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Abstract. This paper considers mixed strategies for two player, zero sum
differential games on a finite time interval. Motivated by the classical re-

sult in static games that ensures the existence of a saddle point when mixed
strategies are allowed for both players, we extend those ideas to differen-
tial games, introducing a Law of Large Numbers game, for which the value

function coincides with the limit of discrete time Markov games. Finally,
of particular interest is the class of strategies called approximately optimal
Markov strategies, which are studied in the last part.

1. Introduction

This paper concerns the zero-sum game of a system represented by a differential
equation of the form

d

ds
xs = f(s, xs, us, zs), (1.1)

where u·, z· are the controls chosen by the two players. Player I (using control
u·) is attempting to minimize a payoff P of the form (3.2), while the Player II is
trying to maximize it with the control z·. The value of this game depends on the
information pattern that is considered. For instance, Elliott-Kalton [8] introduced
the definition of the upper and lower value, using the notion that one of the players
may have some advantage on the available information.

The pioneering work on these differential games was done in the early 1950s
by Rufus Isaacs [18], and was based on the solution of what is called now the
Isaacs PDE by the method of characteristics. The information advantage of each
player is somehow reflected in the structure of this PDE, and it is known that
when the Isaacs minimax condition holds in the Hamiltonian, the upper and lower
values of the game coincide. In this paper we consider differential games for which
the Isaacs condition does not hold, and allow both players to use time-varying
mixed strategies. It is a standard result in the theory of static games that, when
it is allowed that both players select their decisions following a fixed probability
distribution on the set of actions, there is a pair of equilibrium strategies µ∗, ν∗.

For static games in which upper and lower values are different, it is well known
that a saddle point exists in terms of mixed strategies (Section 2 below). These
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are probability measures µ and ν on the spaces U and Z on which the payoff
P (u, z) is defined. Early work in the 1960s on mixed strategies for differential
games included [11], [20, Chap. 9]. To the best of our knowledge, this topic seems
then to have been neglected until the recent paper [5].

At a formal level, in a mixed strategy differential game the players choose time
varying probability measures µs and νs from which the controls us and zs in (1.1)
are chosen by random sampling. Since it is difficult to formulate this idea precisely,
we consider in Section 4 discrete time approximations. It is shown that the value
functions for these approximating discrete time games tend to a limit v(t, x) as the
mesh of the partitions tends to zero. This limit function satisfies the corresponding
Isaacs PDE (4.1) in the sense of Crandall-Lions viscosity solutions [7]. This result
is formulated as Theorem 4.4, and it has been obtained before by Buckdahn, Li
and Quincampoix [5]. Nevertheless, this result is important in order to present
the results of this paper.

In the study of differential games, the definition of value function as a (suitably
interpreted) solution to the Isaacs PDE represents only one part of the theory.
From an applications viewpoint, an equally important question is to find optimal
(or approximately optimal) control strategies for the two players which depend on
the game state and time. Such control strategies are called Markov. For mixed
strategy differential games, the Isaacs PDE (4.1)-(4.2) provides formally a recipe
for obtaining Markov control strategies, which are measure valued functions of
state and time. Unfortunately this formalism can rarely be made rigorous. Instead,
we seek control strategies which are approximately Markov, as explained in Section
6. Another feature of our paper is the idea of coarse and fine partitions of the time
interval in which the mixed strategy differential game is played (Section 7).

We call v(t, x) the value of the mixed strategy differential game, for initial time
t and initial game state x. The main contribution of this paper is not a study
of the value function itself. Instead, we focus on approximately optimal control
strategies which can be obtained from the value function. This work is related
with our paper [12] on approximately optimal strategies and saddle points for
differential games (deterministic or stochastic), and to the earlier papers [11] and
[15]. As a first step, in Section 5 auxiliary differential games called Law of Large
Numbers (LLN) games are introduced. In these games, the dynamics and running
cost are averaged with respect to measures µ and ν on the control spaces U and Z,
in a way similar to a technique used in relaxed control theory. See (5.1) and (5.2).
The Isaacs minimax condition holds for the LLN game, and the value function
VM (t, x) agrees with the limit v(t, x) in Section 4 .

The differential games which we consider have a kind of Markovian structure.
This suggests that the game state at any time s should contain enough infor-
mation to choose control strategies for both players in the LLN game which are
(approximately) optimal. See Theorem 6.3. This result cannot be applied directly
to obtain approximately optimal strategies for the mixed strategy game itself. To
avoid this difficulty, in Section 7, we modify the stochastic difference game model
in Section 4. The modified model has two steps. At the first step, approximately
optimal Markov strategies are chosen as in Section 6, for a coarse partition π of
the time interval [t, T ] of play. Then controls us, zs which are constant on much
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smaller subintervals of π are chosen by random sampling. This model is suggested
by the intuitive idea that controls us and zs chosen by random sampling should
vary with time more rapidly than the probability measures µs, νs from which the
sampling occurs. The main result of this paper is Theorem 7.2, which provides
an approximate saddle point for the mixed strategy differential game, in terms of
modified stochastic difference games of the kind described in Section 7 and the
Appendix.

As this paper was being written, we learned of Sirbu’s paper [22] on mixed
strategy stochastic differential games. His work also is based on discrete time ap-
proximations. In relation with stochastic differential games and mixed strategies,
there is also a recent work by Buckdahn, Li and Quincampoix [6], where they use
BSDEs techniques to analyse the existence of value of the game. When the Isaacs
minimax condition (3.6) does not hold, the mixed strategy value v(t, x) may be
strictly above the lower game value V−(t, x) or strictly below the upper value game
V+(t, x). Kaise and Sheu [19] described a different model which also leads to value
functions with this property. Another way to get intermediate value functions
is using a randomised structure in the order in which decisions are taken by the
players; these ideas are elaborated in the recent paper [17].

2. Static Games

It is a classical result in game theory that a saddle point is obtained by introduc-
ing mixed strategies. In order to fix ideas, consider a static game with continuous
payoff P (u, z) with u ∈ U, z ∈ Z and U, Z compact sets in a metric space. The
upper and lower values are defined as

V+ = min
u∈U

max
z∈Z

P (u, z), V− = max
z∈Z

min
u∈U

P (u, z).

In the definition of V+, the maximizer has what we call an information advantage,
since z can be chosen as a function of u. Similarly, the minimizer has an infor-
mation advantage in the definition of V−, choosing u as a function of z. Neither
player has an information advantage if V+ = V−, and the game has a saddle point.
Moreover, V+ = V− = val(P ) is called the value of the game.

