$. 2^r . $g \pm 2$, where $r \ge 1$ and g is odd.

$$m = \begin{cases} 3^2 \cdot 2^r & \text{if } r \equiv 3 \pmod{10} \\ 3.2^r & \text{if } r \equiv 1 \pmod{10} \\ 2^r & \text{otherwise.} \end{cases}$$
(16)

So that $n = 2km \pm 2$, where k is odd (in fact , k = g , 3g or 3^2 g). Also, since

 $2^{t+10} \equiv 2^t \pmod{22}$ for $t \ge 1$, it follows that m, defined in (16) is such that

$$m \equiv \pm 4, \pm 6, \pm 10 \pmod{22}$$
(17)

For instance, if $r \equiv 6 \pmod{10}$, then r = 10u+6 for some integer u and in this case (16)

$$m = 3.2^{r} = 3.2^{10u+6} \equiv 3.2^{6} \pmod{22} \equiv 6 \pmod{22}$$
.

Now by Lemma (2), (5) and Table 1(d),

we have $Q_n = Q_{2km \pm 2} \equiv (-1)^k Q_2 \pmod{Q_m} \equiv -3 \pmod{Q_m}$. So that $8Q_n + 1 \equiv -23 \pmod{Q_m}$. Therefore

$$\left(\frac{8Q_n+1}{Q_m}\right) = \left(\frac{-23}{Q_m}\right) = \left(\frac{-1}{Q_m}\right) \cdot \left(\frac{23}{Q_m}\right)$$
$$= \left(\frac{-1}{Q_m}\right) \cdot \left(\frac{Q_m}{23}\right) \cdot \left(\frac{-1}{Q_m}\right) = \left(\frac{Q_m}{23}\right)$$
(18)

Note that for modulo 23, the sequence $\{Q_i\}$ is periodic with period 22. That is

 $Q_{j+22i} \equiv Q_j \pmod{23}$ for all integers $i \ge 0$ (19)

Now (17), (18) and (5) imply that $Q_m \equiv Q_4$, Q_6 or $Q_{10} \pmod{23}$.

i.e., $Q_m \equiv 17, 7 \text{ or } 5 \pmod{23}$ by Table 2(a).

Therefore (18) gives

$$\left(\frac{8Q_n+1}{Q_m}\right) = \left(\frac{17}{23}\right), \left(\frac{7}{23}\right) \text{ or } \left(\frac{5}{23}\right) \text{ showing}\left(\frac{8Q_n+1}{Q_m}\right) = -1$$

Therefore $8Q_{n+1}$ is not a perfect square.

Lemma 5 : Suppose $n \equiv \pm 1 \pmod{2^2}$. 3). Then $8P_n^{(1)} + 1$ is a perfect square if and only if $n = \pm 1$.

Proof: Note that $P_n^{(1)} = P_n$.

If $n = \pm 1$, then by (5) and by Table 1(b)

We have $8P_n + 1 = 8P_{\pm 1} + 1 = 3^2$.

Conversely, suppose $n \equiv \pm 1 \pmod{2^2}$. 3) and $n \notin \{-1, 1\}$. Then n can be written as

 $n=2km\pm 1$ then $m=2^r$, $r\geq 1,$ k is odd.

Therefore, by (11) and Table 1(d),

we get
$$Q_n = Q_{2km+\epsilon} \equiv (-1)^k Q_\epsilon \pmod{Q_m} \equiv -1 \pmod{Q_m}$$
.
So, that
 $8P_{n+1} \equiv 8P_{2km\pm 1} + 1$
 $\equiv 8(-1)^{m(k+1)} P_{\pm 1} + 1 \pmod{Q_m}$
 $\equiv 8(-1) + 1 \pmod{Q_m}$
 $\equiv -7 \pmod{Q_m}$.
 $\left(\frac{8P_n + 1}{Q_m}\right) = \left(\frac{-7}{Q_m}\right) = \left(\frac{-1}{Q_m}\right) \cdot \left(\frac{7}{Q_m}\right)$
 $= \left(\frac{-1}{Q_m}\right) \cdot \left(\frac{Q_m}{7}\right) \cdot \left(\frac{-1}{Q_m}\right) = \left(\frac{Q_m}{7}\right)$
 $\left(Q_m\right)$

By using Lemma 3, We can write $\left(\frac{Q_m}{7}\right) = -1$.

$$\therefore \qquad \left(\frac{8P_n+1}{Q_m}\right) = -1$$

Proving that $8P_n + 1$ cannot be a square,

which completes the proof of the lemma.

Lemma 6 : Suppose $n \equiv 0, 1, \pm 2 \pmod{72}$. Then $8Q_n^{(1)} + 1$ is a perfect square if and only if $n = 0, 1, \pm 2$.

Proof: We know that $Q_n^{(1)} = Q_n$.

If $n \equiv 0$ or 1 (mod 72), then $n \equiv 0$ or 1 (mod 4) and $n \equiv \pm 2 \pmod{36}$.

