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ABSTRACT

For a given graph ( , )G V E� , the (3, 2,1)L - and (4,3, 2,1)L -labeling problems assign the labels to the vertices

of G . Let *Z  be the set of non-negative integers. An (3, 2,1)L - and (4,3, 2,1)L -labeling of a graph G  is a

function *:f V Z�  such that | ( ) ( ) | ( , )f x f y k d x y� � � , for 4,5k �  respectively, where ( , )d x y

represents the distance (minimum number of edges of a shortest path) between the vertices x  and y , and

1 ( , ) 1d x y k� � � . The (3, 2,1)L - and (4,3, 2,1)L -labeling numbers of a graph G , are denoted by 3,2,1( )G�

and 4,3,2,1( )G�  and they are the difference between highest and lowest labels used in (3, 2,1)L - and (4,3, 2,1)L -

labeling respectively. In [4], Calamoneri et al. have been studied ( , )L h k -labeling of co-comparability graphs and

circular-arc graphs. Motivated from this paper, we have studied (3, 2,1)L - and (4,3, 2,1)L -labeling problems

on circular-arc graphs.

In this paper, for circular-arc graph G , it is shown that 3,2,1( ) 9 6G� � � �  and 4,3,2,1( ) 16 12G� � � � , where�
represents the maximum degree of the vertices. These bounds we obtain are the first bounds for the problems on

circular-arc graphs. Also two algorithms are designed to label a circular-arc graph by maintaining (3, 2,1)L -and

(4,3, 2,1)L -labeling conditions. The time complexities of both the algorithms are 2( )O n� , where n  represent

the number of vertices of G .
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1. INTRODUCTION

The frequency assignment problem is a problem where the task is to assign a frequency (non-negative
integer) to a given group of televisions or radio transmitters so that interfering transmitters are assigned
frequency with at least a minimum allowed separation. Frequency assignment problem is motivated from
the distance labeling problem of graphs. It is to find a proper assignment of channels to transmitters in a
wireless network. The level of interference between any two radio stations correlates with the geographic
locations of the stations. Closer stations have a stronger interference and thus there must be a greater
difference between their assigned channels.

Hale [14] introduced a graph theory model of channel assignment problem which is known as vertex
coloring problem. In, 1988 Roberts proposed a variation of the frequency assignment problem in which
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‘closed’ transmitter must receive different frequency and ‘very closed’ transmitter must receive a frequency
at least two apart. Two vertices x  and y  are said to be ‘very closed’ and ‘closed’ if the distance between x

and y  is1 and 2  respectively. Griggs and Yeh [13] defined the (2,1)L -labeling of a graph ( , )G V E�  as a

function f which assigns every x, y in V  a label from the set of positive integers such that

| ( ) ( ) | 3 ( , )f x f y d x y� � � , where ( , )d x y  represent the distance between the vertices x and y, and

1 ( , ) 2d x y� � . The minimum span over all possible labeling functions of ( , )L h k -labeling is denoted

by , ( )h k G�  and is called ,h k�  - number of G.

An (3, 2,1)L -labeling of a graph ( , )G V E�  is a function f  from its vertex setV  to the set of non-

negative integers such that | ( ) ( ) | 3f x f y� �  if ( , ) 1d x y � , | ( ) ( ) | 2f x f y� �  if ( , ) 2d x y �

and| ( ) ( ) | 1f x f y� �  if ( , ) 3d x y � . The (3, 2,1)L -labeling number, , 3,2,1( )G� , ofG  is the smallest non-

negative integer k  such that G  has a (3, 2,1)L -labeling of span k . Also, an (4,3, 2,1)L -labeling of a

graph ( , )G V E�  is a function f  from its vertex setV  to the set of non-negative integers such

that | ( ) ( ) | 4f x f y� �  if ( , ) 1d x y � , | ( ) ( ) | 3f x f y� �  if ( , ) 2d x y � , | ( ) ( ) | 2f x f y� �  if ( , ) 3d x y �

and| ( ) ( ) | 1f x f y� �  if ( , ) 4d x y � . The (4,3, 2,1)L -labeling number, , 4,3,2,1( )G� , ofG  is the smallest non-

negative integer k  such that G  has a (4,3, 2,1)L -labeling of span k . Frequency assignment problem has
been widely studied in the past [2,3,7,8,13,14,15,16,17,18,19,25,28,29,30]. Later Calamoneri studied