When V− < V+, the value of the game and saddle points are defined in terms
of mixed strategies, as follows. Denote by P(U) and P(Z) the set of probability
measures on the σ−algebra of Borel subsets B(U) of U , and B(Z) of Z, respectively.
These spaces of probability measures are endowed with the weak topology; it is
well known that there exists a metric on P(U) (or P(Z)) which is compatible with
the weak topology, and with respect to this topology P(U) and P(Z) are compact
[9, p. 96].

We define a mixed strategy for the minimizer player as a probability measure µ
on B(U) and, similarly, a mixed strategy for the maximizer player is a probability
measure ν on B(Z). The players choose mixed strategies µ, ν with payoff

P̂ (µ, ν) =

∫
U

∫
Z

P (u, z)µ(du)ν(dz).

Since this transformation is bilinear, classical minimax theorems (see, e.g. [1, p.
218]) guarantee the existence of a saddle point (µ∗, ν∗), that is, for every pair of
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probability measures (µ, ν),

P̂ (µ∗, ν) ≤ P̂ (µ∗, ν∗) ≤ P̂ (µ, ν∗). (2.1)

The value of the mixed strategy game, denoted by val(P ), is defined as P̂ (µ∗, ν∗).
Note that (2.1) is equivalent to the following inequalities:∫

U

P (u, z)µ∗(du) ≤ val(P ), for all z ∈ Z,∫
Z

P (u, z)ν∗(dz) ≥ val(P ), for all u ∈ U.

To achieve a saddle point for static games with mixed strategies, many inde-
pendent plays of the game should be considered. Suppose that on each play, the
minimizer chooses u randomly, with probability distribution µ(du), and the max-
imizer chooses z randomly with probability distribution ν(dz). For the optimal
µ∗ the minimizer achieves average payoff no more than the mixed strategy value
val(P ) as the number of plays tends to infinity. Similar arguments hold for the
maximizer player.

3. Differential Game Formulations

Given T > 0 a finite time horizon and t ∈ [0, T ), consider a controlled dynamical
system for which the state process xs at time s ∈ [t, T ] evolves according to the
ordinary differential equation

d

ds
xs = f(s, xs, us, zs), (3.1)

with initial condition xt = x ∈ Rd. The controls adopted by Players I and II
are, respectively, the control processes us and zs taking values in some compact
subsets U and Z of Rm1 and Rm2 .

We make the following assumptions on the coefficients of the above ODE: The
function f : [0, T ] × Rd × U × Z → Rd is bounded, continuous, and uniformly
Lipschitz continuous with respect to t, x for (u, z) ∈ U × Z.

The game payoff is defined by

P (t, x;u·, z·) =

∫ T

t

L(s, xs, us, zs)ds+ g(xT ), (3.2)

with L : [0, T ] × Rd × U × Z → R being bounded, continuous, and uniformly
Lipschitz continuous with respect to t, x for (u, z) ∈ U × Z and g : Rd → R being
bounded and Lipschitz continuous. In this zero sum differential game Player 1 is
the minimizing controller, while Player II is trying to maximize P .

Remark 3.1. A basic reference on this subject is the book of Fleming-Soner [14,
Chapter 11, Second edition]. We follow the notation and assumptions there (except
that G on p. 377 in [14] is now f). We also notice that at the bottom of p. 377
in [14], U and Z are compact subsets of Euclidean spaces. However, the results
remain true (with no changes in the proofs) if U and Z are compact metric spaces.
In particular, this observation applies to the Law of Large Numbers game in Section
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5. Another excellent introduction to differential games and viscosity solution is [2,
Chap. 8].

In order to have a complete description of the differential game we need to
introduce upper and lower values of the game. This procedure can be formulated
in terms of anticipative strategies, using the Elliott-Kalton definition; see, for
instance, [14, Chapter 11] and [2, Chapter VIII] for the precise definitions.

In fact, it turns out that the upper value V+(t, x) can be characterized as the
unique bounded, Lipschitz viscosity solution of the following Isaacs PDE, see [10],
[14, Thm. 11.6.1],

vt +H+(Dv(t, x), x, t) = 0, v(T, x) = g(x), (3.3)

with Dv the gradient of v(t, ·) and
H+(p, x, t) := min

u∈U
max
z∈Z

F (p, x, t;u, z), (3.4)

F (p, x, t;u, z) := [f(t, x, u, z) · p+ L(t, x, u, z)] . (3.5)

Similarly, the lower value V−(t, x) has associated an Isaacs PDE, replacing the sec-
ond term on the left side of (3.3) by H−(p, x, t) := maxz∈Z minu∈U F (p, x, t;u, z).

At an intuitive level, the upper value of the game shall describe a certain ad-
vantage for the maximizing player in the information available to both players. It
can be thought as if at each time s ∈ [t, T ] the maximizing player had information
of the decision taken by the other player us before he chooses zs. The lower value
of the game can be defined similarly, establishing the advantage of the information
to the minimizing player. If for all t ∈ [0, T ), x ∈ Rd, and p ∈ Rd the identity

H+(p, x, t) = min
u∈U

max
z∈Z

F (p, x, t;u, z) = max
z∈Z

min
u∈U

F (p, x, t;u, z) = H−(p, x, t)

(3.6)
holds, it is said that the Isaacs minimax condition holds, and it can be verified that
in that case V+(t, x) = V−(t, x). It is clear that in generalH−(p, x, t) ≤ H+(p, x, t),
and using a comparison principle we can conclude that V−(t, x) ≤ V+(t, x).

The idea of information advantage to the stronger player in a differential game
can be made more explicit for discrete time approximations to the game, using
what is called in [12] approximate Markov strategies. See also Remark 6.4.

4. Mixed Strategy Differential Games

In the previous section were recalled the differential games when one of the
players has some advantage on the information available when decisions are taken.
Another important case is when both players choose simultaneously their decisions.
A discrete time version of this differential game was analyzed by Fleming [11,
p.199], and both players choose simultaneously at each step, and neither player
knows the opponent’s choice at the current step. In that paper the game dynamics
(3.1) are discretized. By formally taking a continuous limit, an Isaacs-type PDE
is obtained (see equation (1.6) in [11]):

vt +H(Dv(t, x), x, t) = 0, v(T, x) = g(x), (4.1)

with

H(p, x, t) = valu,zF (p, x, t;u, z) = valu,z [f(t, x, u, z) · p+ L(t, x, u, z)] . (4.2)
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Here valu,zF (p, x, t;u, z) is understood as the common value val(F ) described in
(2.1) with P (u, z) = F (p, x, t;u, z), for t, x and p fixed. It is clear that

H− ≤ H ≤ H+.

