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TRIANGULAR NUMBERS IN THE GENERALIZED
PELL SEQUENCE AND GENERALIZED

ASSOCIATED PELL SEQUENCE
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Abstract

A positive integer N is called a “Triangular Number” if it is of the

form
� �

2

1�
�

mm
N  , where m is an integer greater than zero. A positive integer

N is called Generalized Triangular Number for any integer m. For a fixed
integer 0�� , a new sequence is called Generalized Pell Sequence {P

n
(�)} is

defined by

P0
(�) = 0, P1

(�) = 1 and � � � � �
�
��

�
��

�
��

�
�

�

�
�
��

�
�

�

����
�

�
���

�
nnn PPP

2

13
1 12  for n � 0

and Generalized Associated Pell Sequence � �� ��
nQ  is defined by

1,1 10 �
�

�
� �

�
��

�
��

�
��

�
�

QQ  and � � � � �
�
��

�
��

�
��

�
�

�

�
�
��

�
�

�

����
�

�
���

�
nnn QQQ

2

13
1 12  for n � 0

We proved that there exists Generalized Triangular Numbers in the sequence
{Pn

(�)} for n = 0, 1 and there exists Triangular Numbers in the sequence {Qn
(�)} for

n=0,1 and some other results relative to triangular numbers

INTRODUCTION

It is well known that a positive integer N is called a “Triangular Number” if it is of

the form 
� �

2

1�
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mm
N , where m is an integer greater than zero.
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A positive integer N is called a Generalized Triangular Number for any
integer m.

Mc Daniel has shown that 1 is the only triangular number in the Pell sequence
{Pn} is defined by

P0 = 0, P1 = 1 and Pn+2 = 2 Pn+1 + Pn for n � 0. (1)

B. Srinivasa Rao proved that 1 and 3 are the only triangular numbers in the
Associated Pell Sequence {Qn} is defined by

Q0 = 1, Q1 = 1 and Qn+2 = 2Qn+1 + Qn for n � 0. (2)

Now we define for a fixed integer � > 0, a new sequence called the Generalized
Pell sequence {Pn

(�)} by

P0
(�) = 0, P1
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and a Generalized Associated pell sequence � �� ��
nQ  is defined by the recursive

relation
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Note that � �
nn PP �1  and � �

nn QQ �1  for n = 0, 1, 2, 3, …..

In this paper, we proved that there exist triangular numbers in the sequence
{Pn

(�)} and {Qn
(�)} for n = 0, 1.

An integer N is triangular number if and only if 8N + 1 is a perfect square. To
find triangular numbers in the Generalized Pell Sequence and Generalized
Associated Pell Sequence we have to identify those n for which 8Pn

(�) + 1 and
8Qn

(�) + 1 are perfect squares.

For the first few values of n, the terms of Generalized Pell Sequence {Pn
(�)}

and Generalized Associated Pell Sequence {Qn
(�)} are given in
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Table 1 (a)

n P
n

(�) Q
n

(�)

0 0 1

1 1 1

2 (� + 1)
2

1
 (3�2 + � + 2)

3
2

1
 (5�2 + 3� + 2)

2

1
(3�3 + 7�2 + 2� + 2)

4
2

1
 (8�3 + 10�2 + 4� + 2)

4

1
 (15�4 + 20�3 + 23�2 + 6� + 4)

5
4

1
(31�4 + 40�3 + 31�2 + 10� + 4)

4

1
 (24�5 + 53�4 + 42�3 + 33�2 + 8� + 4)

For certain values of �, the values of Pn
(�) , 8Pn

(�) + 1, Qn
(�) and 8Qn

(�) + 1 are
given in the following tables.

Table 1(b)

� 1 2 3 4 5 6 7 8 9 10

P
0

(�) 0 0 0 0 0 0 0 0 0 0

P
1

(�) 1 1 1 1 1 1 1 1 1 1

P
2

(�) 2 3 4 5 6 7 8 9 10 11

P
3

(�) 5 14 28 47 71 100 134 173 217 266

P
4

(�) 12 57 160 345 636 1057 1632 2385 3340 4521

P
5

(�) 29 241 976 2759 6301 12499 22436 37381 58789 88301

8P
0

(�) + 1 1 1 1 1 1 1 1 1 1 1

8P
1

(�) + 1 9 9 9 9 9 9 9 9 9 9

8P
2

(�) + 1 17 25 33 41 49 57 65 73 81 89

8P
3

(�) + 1 41 113 225 377 569 801 1073 1385 1737 2129

8P
4

(�) + 1 97 457 1281 2761 5089 8457 13057 19081 26721 36169

8P
5

(�) + 1 233 1929 7809 22073 50409 99993 179489 299049 470313 706409
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Table 1(c)