The proof follows from Lemma (3) and Lemma (4).

Lemma 7: $8Q_{n+1}^{(1)}$ is not a perfect square if $n = 0, 1, \pm 2 \pmod{72}$.

Proof : We know that $Q_n^{(1)} = Q_n$.

We prove this in different steps eliminating at each stage certain integers n modulo 72 for which $8Q_n + 1$ is not a square. In each step we choose an integer m such that the period k (of the sequence $\{Q_n\}$ mod m) is a divisor of 72 and there by eliminating certain residue class modulo k.

Step I : Note that modulo 10, the sequence $\{Q_n\}$ is periodic with period 12. That is, $Q_{n+12u} \equiv Q_n \pmod{10}$ for all integers $u \ge 0$. Therefore, if $n \equiv 3, 4, 6, 7, 8$ or 11 (mod 12) then we respectively have $8Q_n + 1 \equiv 8Q_3 + 1, 8Q_4 + 1, 8Q_6 + 1, 8Q_7 + 1, 8Q_8 + 1 \text{ or } 8Q_{11} + 1 \pmod{10}$ so that by periodic table, $8Q_n + 1 \equiv 3 \text{ or } 7 \pmod{10}$ for these values of n, showing $8Q_n + 1$ is not a square, since $m^2 \equiv 0, 1, 4, 5, 6 \text{ or } 9 \pmod{10}$ for any integer $m \ge 1$. Therefore, for the sequence in the form $8Q_n + 1$ we have to search those n for which $n \equiv 0, 1, 2, 5, 9$ or 10 (mod 12) or equivalently among $n \equiv 0, 1, 2, 5, 9, 10, 12, 13, 14, 17, 21$ or 22 (mod 24).

Step II : Modulo 9, the sequence $\{Q_n\}$ is periodic with period 24 that is $Q_{n+12u} \equiv Q_n \pmod{9}$ for all integers $u \ge 0$. So that when $n \equiv 5, 9, 12, 13, 17$ or 21 (mod 24) we respectively have $Q_n \equiv Q_5, Q_9, Q_{12}, Q_{13}, Q_{17}$ or $Q_{21} \pmod{9}$ and therefore, in view of periodic table, $8Q_n + 1 \equiv 2, 3, 5, 6$ or 8 (mod 9), showing $8Q_n + 1$ is not a square, since $m^2 \equiv 0, 1, 4$ or 7 (mod 9) for any integer m or ≥ 1 .

Thus, there remain $n \equiv 0, 1, 2, 10, 14$ or 22 (mod 24).

Step III : Modulo 11, also the sequence $\{Q_n\}$ is periodic with period 24, so that for $n \equiv 0$ or 14 (mod 24) we have $Q_n \equiv Q_{10}$ or Q_{14} (mod 11), showing $8Q_n+1 \equiv 2$ or 10 (mod 11), by periodic table. Therefore $8Q_n+1$ is not a square if $n \equiv 10$ or 14 (mod 24), since 2 and 10 are quadratic nonresidues modulo 11.

Thus there remain $n \equiv 0, 1, 2$ or 22 (mod 24) or equivalently, $n \equiv 0, 1, 2, 22, 24$, 25, 26, 46, 48, 49, 50 or 70 (mod 72).

Step IV : Modulo 199, the sequence $\{Q_n\}$ has period 18, so that if $n \equiv 4, 11, 13, 14$ or 17 (mod 18) then by periodic table, we respectively have $8Q_n + 1 \equiv 137, 78, 71, 37, 192 \pmod{199}$ giving $8Q_n + 1$ is not a square, since 71, 78, 137 and 192 are quadratic nonresidues modulo 199.

Hence we eliminate $n \equiv 22$, 49 and 50 (mod 72).

Step V: Modulo 197, the sequence $\{Q_n\}$ has period 36, if $n \equiv \pm 10, \pm 12 \pmod{36}$ then by periodic table, we respectively have $8Q_n + 1 \equiv 113$ or 194 (mod 197), showing these n can be eliminated. Thus we can eliminate $n \equiv 24, 26, 46$ and 48 (mod 72).

Step VI : Modulo 73 the sequence $\{Q_n\}$ is periodic with period 72. Therefore if $n \equiv 25 \pmod{72}$, then $8Q_n + 1 \equiv 56 \pmod{73}$ by periodic table, showing $8Q_n + 1$ is not a square,

Since
$$\left(\frac{56}{73}\right) = -1$$

Finally, there remain $n = 0, 1, 2 \pmod{72}$.

Theorem 1: $Q_n^{(1)}$ is triangular number if and only if $n = 0, 1, \pm 2$.

Proof : From Lemma 6 and 7 we have $8Q_n^{(1)} + 1$ is a perfect square if $n = 0, 1, \pm 2$. Therefore we have $Q_n^{(1)}$ is triangular number.

Observation : (i) From table 1(d) observe that $Q_n^{(2)}$, $Q_n^{(4)}$, $Q_n^{(5)}$, $Q_n^{(6)}$, $Q_n^{(8)}$, $Q_n^{(9)}$ and $Q_n^{(10)}$ are triangular numbers if n = 0, 1.