Example 4.1. The following example is useful to illustrate our results. Let d = 1,
and define the corresponding set of controls for each player as U = {−1, 1}, Z =
{−1, 1}, and one-dimensional vector field f(t, x, u, z) = uz, with cost function
L(t, x, u, z) = 0. In this case, it is easy to compute H±(p, x, t) as

H+(p, x, t) = 0, H−(p, x, t) = −|p| and H(p, x, t) = 0.

Remark 4.2. The equation (4.1) with boundary condition at time T has a unique
bounded, uniformly continuous viscosity solution. This follows from the main
result of Buckdahn, Li and Quincampoix [5, Thm. 4.1]. Their proof of this
statement is based on discrete time approximations. Roughly speaking, given a
partition π of the interval [0, T ], they define controls to be stochastic processes
u(s), z(s), which are constant on each interval Ij of partition π. The upper and
lower values of the discrete game are defined and pass to the limit when the mesh
size of π goes to zero.The same result about existence and uniqueness also follows
from our Theorem 5.2, which concerns what we call a Law of Large Numbers game
associated with the problem.

The propose of this section is to introduce another approximation of the vis-
cosity solution v(t, x) in (4.1) by the value functions V π(t, x) of certain discrete
time stochastic games where π denotes a partition of the time interval [t, T ]. The
method is based in the following construction, originally due to Souganidis [23].
For stochastic differential games a similar construction was used in [15, Sec. 2].
We describe the argument briefly, omitting some proofs, for completeness.

First, define the family of operators G(t, τ) as follows. For t < τ define the

operator G on the set C0,1
b (Rd) of bounded, Lipschitz continuous functions on Rd

by

G(t, τ)φ(x) = valu,z

{
φ(xτ ) +

∫ τ

t

L(s, xs, u, z)ds

}
, (4.3)

for 0 ≤ t ≤ τ ≤ T . Here xs corresponds to the solution of (3.1) with initial
condition xt = x, when the first player chooses the probability measure µ ∈ P(U)
with constant realizations us = u according to this distribution and, similarly, the
second player chooses a probability measure ν ∈ P(Z) with constant realizations
zs = z along the interval [t, τ ]. Notice that the symbol on the right side of (4.3)
should be understood as the value of the two-player, zero sum static game over
U × Z with payoff

P = φ

(
x+

∫ τ

t

f(r, xr, u, z)dr

)
+

∫ τ

0

L

(
s, x+

∫ s

t

f(r, xr, u, z)dr, u, z

)
ds.

This operator maps the set C0,1
b (Rd) into itself, and it can be verified that for each

φ in C0,1
b (Rd), we have that

lim
τ→t

G(t, τ)φ(x)− φ(x)

τ − t
= H(φx(x), x, t), (4.4)
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with H(p, x, t) as in (4.2).
Throughout π = {0 = t0 < t1 < · · · < tN = T} denotes a partition of [0, T ],

with ∥π∥ = maxj(tj+1 − tj). Define recursively backward in time

V π(t, x) =

{
g(x), t = T∏N−1

j=i G(tj , tj+1)g(x), if t = ti < T.
(4.5)

In the Appendix we will see that V π is the value function for the following dis-
crete time dynamic game. This is called a verification theorem. The state at the
initial time t = ti is x = xti , and for simplicity we denote the state at time tj
by xj = xtj , for j = i, . . . , N . For tj ≤ s < tj+1 the minimizer chooses us = uj
and the maximizer chooses zs = zj , where uj is a U−valued random variable with
distribution µj and zj is a Z−valued random variable with distribution νj . The
probability measures µj , νj , j = i, . . . , N − 1, are chosen according to decision
strategies (see Appendix A), and the corresponding solution of (3.1) is denoted
by xs, which is constructed piecewise on each subinterval of the partition π. This
defines a discrete time stochastic game, in which the random inputs for the min-
imizer and maximizer players are independently chosen on the subintervals, and
knowing the initial state xi and also the previous realizations of the controls uk, zk
for i ≤ k < j. The game payoff is

J(t, x;µ·, ν·) = E

N−1∑
j=i

∫ tj+1

tj

L(s, xs, us, zs)ds+ g(xN )

 . (4.6)

A more precise formulation of such discrete time games is given in the Appendix.
Standard arguments show that V π(t, x), as defined in (4.5), is indeed the value
function:

V π(t, x) = valJ(t, x;µ·, ν·),

where as before val denotes the game value. Moreover, there is a discrete time
dynamic programming principle. For i < j < N with t = ti and x = xi,

V π(ti, xi) = val E
[∫ tj

ti

L(xs, us, zs)ds+ V π(tj , xj)

]
. (4.7)

In particular, a one-step dynamic programming principle holds

V π(tj , x) = valu,z

{
V π(tj+1, xtj+1) +

∫ tj+1

tj

L(s, xs, u, z)ds

}
, (4.8)

with V π(T, x) = g(x). Using the dynamic game value interpretation on V π, de-
scribed in detail in the Appendix, we can derive important properties of this
function.

Lemma 4.3. (1) There exists M such that for all x, x̃ ∈ Rd,

|V π(ti, x)− V π(ti, x̃)| ≤M∥x− x̃∥. (4.9)

(2) For t = ti, τ = tj,

|V π(t, x)− V π(τ, x)| ≤ K(τ − t),

for some constant K.
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In the remainder of this section an increasing sequence of partitions π is chosen
and we show that V π tends to a limit v as the mesh size of the partition ∥π∥ → 0.

Theorem 4.4. lim∥π∥→0 V
π(t, x) = v(t, x), uniformly on compact sets, where v

is the unique bounded, uniformly continuous viscosity solution to the Isaacs PDE
(4.1).

Proof. We shall argue proving that any possible limit of V π is a viscosity solution
of (4.1). Once this is proved the theorem follows applying a comparision principle
[14, Thm. II.9.1] and using Lemma 4.3. Let v be the locally uniform limit of
V π through some sequence ∥π∥ → 0, and note that thanks to Lemma 4.3 this
convergence is uniform in compact sets. We shall prove that v is a viscosity
solution of (4.1). We present here only the proof that v is subsolution, since the
arguments to prove that it is supersolution are similar.

Let w : [0, T )×Rd → R be a smooth function such that v−w has a strict local
maximum at (t̄, x̄) . We shall prove that at (t̄, x̄) we have the inequality

wt +H(Dw(t, x), x, t) ≥ 0, (4.10)

with H as in (4.2). Hence, there exist (tπ, xπ) → (t̄, x̄), as ∥π∥ → 0, with tπ ∈ π,
such that V π − w attains a local maximum at (tπ, xπ). Then, tπ = tj for some
j and, when ∥π∥ is small enough, for the corresponding solution xs of (3.1) with
initial condition xπ and any constant realizations u ∈ Y, z ∈ Z, chosen with
constant control µ = µj and ν = νj , we have that

V π(tj+1, xtj+1)− w(tj+1, xtj+1) ≤ V π(tπ, xπ)− w(tπ, xπ).