� 11 12 13 14 15

P
0

(�) 0 0 0 0 0
P

1
(�) 1 1 1 1 1

P
2

(�) 12 13 14 15 16
P

3
(�) 320 379 443 512 586

P
4

(�) 5952 7657 9660 11985 14656
P

5
(�) 127744 179131 244661 326719 427876

8P
0

(�) + 1 1 1 1 1 1
8P

1
(�) + 1 9 9 9 9 9

8P
2

(�) + 1 97 105 113 121 129
8P

3
(�) + 1 2561 3033 3545 4097 4689

8P
4

(�) + 1 47617 61257 77281 95881 117249
8P

5
(�) + 1 102195 1433049 1957289 2613753 3423009

Table 1(d)

� 1 2 3 4 5 6 7 8 9 10

Q
0

(�) 1 1 1 1 1 1 1 1 1 1
Q

1
(�) 1 1 1 1 1 1 1 1 1 1

Q
2

(�) 3 8 16 27 41 58 78 101 127 156
Q

3
(�) 7 29 76 157 281 457 694 1001 1387 1861

Q
4

(�) 17 127 496 1379 3121 6157 11012 18301 28729 43091
Q

5
(�) 41 526 2896 10349 28561 66406 136676 281801 449569 743846

8Q
0

(�) + 1 9 9 9 9 9 9 9 9 9 9
8Q

1
(�) + 1 9 9 9 9 9 9 9 9 9 9

8Q
2

(�) + 1 25 65 129 217 329 465 625 809 1017 1249
8Q

3
(�) + 1 57 233 609 1257 2249 3656 5553 8009 11097 14889

8Q
4

(�) + 1 137 1017 3969 11033 24969 49257 88097 146409 229833 344729
8Q

5
(�) + 1 329 4209 23169 82793 228489 531249 1093409 2254409 3596553 5950769

Table 1(e)

� 11 12 13 14 15

Q
0

(�) 1 1 1 1 1
Q

1
(�) 1 1 1 1 1

Q
2

(�) 188 223 261 302 346
Q

3
(�) 2432 3109 3901 4817 5866

Q
4

(�) 62272 87247 119081 158929 208036
Q

5
(�) 1175296 1787101 2630681 3766414 5264356

8Q
0

(�) + 1 9 9 9 9 9
8Q

1
(�) + 1 9 9 9 9 9

8Q
2

(�) + 1 1505 1785 2089 2417 2769
8Q

3
(�) + 1 19457 24873 31209 38537 46929

8Q
4

(�) + 1 498177 697977 952649 1271433 1664289

8Q
5

(�) + 1 9402369 14296809 21045449 30131313 42114849
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The following properties of the sequences { Pn } and { Qn }given as

P-n = (-1)n+1 Pn  and  Q-n = (-1)n Qn (5)

P-n = 22

nn ba �
  and  Q- n = 2

nn ba �
(6)

where a = 1 + �2 and  b = 1 – �2

Pm+n = 2Pm Qn – (-1)n Pm-n (7)

Pm+n = Pm Pn+1 + Pm-n Pn (8)

Qn
2 = 2 Pn

2 + (–1)n (9)

Q2n = 2Qn
2 – (–1)n (10)

As a direct consequence of (6) we have

Qm+n = 2Qm Qn – (–1)n Qm-n for all integers m and n. (11)

Lemma 1 : If n, k and t are integers then P
n+2kt

 � (-1)t (k-1) P
m
 (mod Q

k
).

Proof: If t = 0, the lemma is trivial.

We prove this lemma for t > 0 by using induction hypothesis on t. By using (7)

P2k+n = 2Pn+k Qk – (–1)k P(n+k)-k = 2Pn+k Qk – (–1)k Pn

� - (-1)k Pn (mod Qk)

� (-1)k+1 Pn (mod Qk).

Proving the lemma for t = 1.

Now, Assume that the lemma holds all integers � t.Then again by (7) and the
induction hypothesis, we get

P2k (t + 1)n = P(2 k t + n) + 2k

� (–1)k+1 P2kt + n (mod Qk)

� (–1)k+1 (–1)t (k+1) Pn (mod Qk)

� (-1)(t+1) (k+1) Pn (mod Qk).