(ii) For $Q_n^{(3)}$ when n = 0, 1 or 4 and $Q_n^{(7)}$ when n = 0, 1 or 2 be triangular numbers.

Theorem 2: (i) $P_n^{(1)}$ is triangular number if and only if n = 1.

(ii) $P_n^{(2)}$ is a generalized triangular number if n = 0, 1 or 2.

Proof : (i) From Lemma 5 the result is proved.

we have $8P_n^{(1)} + 1$ is perfect square if n = 1.

(ii) If N is triangular number then 8N + 1 must be perfect square.

i.e.,
$$N = \frac{m(m+1)}{2}$$

We know that when $8P_n^{(1)} + 1$ is perfect square then $P_n^{(\alpha)}$ is a generalized triangular number for any integer m.

By table 1(b),
$$P_2^{(2)} = 3$$
.

We have $8P_2^{(2)} + 1 = 25 = 5^2$.

Note that zero is not a triangular number for any integer m > 0.

Therefore $P_n^{(2)}$ becomes generalized triangular number if n = 0, 1 or 2.

Hence the theorem.

Observation: From table 1(b) & 1(c) observe that $P_n^{(5)}$, $P_n^{(9)}$ and $P_n^{(14)}$ are generalized triangular numbers when n = 0, 1 or 2.

Theorem 3 : $Q_n^{(\alpha)}$ is triangular number if n = 0, 1.

Proof : We prove the theorem by proving $8Q_n^{(\alpha)} + 1$ is a perfect square.

i.e., we have to prove $8Q_n^{(\alpha)} + 1$ is a perfect square if n = 0, 1 for all integers $\alpha > 0$.

To show this we use the Principle of Mathematical Induction on α .

From Lemmas 6 and 7, We know that $8Q_n^{(\alpha)} + 1$ is a perfect square if n = 0, 1.

For $\alpha = 1$ the result is true.

Assume that it is true for $\alpha = m$.

Observing that $8Q_0^{(m)} + 1$ and $8Q_1^{(m)} + 1$ are perfect squares.

We prove that it is also true for $\alpha = m + 1$.

Consider $8Q_1^{(m+1)} + 1 = 8.1 + 1 = 9 = 3^2$.

(From table 1(d) $Q_1^{(\alpha)} = 1$, for all α).

 \therefore By the Principle of Mathematical Induction $8Q_n^{(\alpha)} + 1$ is a perfect square if n=0, 1. which completes the proof of the theorem.

Theorem 4 : $P_n^{(\alpha)}$ is a generalized triangular number if n = 0, 1.

Proof : We prove the theorem by proving $8P_n^{(\alpha)} + 1$ is a perfect square.

i.e., we prove $8P_n^{(\alpha)} + 1$ is a perfect square if n = 0, 1 for all integers $\alpha > 0$.

To show this we use the Principle of Mathematical Induction on α .

From Lemma 5, $8P_n^{(1)} + 1$ is a perfect square if n = 1.

When n = 0, $8P_n^{(1)} + 1 = 1$ which is a perfect square (from table 1(b)).

For $\alpha = 1$ the result is true.

Assume that it is true for $\alpha = m$.

Observing that $8P_0^{(m)} + 1$ and $8P_1^{(m)} + 1$ are perfect squares

We prove that it is also true for $\alpha = m + 1$.

Consider $8P_0^{(m+1)} + 1 = 1 = 1^2$.

(From table 1(b), $P_0^{(\alpha)} = 0$ for all α).

 \therefore By the Principle of Mathematical Induction $8P_n^{(\alpha)} + 1$ is perfect square if n = 0, 1.

Hence $P_n^{(\alpha)}$ is a generalized triangular number if n = 0, 1.

which completes the proof of the theorem.

REFERENCES

[1] Apostal Tom M, Introduction to Analytic Number Theory, Springer, International Student Edition (1980).

- [2] Charles R. Wall, "On Triangular Fibonacci Numbers". The Fibonacci Quaterly 23.1 (Feb. 1985): 77–79.
- [3] Luo Ming, "On Triangular Fibonacci Numbers" The Fibonacci Quaterly 27.2 (1989): 98–108.
- [4] Luo Ming, "On Triangular Lucas Numbers". Applications of Fibonacci Numbers, Vol. 4, Kluwer Academic Pub. (1991): 231–240.
- [5] Mc. Daniel. W. L, "Triangular Numbers in the Pell Sequence". The Fibonacci Quaterly 34.2 (1996): 105–107.
- [6] Srinivasa Rao B, Ph.D thesis titled "Special types of integers in certain second order recursive sequences".

Dr. B. Krishna Gandhi

G. Upender Reddy

Professor of Mathematics & Principal
JNTU College of Fine ArtsAsst. Prof. of Mathematics
Mahatma Gandhi Institute of Technology
Chaitanya Bharathi P.O;Gandipet, Hyderabad-75