Using the discrete time dynamic programming principle and the previous inequal-
ity we have that

w(tπ, xπ) ≤ valu,z E
[∫ tj+1

tπ

L(xs, us, zs)ds+ w(tj+1, xtj+1)

]
.

Finally, applying the fundamental theorem of calculus to w(tj+1, xtj+1)−v(tπ, xπ)
and using (4.4), we get (4.10) taking the limit when ∥π∥ → 0. □

We call the function v(t, x) in Theorem 4.4 the continuous time value function
for the mixed strategy differential game. It is of historical interest to note that
v(t, x) coincides with the function ṽ(t, x) which was obtained by a similar dis-
cretization technique in [11]. That paper appeared in 1964, before the Crandall-
Lions theory of viscosity solutions was invented. In [11, Lemma 2] ṽ(t, x) was
shown to be the ”vanishing viscosity” limit as a → 0 of the classical solution to
the second order parabolic PDE with an added term a times the Laplacian in x
of v in (4.1), and with the same boundary data g(x) at time T . Hence ṽ(t, x) is a
viscosity solution of (4.1), and a standard uniqueness result implies that v = ṽ.

Remark 4.5. In [19] Kaise and Sheu describe a different model in which there is a
game value between the upper and lower values. It involves time discretizations in
which the minimizer and maximizer have an information advantage in alternating
time intervals of the discretization. In a recent paper [17] another approach based
on the Perron’s method was used to have a characterization of the intermediate
value functions for these type of games.
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5. Law of Large Numbers (LLN) Differential Game

First, recall that P(U) and P(Z) denote the spaces of probability measures on
the σ−algebra of Borel subsets of U and Z, respectively. The control spaces of each
player are compact subsets of Euclidean spaces, with U ⊂ Rm1 and Z ⊂ Rm2 . As
before, these spaces of probability measures are endowed with the weak topology;
recall that this topology is compatible with the Prohorov metric on P(U) (or
P(Z)).

Now we introduce the (relaxed) controls for the LLN game, which are useful
for the analysis of this game. The controls for the players are measure-valued
functions, i.e. µ· and ν· take values in P(U) and P(Z), respectively. The vector
valued function f in (3.1) and the cost function L in (3.2) can be extended as
follows, for µ ∈ P(U) and ν ∈ P(Z):

f̄(t, x;µ, ν) =

∫
U

∫
Z

f(t, x;u, z)µ(du)ν(dz),

L̄(t, x;µ, ν) =

∫
U

∫
Z

L(t, x;u, z)µ(du)ν(dz).

The state dynamics x̄s of the LLN game satisfies

d

ds
x̄s = f̄(s, x̄s;µs, νs), x̄t = x, (5.1)

and the game payoff is

P̄ (t, x;µ·, ν·) =

∫ T

t

L̄(s, x̄s;µs, νs)ds+ g(x̄T ). (5.2)

The analogous version of the Isaacs minimax condition (3.6) for this game can be
written, replacing F in (3.5) by

F̄ (p, x, t;µ, ν) = f̄(t, x;µ, ν) · p+ L̄(t, x;µ, ν).

Since F̄ (p, x, t;µ, ν) is bilinear and weakly continuous in (µ, ν) ∈ P(U) × P(Z),
it follows that the Isaacs condition is satisfied for the LLN game and, therefore,
the upper and lower value of this game are the same, and the common value is
denoted by VM (t, x). We use the subscript M for mixed strategies.

Remark 5.1. If there is no maximizing control z· in the model, the LLN game
becomes a deterministic “relaxed” control problem, with control µs. Time dis-
cretizations, like those in Section 6 below, led to ‘chattering control” approxima-
tions. In the deterministic control literature, chattering controls were described
deterministically rather by independent random sampling over time intervals of a
partition as in Section 4. See [3, Chapter 4], [4, Chapter 3].

Theorem 5.2. The mixed strategy value function VM (t, x) is the unique bounded,
Lipschitz continuous viscosity solution of the Isaacs PDE (4.1), with boundary
condition VM (T, x) = g(x).

This is a special case of Theorem 11.6.1 in [14], as applied to the LLN differential
game, with control spaces P(U) and P(Z). What we call LLN games were also
considered in [2, Sec. 8.2], for differential games on an infinite time horizon with
discounted cost functions.
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6. Approximately Optimal Markov Strategies I

The dynamic programming/PDE approach to optimal stochastic control and
differential games involves the idea of controls which are functions of time and
state variables. These are often called Markov control strategies. For technical
reasons, we cannot develop a theory in terms of optimal Markov control strategies.
Instead, we use a notion of approximately optimal Markov strategies which was
considered in [12][13]. It is based on similar concepts in [15] and in stochastic
control theory [14, Section 4.7]. In this section we apply some of those results to
the LNN game, with control variables µ and ν.

We define an admissible control µ· : [t, T ] → P(U) (respectively ν· : [t, T ] →
P(Z)) for Player I (resp. Player II) on [t, T ] as a measurable function, with
respect to the σ-algebra B(P(U)), taking values in P(U) (resp. P(Z)). The set
of admissible controls for Player I (resp. II) is denoted by UP(t) (resp. ZP(t)).
For every µ· ∈ UP(t) and ν· ∈ ZP(t) there is a solution to the ODE (5.1) with
given initial data. We identify the controls which are equal almost everywhere in
the interval [t, T ].

An Elliott-Kalton strategy for the maximizing Player II beginning at time t is a
mapping β from UP(t) into ZP(t) provided that for each s ∈ [t, T ], if µ· = µ̃· almost
everywhere in [t, s], then β(µ·) = β(µ̃·) a.e. in [t, s]. The set of these strategies
is denoted as ∆P

EK(t). The set of Elliott-Kalton strategies α : ZP(t) → UP(t) for
the minimizing Player I can be defined in a similar way, and is denoted by ΓP

EK(t).
Next we present the definition of approximately Markov strategies.

Definition 6.1. (a) α ∈ ΓP
EK(t) is an approximately Markov strategy for the

minimizing player if there exists a partition π = {0 = t0 < t1 < · · · < tN =
T} of [0, T ] with t = ti and Borel measurable functions ϕj : Rd → P(U),
for j = i, i+ 1, . . . , N − 1, such that

α(ν·)s = ϕj(x̄tj ), tj ≤ s < tj+1.