If t < 0, say t = – m, where m > 0 by (5) we have

Pn + 2kt = Pn – 2 k m = Pn + 2 (-k) t

� (–1)t (- k + 1) Pn (mod Q(-k))
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� (–1)-t (-k+ 1) Pn (mod Qk)

� (–1)t (k - 1) Pn (mod Qk)

which completes the proof of the lemma.

Lemma 2 : If m is even and n, k are any integers then Q
n+2km

 � (-1)k Q
n
 (mod Q

m
)

Proof: For k = 0, the lemma is trivial.

We prove this lemma for k > 0 by using induction on k, by (11)

Qn+2m = 2Qn + m Qm – (–1)m Qn.

Because m is even, this gives the lemma for k = 1.

Assume that the lemma holds all integers � k. By (11) and the induction
hypothesis, we get

Qn+2(k + 1)m = 2Qn + 2km Q2m – Qn + 2(k-1) m

� 2(–1)k Qn Q2m – (–1)k-1 Qn (mod Qm)

� (–1)k (2Q2m –1) Qn (mod Qm) (12)

But since m is even it follows from (10) that

2Q2m + 1 � - 1 (mod Qm) (13)

By (12) and (13) together prove the lemma for k + 1.

Hence by induction the lemma holds for k > 0.

If k < 0, say k = - r, where r > 0, we have

Qn+2km = Qn–2 r m = 2 Qn Q2 rm – (–1)2 rm Qn+2 rm

= 2 Qn Q2 rm – Qn+2 rm

� 2 Qn(–1)r – (–1)r Qn (mod Qm)

� (–1)r Qn (mod Qm)

� (–1)k Qn (mod Qm)

which completes the proof of the Lemma.

First we prove those n for which 8Pn
(1) + 1 and 8Qn

(1) + 1 be perfect squares,
i.e., 8Pn

(1) +1 is perfect square only when n = 0 or 1 and 8Qn
(1) +1 is perfect square

only when n = 0, 1 or 2. So, P1
(1), Q0

(1), Q1
(1) and Q2

(1) are the only triangular numbers.
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To prove above results we present the period k of the sequence 
�

��
�
�

�
�
�

0

)1(

ttQ

modulo certain integer M > 0. That is for all integers u � 0, � ���
� � tkut QQ )(  (mod M).

Also if modulo M, the sequence { � ��
tQ } has period k, we have Rt and Ut for t = 0,

1, 2, ….. k – 1, where Qt
(1) � Rt (mod M) and 8Qt

(1) + 1 � Ut (mod M), For certain
values of M > 0, the period k of {Qt

(1)}, the numbers Rt (t = 0, 1, 2, ….. k – 1) and
the numbers Ut (t = 0, 1, 2, ….. k – 1) are given in

Table 2(a)

I II III IV
Mod Period R

t
 (t = 0, 1, 2, …., k – 1) U

t
 (t = 0, 1, 2, …., k –1)

M K Q
t
(1) � R

t
 (mod M) 8Q

t
(1) + 1 � U

t
 (mod M)

7 6 1, 1, 3, 0, 3, 6. 2, 2, 4, 1, 4, 0.

9 24 1, 1, 3, 7, 8, 5, 0, 5, 1, 7, 6, 1, 8, 8, 0, 0, 7, 3, 2, 5, 1, 5, 0, 3, 4, 0,

6, 2, 1, 4, 0, 4, 8, 2, 3, 8. 2, 2, 4, 8, 0, 6, 1, 6, 2, 8, 7, 2.

10 12 1, 1, 3, 7, 7, 1, 9, 9, 7, 3, 3, 9 9, 9, 5, 7, 7, 9, 3, 3, 7, 5, 5, 3.

23 22 1, 1, 3, 7, 6, 8, 0, 8, 5, 7, 8, 1, 10, 9, 9, 2, 11, 22, 7, 11, 4, 17, 13,

10, 8, 4, 5, 3, 0, 3, 6, 4, 3, 10. 18, 1, 18, 12, 17, 21, 11, 18,

22, 14, 2, 16.

Lemma 3 : Suppose n � 0 or 1 (mod 4). Then 8Qn
(1) + 1 is a perfect square if

and only if n = 0 or 1.

Proof: We know that Qn
(1) = Qn .

If n = 0 or 1 then 8Qn +1 = 32 , by table 1(d ).

Conversely, suppose n � 0 or 1 (mod 4) and n � {0, 1}. Then n can be written
as n = 2km + �, m = 2r , r � 1, k is odd and � = 0 or 1.

Therefore by (11) and by table 1(d), we get

Qn = Q2km+� � (–1)k Q� (mod Qm) � –1 (mod Qm)

So that 8Qn +1 � –7 (mod Qm)

Hence the Jacobi Symbol
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Now note that for modulo 7, the sequence {Qn} is periodic with period 6. In
fact by (11) and Table 1(d ), we have

Qn+6 = 2 Q3 . Qn+3 + Qn = 2(7) Qn+3 + Qn

� Qn (mod 7).

Also, since m = 2r � ± 2 (mod 6), we have from (5) and Table 2(a) that

Qm � Q± 2 (mod 7) � Q2 (mod 7) � 3 (mod 7)
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7
mQ

 = – 1 (15)

Now (14) and (15) gives ��
�

�
��
�

� �

m

n

Q

Q 18
 = – 1.

Proving that 8Qn + 1 cannot be a square,

which completes the proof of the lemma.

Lemma 4 : Suppose n � ± 2 (mod 36). Then 8Q
n

(1) + 1 is a perfect square if and
only if n = ± 2.

Proof: We know that Qn
(1) = Qn .

If n = ± 2 then 8Qn
(1) + 1 = 52 by (5) and Table 1(d ).

Conversely, suppose n � ± 2 (mod 36) and n � {–2, 2 }.

Then n can be written as n = 2.32 . 2r . g ± 2, where r � 1 and g is odd.

32 . 2r if r � 3 (mod 10)

            m = 3.2r if r �1 (or) 6 (mod 10) (16)

2r otherwise.

So that n = 2km ± 2, where k is odd (in fact , k = g , 3g or 32 g). Also, since

�
�
�
�
�
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2t+10 � 2t (mod 22) for t � 1, it follows that m, defined in (16) is such that

m � ± 4, ± 6, ± 10 (mod 22) (17)

For instance, if r � 6 (mod 10), then r = 10u+6 for some integer u and in this case (16)

m = 3.2r = 3.210u + 6 � 3.26 (mod 22) � 6 (mod 22).

Now by Lemma (2), (5) and Table 1(d ),

we have Qn = Q2km ± 2 � (–1)k Q2 (mod Qm ) � –3 (mod Qm).

So that  8Qn + 1 � – 23 (mod Qm). Therefore
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Q

Q

Q

Q (18)

Note that for modulo 23, the sequence {Qj } is periodic with period 22. That is

Qj + 22i � Qj (mod 23) for all integers i � 0 (19)

Now (17), (18) and (5) imply that Qm � Q4 , Q6 or Q10 (mod 23).

i.e., Qm � 17, 7 or 5 (mod 23) by Table 2(a).

Therefore (18) gives

�
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7
 , 

23

1718

m

n

Q

Q
 showing ��

�

�
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m

n

Q

Q 18
 = - 1

Therefore 8Qn+1 is not a perfect square.

Lemma 5 : Suppose n � ± 1 (mod 22 . 3). Then 8Pn
(1) + 1 is a perfect square if and

only if n = ± 1.

Proof: Note that Pn
(1) = Pn .

If n = ± 1, then by (5) and by Table 1(b)

We have 8Pn+1 = 8P±1 + 1 = 32 .

Conversely, suppose n � ± 1 (mod 22 . 3) and n � {–1, 1}. Then n can be written as

n = 2km ± 1 then m = 2r , r � 1, k is odd.
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Therefore, by (11) and Table 1(d ),

we get Qn = Q2km + � � (–1)k Q� (mod Qm) � –1 (mod Qm).

So, that 8Pn+1 = 8P2km ± 1 + 1

� 8(–1)m(k+1) P±1 + 1 (mod Qm)

� 8(–1) + 1 (mod Qm)

� – 7 (mod Qm).
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By using Lemma 3,We can write �
�
�

�
�
�

7
mQ

 = –1.

� ��
�

�
��
�

� �

m

n

Q

P 18
 = –1.

Proving that 8Pn + 1 cannot be a square,

which completes the proof of the lemma.

Lemma 6 : Suppose n � 0, 1, ± 2 (mod 72). Then 8Qn
(1) + 1 is a perfect square if

and only if n = 0, 1, ± 2.