(b) β ∈ ∆P
EK(t) is an approximately Markov strategy for the maximizing player

if there exists such a partition π and Borel measurable functions ηj : Rd →
P(Z) such that

β(µ·)s = ηj(x̄tj ), tj ≤ s < tj+1.

Since the Isaacs minimax condition holds for the LNN game, [15, Prop. 2.3]
can be used to get approximating optimal Markov strategies for both players, as
is outlined in the proof of Theorem 6.3.

We recall briefly the discretization method of Fleming and Soner [14, Section
11.8] applied to the LNN game described above. Let π = {0 = t0, t1, . . . , tN = T}
be a partition of [0, T ], with ∥π∥ = maxj(tj+1 − tj). For the initial time t = ti,
define the set of measurable functions

UP
π = UP

π (t) = {µ· : [t, T ] → P(U) : µs = µtj , for s ∈ [tj , tj+1), j = i, . . . , N − 1}.

and the upper value function V̄ π
+ (t, x) as

V̄ π
+ (t, x) = sup

β∈∆P
EK

inf
µ·∈UP

π

P̄ (t, x;µ·, β(µ)·),
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where ∆P
EK = ∆P

EK(t) denotes the set of Elliott-Kalton strategies, with P̄ as in
(5.2). The corresponding lower value function V̄ π

− is defined similarly.

Now, since the LLN game satisfies the Isaacs condition, V̄ π
+ and V̄ π

− tend to
VM as ∥π∥ → 0, uniformly in compact sets [14, Thm. 8.1, p. 391]. Note that
in the above definition of V̄ π

+ , the control µs = µtj is constant on each interval
Ij = [tj , tj+1) of the partition π, but νs = β(µ·)s is not required to be constant.
Later in the section, we consider slightly different versions of the discrete time
formulation in which both µs and νs are constant on Ij . See Lemma 6.5 and its
proof.

Remark 6.2. Historical Note. The definition of discrete time upper value function
in [14, (11.8.1)] is essentialy due to Nisio [21, Section 4.2.2]. Related definitions
of upper and lower value functions were given in [16, Chapter 1] also in terms of
partitions of the time interval [t, T ]. However, Friedman allowed both u and z to
be functions of time on each subinterval. In Nisio’s approach, the weaker player
chooses a constant control on each subinterval. For the upper value, the weaker
player is the minimizer.

In [12, Section 3] the concept of saddle point property was introduced for differ-
ential games. For the LLN game, this is defined as follows. Given ε > 0 a strategy
αε is called ε−optimal for the minimizer if

sup
ν·∈ZP(t)

P̄ (t, x;αε(ν·), ν·) ≤ VM (t, x) + ε, (6.1)

with ZP(t) the set of all measurable P(Z)−valued paths ν· on [t, T ]. Similarly, a
strategy βε is ε−optimal for the maximizer if

inf
µ·∈UP(t)

P̄ (t, x;µ·, β
ε(µ·)) ≥ VM (t, x)− ε, (6.2)

The saddle point property holds if such a pair (αε, βε) exists for every ε > 0.

Theorem 6.3. For every ε > 0, there exist ε−optimal strategies (αε, βε) which
are approximately Markov.

Proof. The existence of an approximately Markov αε is a consequence of the fol-
lowing result [15, formula (2.4)]:

Given ε > 0 and a partition π, there exists αε of the desired form

αε(ν·) = ϕεj(x̄tj ), for tj ≤ s < tj+1,

such that for initial time t and state x,

sup
ν·∈ZP(t)

P̄ (t, x;αε(ν·), ν·) ≤ V̄ π
+ (t, x) + ε/2. (6.3)

Recall from Definition 6.1 that we consider only partitions π such that t = ti for
some i.

In [15] the lower differential game value is considered instead of the upper value.
To obtain (6.3) from [15, formula (2.4)] the payoff P̄ should be replaced by −P̄ .
The construction used in [12] to obtain the functions ϕεj is very similar to the
one described later in this section for a fully discretised version of the LLN game.
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Since V̄ π
+ tends to VM as ∥π∥ → 0 uniformly on compact sets, (6.1) holds for ∥π∥

sufficiently small.
For the maximizer, ε−optimal βε which is approximately Markov is obtained

in the same way, by considering the lower discrete time value function V̄ π
− . □

Remark 6.4. We have used in an essential way the fact that the Isaacs minimax
condition holds for the LLN game. Hence both V̄ π

+ and V̄ π
− tend to the same limit

VM as ∥π∥ → 0. In the definition of saddle point property for differential games
which do not satisfy the Isaacs condition, the definition of approximately Markov
strategy in [12, Section 3] for the stronger player must be changed. The stronger
player chooses on each time interval Ij = [tj , tj+1) a control based on both the
game state at time tj and the opponent’s control choices on this interval.

Fully discretized LLN game. The remainder of this section is in preparation for
Section 7. In the discussion above, the LLN game has been partially discretized.
Discrete times tj are considered, but the dynamics of the LLN game state are still
described by the differential equations (5.1). Let us now consider the following
fully discretized version of the LLN game.

In order to simplify the calculations, we assume in the rest of this section and
in Section 7 that there is no running cost, i.e. L ≡ 0. The general case is reduced
to this one by considering an augmented state (x̄s, x̄

′
s) of dimension d+ 1, where

d

ds
x′s = L̄(s, x̄s, µs, νs), x′t = 0,

and new terminal cost g(x̄T ) + x̄′T .
We shall continue working with a partition π as above. However, we now

take controls which are constant (for both the minimizer and maximizer) on each
interval Ij = [tj , tj+1) of π. Thus, µs = µj , νs = νj for s ∈ Ij . The states yj = ytj
satisfy the dynamics{

yj+1 = F̄j(yj , µj , νj), j = i, i+ 1, . . . , N, with
F̄j(y, µ, ν) = y + (tj+1 − tj)f̄(tj , y, µ, ν),

(6.4)

and initial state yi = yti = x. This is an Euler-type scheme, which corresponds to
the discrete version of the dynamics (5.1). The game payoff associated to this game
is defined as g(yN ). Abusing the notation, let Wi(x) = W̄π

+(ti, x) be the upper
game value function. It is not difficult to verify that these functions are uniformly
Lipschitz continuous, with constant Λ and, moreover, the dynamic programming
equation holds: {

Wj(yj) = minµj maxνj Wj+1

[
F̄j(yj , µj , νj)

]
,

WN (yN ) = g(yN ).
(6.5)

In this fully discretized upper game, the maximizer chooses νj knowing the oppo-
nent’s choise of µj . Similarly, in the fully discretized lower game the minimizer
chooses µj knowing νj . The lower value function W̄π

− satisfies the recursive equa-
tion corresponding to (6.5) with minmax replaced by maxmim. As in previous
arguments, each W̄π

−(tj , ·) is Lipschitz with constant not depending on j.