Proof: We know that Qn
(1) = Qn .

If n � 0 or 1 (mod 72), then n � 0 or 1 (mod 4) and n � ± 2 (mod 36).

The proof follows from Lemma (3) and Lemma (4).

Lemma 7: 8Q(1)
n+1 is not a perfect square if n = 0, 1, ± 2 (mod 72).

Proof : We know that Qn
(1) = Qn .

We prove this in different steps eliminating at each stage certain integers n
modulo 72 for which 8Qn + 1 is not a square. In each step we choose an integer m
such that the period k (of the sequence {Qn} mod m) is a divisor of 72 and there by
eliminating certain residue class modulo k.
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Step I : Note that modulo 10, the sequence {Qn} is periodic with period 12.
That is, Qn+12u � Qn (mod 10) for all integers u � 0. Therefore, if n � 3, 4, 6, 7, 8 or
11 (mod 12) then we respectively have 8Qn + 1 � 8Q3+1, 8Q4 + 1, 8Q6 + 1, 8Q7 + 1,
8Q8 + 1 or 8Q11 + 1 (mod 10) so that by periodic table, 8Qn + 1 � 3 or 7 (mod 10)
for these values of n, showing 8Qn + 1 is not a square, since m2 � 0, 1, 4, 5, 6 or 9
(mod 10) for any integer m � 1. Therefore, for the sequence in the form 8Qn + 1 we
have to search those n for which n � 0, 1, 2, 5, 9 or 10 (mod 12) or equivalently
among n � 0, 1, 2, 5, 9, 10, 12, 13, 14, 17, 21 or 22 (mod 24).

Step II : Modulo 9, the sequence {Qn} is periodic with period 24 that is
Qn+12u � Qn (mod 9) for all integers u � 0. So that when n � 5, 9, 12, 13, 17 or 21
(mod 24) we respectively have Qn � Q5, Q9, Q12, Q13, Q17 or Q21 (mod 9) and therefore,
in view of periodic table, 8Qn + 1 � 2, 3, 5, 6 or 8 (mod 9), showing 8Qn + 1 is not
a square, since m2 � 0, 1, 4 or 7 (mod 9) for any integer m or � 1.

Thus, there remain n � 0, 1, 2, 10, 14 or 22 (mod 24).

Step III : Modulo 11, also the sequence {Qn} is periodic with period 24,
so that for n � 0 or 14 (mod 24) we have Qn � Q10 or Q14 (mod 11), showing
8Qn+1 � 2 or 10 (mod 11), by periodic table. Therefore 8Qn+1 is not a square if n
� 10 or 14 (mod 24), since 2 and 10 are quadratic nonresidues modulo 11.

Thus there remain n � 0, 1, 2 or 22 (mod 24) or equivalently, n � 0, 1, 2, 22, 24,
25, 26, 46, 48, 49, 50 or 70 (mod 72).

Step IV : Modulo 199, the sequence {Qn} has period 18, so that if n � 4, 11, 13,
14 or 17 (mod 18) then by periodic table, we respectively have 8Qn + 1 � 137, 78,
71, 37, 192 (mod 199) giving 8Qn + 1 is not a square, since 71, 78, 137 and 192 are
quadratic nonresidues modulo 199.

Hence we eliminate n � 22, 49 and 50 (mod 72).

Step V : Modulo 197, the sequence{Qn} has period 36, if n � ±10, ±12
(mod 36) then by periodic table, we respectively have 8Qn + 1 � 113 or 194
(mod 197), showing these n can be eliminated. Thus we can eliminate n � 24, 26,
46 and 48 (mod 72).

Step VI : Modulo 73 the sequence {Qn} is periodic with period 72. Therefore
if n � 25 (mod 72), then 8Qn + 1 � 56 (mod 73) by periodic table, showing 8Qn + 1
is not a square,
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Since �
�
�

�
�
�

73

56
= – 1

Finally, there remain n = 0, 1, 2 (mod 72).

Theorem 1: Qn
(1) is triangular number if and only if n = 0, 1, ± 2.

Proof : From Lemma 6 and 7 we have 8Qn
(1) + 1 is a perfect square if n = 0, 1, ± 2.

Therefore we have Qn
(1) is triangular number.

Observation : (i) From table 1(d) observe that Qn
(2), Qn

(4), Qn
(5), Qn

(6), Qn
(8), Qn

(9)

and Qn
(10) are triangular numbers if n = 0, 1.