Lemma 6.5. W̄π
+ and W̄π

− tend to VM as ∥π∥ → 0, uniformly on compact sets.
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Proof. In the partially discretized LLN game defined earlier in this section, let Ṽ π
+

and Ṽ π
− denote the upper and lower game values when both µj and νj are required

to be constant on Ij . The sup in the definition of V̄ π
+ is decreased when νs is

required to be constant on each interval Ij . Hence Ṽ π
+ ≤ V̄ π

+ . Similarly, V̄ π
− ≤ Ṽ π

− .

Hence by Theorem 6.3, Ṽ π
− and Ṽ π

+ also tend to VM as ∥π∥ → 0, uniformly on
compact sets.

Given µ· ∈ UP
π (t) and ν· ∈ ZP

π (t), let x̄j = x̄tj and yj = ytj where x̄s satisfies
(5.1) and yj satisfies (6.4), with x̄i = yi = x. It is easily shown that |yN − x̄N | ≤
C∥π∥, for some constant C. Hence,

|g(yN )− g(x̄N )| ≤ CΛg∥π∥,

where Λg is a Lipschitz constant for g.
Therefore,

|Wπ
±(t, x)− Ṽ π

± (t, x)| ≤ CΛg∥π∥.
□

To conclude this section, let us sketch a (rather standard) construction to de-
scribe approximately optimal Markov strategies for the fully discretized LLN game.
We construct strategies for the minimizer, based on the upper value function W̄π

+.

Approximately optimal Markov strategies for the maximzer, based on W̄π
−, are

constructed in exactly the same way.
Given δ > 0, partition Rd into Borel sets A1, A2, . . . each of diameter less than

δ. For each l = 1, 2, . . . choose ξl ∈ Al and

µj,l ∈ argmin
µj

[
max
νj

Wj+1(F̄j(ξl, µj , νj))

]
.

By (6.5), for all νj ,

Wj+1[F̄j(ξl, µj,l, νj)] ≤Wj(ξl),

and the functions Wj , Wj+1 are Lipschitz.
Given ϵ > 0, let ϕϵj(yj) = µj,l if yj ∈ Al, where δ is chosen small enough such

that

Wj+1[F̄j(yj , ϕ
ϵ
j(yj), νj)] ≤Wj(yj) + ϵ(tj+1 − tj), for all νj . (6.6)

Since we have assumed running cost L = 0, the game payoff for initial time t = ti
and state x = xi is

P̄ (t, x;µ·, ν·) = g(yN ).

An induction argument gives

sup
ν·

P̄ (t, x;αϵ(ν·), ν·) ≤Wπ(t, x) + ϵ(T − t), (6.7)

where αϵ(ν·)j = ϕϵj(yj). Note that the above display is analogous to (6.1), with
ε = ϵ(T − t).

Remark 6.6. (1) By discretizing the dynamics (5.1) of the LLN game, solving
this ODE stepwise on each interval Ij (with constants controls µj , νj) is
avoided. This procedure should be more convenient for computing numer-
ical solutions to the corresponding dynamic programming equation (6.5).
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(2) The spaces of probability measures P(U) and P(Z) are infinite dimen-
sional, except when U and Z are finite sets. However, in some cases, U
and Z can be replaced by finite sets. In particular, suppose that U, Z
are subsets of Euclidean spaces and that f(t, x, u, z) and L(t, x, u, z) are
polynomials in u, z with coefficients depending on the state variable x.
Then f̄ and L̄ depend only on the corresponding moments of µ and ν.
In general, it may be difficult to describe the constraints on the set of
admissible moments, except in special cases.

7. Approximately Optimal Markov Strategies II

In this section we consider a modification of the discretized stochastic game
model in Section 4. The choice of game strategies involves two steps. In the first
step, an approximately Markov strategy is chosen. It is based on the discretized
version of the Law of Large Numbers game considered at the end of Section 6.
We call a partition π considered at the first step a “coarse” partition of the time
interval [t, T ]. At the second step, each subinterval of π is divided into a large
number m of subintervals of equal length, which form a “fine” partition πm of
[t, T ]. The players control choices us, zs are constants on each subinterval of πm,
obtained by independent random sampling from the probability measures on U
and Z previously chosen at step 1.

At an intuitive level, in a mixed strategy differential game, us and zs are to be
chosen continuously in time s by random sampling from time-varying measures µs

and νs which are chosen by the players. It seems reasonable to expect that µs and
νs should vary with time much more slowly than the controls us, zs which result
from repeated random sampling. The modified discrete time model considered
here attempts to mimic this intuitive idea.

As in the previous sections, let the subintervals of the coarse partition π be
denoted by Ij = [tj ,j+1 ), for j = i, i+1, · · · , N−1. The refinement πm is obtained
by dividing each Ij into m subintervals Ij,k of equal length, for k = 1, 2, . . . ,m,

with ∥πm∥ = ∥π∥
m tending to zero as m → ∞. In the approach presented next we

require that the probability measures chosen by the players on the subintervals Ij,k
do not depend on k, i.e. µj,k = µj and νj,k = νj . Then the controls chosen by the
players are samples us = uj,k and zs = zj,k of those measures, which are constants
on the subintervals Ij,k, for k = 1, · · · ,m, of Ij . In other words, m independent
random samples are taken from µj and νj , on each subinterval Ij of the partition
π.

Given an initial time t = ti and state x = xi, let x
m
s be the solution of the

original ODE (3.1),

d

ds
xms = f(s, xms , us, zs), (7.1)

with us = uj,k, zs = zj,k for s ∈ Ij,k. Then xms is the state of the modified
stochastic game at time s. Let xmj = xmtj . Then xmj is the state at step j for the
discrete time stochastic game described at the end of the Appendix.
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As in Section 6, we take running cost L = 0. Hence the stochastic game payoff
in (4.6) becomes J = E[g(xmN )]. We can write

xmj+1 = xmj +

m∑
k=1

∫
Ij,k

f(s, xms , uj,k, zj,k)ds

= xmj +
m∑

k=1

∫
Ij,k

f(tj , x
m
j , uj,k, zj,k)ds+ λj(tj+1 − tj), (7.2)

where ∥λj∥ ≤ C1∥π∥(tj+1 − tj) for some constant C1.
We now recall from the Appendix the formulation of these modified stochastic

games. Let Fm
j be the σ-algebra generated by the controls ul,k, zl,k for i ≤ l <

j, k = 1, . . . ,m, which can be represented as realizations of random variables
ηl,k(ω) and ζl,k(ω), respectively. Notice that conditioned on Fm

j , the random
variables ηj,k, ζj,k are independent with distributions µj , νj , and the controls
µj , νj are themselves random and Fm

j measurable. Instead of using the functions
Fm
j in (A.9), write (7.2) as{

xmj+1 = F̄j(x
m
j , µj , νj) + [Km,j + λj ] (tj+1 − tj), with

Km,j =
1
m

∑m
k=1

[
f(tj , x

m
j , uj,k, zj,k)− f̄(tj , x

m
j , µj , νj)

]
.