(ii) For Qn
(3) when n = 0, 1 or 4 and Qn

(7) when n = 0, 1 or 2 be triangular
numbers.

Theorem 2: (i) P
n

(1) is triangular number if and only if n = 1.

       (ii) P
n

(2) is a generalized triangular number if n = 0, 1 or 2.

Proof : (i) From Lemma 5 the result is proved.

we have 8P
n

(1) + 1 is perfect square if n = 1.

(ii) If N is triangular number then 8N + 1 must be perfect square.

i.e.,   N = 
� �

2

1�mm

We know that when 8P
n

(1) + 1 is perfect square then P
n

(�) is a generalized
triangular number for any integer m.

By table 1(b) , P2
(2) = 3.

We have 8P2
(2) + 1 = 25 = 52 .

Note that zero is not a triangular number for any integer m > 0.

Therefore P
n

(2) becomes generalized triangular number if n = 0, 1 or 2.

Hence the theorem.

Observation: From table 1(b) & 1(c ) observe that Pn
(5), Pn

(9) and Pn
(14) are generalized

triangular numbers when n = 0, 1 or 2.

Theorem 3 : Q
n

(�) is triangular number if n = 0, 1.

Proof : We prove the theorem by proving 8Q
n

(�) + 1 is a perfect square.

i.e.,we have to prove 8Q
n

(�) + 1 is a perfect square if n = 0,1 for all integers � > 0.
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To show this we use the Principle of Mathematical Induction on �.

From Lemmas 6 and 7, We know that 8Q
n

(�) + 1 is a perfect square if n = 0, 1.

For � = 1 the result is true.

Assume that it is true for � = m.

Observing that 8Q0
(m) + 1 and 8Q1

(m) + 1 are perfect squares.

We prove that it is also true for � = m + 1.

Consider 8Q1
(m+1) + 1 = 8.1 + 1 = 9 = 32 .

(From table 1(d) Q1
(�) = 1, for all �).

�  By the Principle of Mathematical Induction 8Q
n

(�) + 1 is a perfect square if
n=0, 1. which completes the proof of the theorem.

Theorem 4 : P
n

(�) is a generalized triangular number if n = 0, 1.

Proof : We prove the theorem by proving 8P
n

(�) + 1 is a perfect square.

i.e., we prove 8P
n

(�) + 1 is a perfect square if n = 0, 1 for all integers � > 0.

To show this we use the Principle of Mathematical Induction on �.

From Lemma 5, 8P
n

(1) + 1 is a perfect square if n = 1.

When n = 0, 8Pn
(1) + 1 = 1 which is a perfect square (from table 1(b)).

For � = 1 the result is true.

Assume that it is true for � = m.

Observing that 8P0
(m) + 1 and 8P1

(m) + 1 are perfect squares

We prove that it is also true for � = m + 1.

Consider 8P0
(m+1) + 1 = 1 = 12 .

(From table 1(b), P0
(�) = 0 for all �).

� By the Principle of Mathematical Induction 8Pn
(�) + 1 is perfect square if n = 0, 1.

Hence Pn
(�) is a generalized triangular number if n = 0, 1.

which completes the proof of the theorem.

REFERENCES

[1] Apostal Tom M, Introduction to Analytic Number Theory, Springer, International
Student Edition (1980).



108 B. Krishna Gandhi & G. Upender Reddy

[2] Charles R. Wall, “On Triangular Fibonacci Numbers”. The Fibonacci Quaterly 23.1
(Feb. 1985): 77–79.

[3] Luo Ming, “On Triangular Fibonacci Numbers” The Fibonacci Quaterly 27.2 (1989):
98–108.

[4] Luo Ming, “On Triangular Lucas Numbers”. Applications of Fibonacci Numbers, Vol. 4,
Kluwer Academic Pub. (1991): 231–240.

[5] Mc. Daniel. W. L, “Triangular Numbers in the Pell Sequence”. The Fibonacci Quaterly
34.2 (1996): 105–107.

[6] Srinivasa Rao B, Ph.D thesis titled “Special types of integers in certain second order
recursive sequences”.

Dr. B. Krishna Gandhi G. Upender Reddy
Professor of Mathematics & Principal Asst. Prof. of Mathematics
JNTU College of Fine Arts Mahatma Gandhi Institute of Technology
Masab Tank, Hyderabad- 28 Chaitanya Bharathi P.O;Gandipet, Hyderabad-75