(7.3)

Here F̄j is defined as in (6.4) for the discretized LLN game.. When conditioned
on Fm

j , the random variable Km,j has mean zero and covariance matrix 1
mΣm,j ,

where ∥Σm,j∥ ≤ C2
2 , for some constant C2.

We now consider Markov control strategies for the modified discrete-time sto-
chastic game. As in Definition 6.1, Markov strategies for the minimizer and
maximizer are sequences of Borel measurable P(U)−valued and P(Z)−valued
functions ϕj and ψj on Rd. Let MN (respectively NN ) denote the set of all
sequences of P(U)−valued (respectively P(Z)−valued) random variables µ· =
(µi, · · · , µN−1), ν· = (νi, · · · , νN−1) such that µj and νj are Fm

j −measurable. A
Markov strategy for the minimizer induces a mapping from NN into MN as fol-
lows. Given ν· ∈ NN , let µj = ϕj(x

m
j ). Since xmj is Fm

j −measurable, µ· ∈ MN .
Similarly, a Markov strategy for the maximizer induces a mapping from MN into
NN , by taking νj = ψj(x

m
j ).

We next consider the functions Wj(yj) = W̄π
+(tj , yj) defined recursively by

(6.5). Note that (6.5) holds for all yj ∈ Rd, and not merely when {yj} is a
sequence satisfying (6.4). In particular, we will take yj = xmj . This is not the
same as taking yj = x̄j in Section 6.

The next lemma considers Markov strategies for the minimizer which are nearly
optimal. Given ϵ > 0 we choose ϕϵj such that (6.6) holds for all yj ∈ Rd and
νj ∈ P(Z). The functions Wj are Lipschitz, with Lipschitz constant Λ.

Lemma 7.1. There exist constants C1, C2 such that

sup
ν·∈NN

E [g(xmN )] ≤Wi(x
m
i ) +

[
ϵ+ Λ(C1∥π∥+

C2

m1/2
)

]
(T − t), (7.4)

when the minimizer chooses µj = µ∗
j = ϕϵj(x

m
j ).
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Proof. Since Wj+1 is Lipschitz with constant Λ, we have from (6.6) and (7.3)

Wj+1(x
m
j+1) ≤ Wj+1(F̄j(x

m
j , µ

∗
j , νj) + Λ (|Km,j |+ |λj |) (tj+1 − tj)

≤ Wj(x
m
j ) + [ϵ+ Λ(|Km,j |+ |λj |)](tj+1 − tj), (7.5)

where |λj | ≤ C1∥π∥(tj+1 − tj).
Since

E[|Km,j | ∥ Fm
j ] ≤ E[|Km,j |2 ∥ Fm

j ]1/2 ≤ C2

m1/2
,

taking expectations on both sides of (7.5) we get

E[Wj+1(x
m
j+1) ∥ Fm

j ] ≤Wj(x
m
j ) +

[
ϵ+ Λ(C1∥π∥+

C2

m1/2
)

]
(tj+1 − tj). (7.6)

Since WN (xmN ) = g(xmN ), by induction on j we get (7.4). □

In exactly the same way there exists a Markov strategy ψϵ
j , j = i, . . . , N − 1,

for the maximizer such that

inf
µ·∈MN

E [g(xmN )] ≥Wi(x
m
i )−

[
ϵ+ Λ(C1∥π∥+

C2

m1/2
)

]
(T − t). (7.7)

From Lemmas 6.5 and 7.1 we obtain the following main result. As in (4.6) with
L = 0, we denote the payoff for the modified stochastic game by J(t, x;µ·, ν·) =
E[g(xmN )].

Theorem 7.2. Given ε > 0, there exist positive constants ϵ, b and integer m0 such
that the following saddle point property holds, provided that ∥π∥ ≤ b and m ≥ m0.
Choose ϕϵj , ψ

ϵ
j as in (7.4) and (7.7), and let µ∗

j = ϕϵj(x
m
j ), ν∗j = ψϵ

j(x
m
j ). Then

sup
ν·∈NN

J(t, x;µ∗
· , ν·) ≤ VM (t, x) + ε

and

inf
µ·∈MN

J(t, x;µ·, ν
∗
· ) ≥ VM (t, x)− ε.

Appendix A. Discrete Time Markov Stochastic Games

In this section we describe in general form discrete time mixed strategy Markov
games, motivated by the stochastic game associated with the function V π defined
in (4.5), which is obtained as a particular case of these games. Here we simplify
the notation, writing i instead of ti ∈ π and xj by xtj .

Let us assume that the dynamics of the state variable xj are given by the
difference equations{

xj+1 = Fj(xj , uj , zj), for j = i, i+ 1, · · · , N − 1
xi = x,

(A.1)

with x ∈ Rd, uj ∈ U, zj ∈ Z; the control sets U and Z are compact subsets of
metric spaces. Here uj and zj are randomly (simultaneous and independently)
chosen with probability distributions µj and νj , respectively. These probability
distributions play the role of controls for each player, and we assume that at time
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step j, both players know the previous realizations uk, zk for i ≤ k < j. The game
payoff, for initial time t = ti and state x = xi, is

J(t, x;µ·, ν·) = E{
N−1∑
j=i

Lj(xj , uj , zj) + g(xN )}. (A.2)

We shall assume that Fj , Lj are continuous and Lipschitz in the state variable x,
uniformly with respect to (u, z).

Remark A.1. For the stochastic game model in Section 4, xj+1 = xtj+1 , where xs
is the solution to (3.1) with xj = xtj as initial data and us = uj , zs = zj . This
defines Fj :

Fj(xj , uj , zj) = xj +

∫ tj+1

tj

f(s, xs, uj , zj)ds,

and the “running cost” function Lj is:

Lj(xj , uj , zj) =

∫ tj+1

tj

L(s, xs, uj , zj)ds.

In order to give a rigorous definition to the value of this game, we first fix
the initial condition xi, and define the information vector available to the players
before taking decisions at time j as follows. For j = i, only xi is known. For
i < j < N , the information vector is hj = (uj· , z

j
· ), where

uj· = (ui, ui+1, . . . , uj−1), zj· = (zi, zi+1, . . . , zj−1).

Let Hj denote the set of all such hj . For the stochastic game model, we choose
HN as the “canonical” sample space, with elements ω = hN−1, and let Fj = σ(hj)
denote the σ−algebra generated by the information available to both players at
step j. A decision strategy η = (ηi, . . . , ηN−1) for the minimizer is a P(U)−valued
discrete time stochastic process such that ηj is Fj−measurable. Decision strategies
ζ for the maximizer are defined similarly, as P(Z)−valued stochastic processes.

Given an information vector hj , the controls uj , zj are chosen by independent
random sampling from the probability measures µj = ηj(hj), νj = ζj(hj). Thus,
for Borel sets A ∈ B(U), B ∈ B(Z),

Pr [uj ∈ A, zj ∈ B ∥ hj ] = µj(A)νj(B). (A.3)

A pair (η, ζ) of decision strategies, together with the initial state x, uniquely
determines a probability measure Px on HN such that Px[xi = x] = 1. We also
denote the payoff J in (A.2) by P (t, x; η, ζ) = J(t, x;µ·, ν·), where µj = ηj(hj) and
νj = ζj(hj) as above. We also note that in (A.2)

E [Lj(xj , uj , zj) ∥ hj ] =
∫
U

∫
Z

Lj(xj , u, z)νj(dz)µj(du).

We say that a decision strategy η is a Markov control strategy for the minimizer
if there exists a finite sequence of Borel measurable functions on Rd taking values
in P(U) : ϕi, ϕi+1, . . . , ϕN−1, such that ηj(hj) = ϕj(xj). Similarly, ζ is a Markov
control strategy for the maximizer if ζj(hj) = ψj(xj) where ψj is Borel measurable
and P(Z)−valued.
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To define the value of this stochastic game, we first define functions W (i, x)
recursively backward in time, in an analogous way as V π(t, x) was defined in
(4.5): {

W (j, xj) = valuj ,zj [W (j + 1, xj+1) + Lj(xj , uj , zj)]
W (N,xN ) = g(xN ),

(A.4)

where xj+1 satisfies (A.1). Observe that the value appearing in the right side of
(A.4) (and similarly in (4.8)) is in fact a conditional expectation with respect to
the vector information hj ∈ Hj available at each period of time j:

W (j, xj) = valuj ,zj [E(W (j + 1, xj+1) ∥ hj) + Lj(xj , uj , zj)] . (A.5)

Moreover, we note that the sequence of functions defined as Wj(xj) = W (j, xj),
following the backward recursion (A.4), are Lipschitz continuous functions of xj
for j = i, . . . , N . For the stochastic game model in Section 4, Wj(xj) is the same
as V π(tj , xj).

We call W (i, xi) the value val(J) of the discrete time stochastic game with
payoff P (t, x; ζ, η) = J(t, x;µ·, ν·). The following can be proved in a way very
similar to the discussion of the saddle point property in Section 6.

Theorem A.2. For every ε > 0, there exists a pair of decision strategies ηε, ζε

such that

sup
ζ
P (t, x; ηε, ζ) ≤ W (i, xi) + ε (A.6)

inf
η
P (t, x; η, ζε) ≥ W (i, xi)− ε. (A.7)

In fact, ηε and ζε can be obtained from Markov control policies: µj = ϕεj(xj), νj =
ψε
j (xj), j = i, . . . , N − 1

The proof of Theorem A.2 uses standard properties of conditional expectations
with respect to the σ−algebras Fj , as well as a construction similar to that at the
end of Section 6 to obtain ϕεj and ψε

j .

Remark A.3. WhenWj(·) = V π(tj , ·), the Markov control policy formulation does
not give the uniform Lipschitz estimate (4.9), which does not depend on π.To avoid
this difficulty we introduced decision strategies, which depend not on the current
state but on information about the past controls. Summarizing, the formulation of
V π presented above as a stochastic game value, gives the desired uniform Lipschitz
constant M in (4.9).

Equation (A.4) can be regarded as a one step dynamic programming princi-
ple for the discrete time stochastic game. More generally, there is the following
multistep dynamic programming principle:

W (i, xi) = valη,ζ E

[
j−1∑
l=i

Ll(xl, ul, zl) +W (j, xj)

]
. (A.8)

Modified stochastic games. In Section 7 we considered a modified version of
the discrete time stochastic games in Section 4, with running cost L = 0 to simplify
notations. The game dynamics take the form

xmj+1 = Fm
j (xmj , u

m
j , z

m
j ), (A.9)
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where Fm
j is defined by the right side of (7.2) with umj = (uj,1, . . . , uj,m), zmj =

(zj,1, . . . , zj,m). The information vector at time step j is hmj = {ul.k, zl,k ∥ i ≤
l < j, k = 1, . . . ,m}. Let Hm

j be the space of all such hmj . The canonical sample
space in now Hm

N .
Given sets Ak, Bk in B(U), B(Z) respectively for k = 1, . . . ,m, let Am =

A1 × · · · × Am, B
m = B1,× · · · × Bm. Corresponding to (A.3) we require the

conditional independence condition

Pr
[
umj ∈ Am, zmj ∈ Bm ∥ hmj

]
=

m∏
k=1

[µj(Ak)νj(Bk)].

This corresponds to choosing uj,k, zj,k by random sampling from the distributions
µj , νj , independently conditioned on Fm

j = σ(hmj ). The discussion of the modified
stochastic game then continues as for the case m = 1 described above.
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19. Kaise, H. and Sheu, S.-J.: Differential games of inf-sup type and Isaacs equations, Applied

Math Optim. 52 (2005), 1–22.
20. Krasovskii, N. N. and Subbotin, A. I.: Game-Theoretic Control Problems, Springer-Verlag,

New York, 1988.
21. Nisio, M.: Stochastic Control Theory, Springer, New York, 2015.

22. Sirbu, M.: On martingale problems with continuous-time mixing and values of zero-sum
games without Isaacs condition, SIAM J. on Control and Optim. 52 (2014), 2877–2890.

23. Souganidis, P. E.: Approximation schemes for viscosity solutions of Hamilton–Jacobi equa-
tions with applications to differential games, J. Nonlinear Anal. T.M.A. 9 (1985), 217–257.

Wendell H. Fleming: Division of Applied Mathematics, Brown University, Box F,

Providence, R.I. 02912, USA
E-mail address: wendell−fleming@brown.edu

Daniel Hernández–Hernández: Centro de Investigación en Matemáticas, Apartado
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