( 1, 2,1)L � � -labeling of eight grids [6] and also Atta et al. studied (4,3, 2,1)L -labeling for Simple Graphs

[1]. We focus our attention on (3, 2,1)L -labeling and (4,3, 2,1)L -labeling of circular-arc graphs. Different

bounds for 3,2,1( )G�  and 4,3,2,1( )G�  were obtained for various type of graphs. The upper bound of ,1( )p G�  of

any graphG  is 2 ( 1) 2p� � � ��  [5], where � is the degree of the graph. In [10], Clipperton et al. showed

that 3 2
3,2,1( ) 3G� � � �� � �  for any graph. Later Chai et al. [9] improved this upper bound and showed that

3
3,2,1( ) 2G� � � � �  for any graph. In [20], Lui and Shao studied the (3, 2,1)L -labeling of planer graph and

showed that 2
3,2,1( ) 15( 1)G� � � �� � . In [9], Chia et al. also showed that 3,2,1( ) 2 5G n� � �  ifT  is a complete

n -ary tree of height 3h �  and for any tree 3,2,12 1 ( ) 2 3G�� � � � � � . In [21,22,23], Pal et al. studied some

problems on interval graphs. In [11], Jean studied about ( , 2,1)L d -labeling of simple graph and showed

that ,2,1( ) ( 1) 1d nK d n� � � � where nK is complete graph with n  vertices and also show that

,2,1 ,( ) 2( ) 3d m nK d m n� � � � � . Kim et al. show that 3,2,1 3( ) 15nK C� ��  when 28n �  and 0( 5)n mod� ,

where 3 nK C�  is the Cartesian product of complete graphs 3K  and the cycle C
n
. Again,

3 2
4,3,2,1( ) 2 6G� � � � � � �  for any graph G [12]. In [26], Paul et al. showed that 2,1( )G w� � � �  for interval

graph and they also shown that 2,1( ) 3G w� � � �  for circular-arc graph, where w  represents the size of the

maximum clique. Also in [31], Sk Amanathulla et al. shown that 0,1( )G� � �  and 1,1( ) 2G� � �  for circular--

arc graphs.

In [4], Calamoneri et al. have been studied a lot of result about ( , )L h k -labeling of co-comparability

graphs, interval graphs and circular-arc graphs. They have shown that , ( ) ( , 2 )2h k G max h k k� � � �  for co-
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comparability graphs, , ( ) ( , 2 )h k G max h k� � � for interval graphs. Also they have proved

, ( ) ( , 2 )h k G max h k hw� � � �  for circular-arc graphs. Motivated from this paper we have studied (3, 2,1)L -

and (4,3, 2,1)L -labeling of circular-arc graphs.

In this paper, for circular-arc graphs G , it is shown that the upper bounds of (3, 2,1)L -and (4,3, 2,1)L -

labeling are9 6��  and 16 12��  respectively, where � represents the maximum degree of the vertices.

Also two algorithms are designed to label a circular-arc graph by maintaining (3, 2,1)L -and (4,3, 2,1)L -

labeling conditions. The time complexities of both the algorithms are 2( )O n� , where n  represent the number

of vertices of G.

The remaining part of the paper is organized as follows. Some notations and definitions are presented

in Section 2. In Section 3, some lemmas related to our work and an algorithm to (3, 2,1)L -label a circular--

arc graph are presented. Section 4  is devoted to (4,3, 2,1)L -labeling problem of circular-arc graph. In
Section 5, a conclusion is made.

2. PRELIMINARIES AND NOTATIONS

The graphs used in this work are simple, finite without self loop or multiple edges. A graph ( , )G V E�  is
called an intersection graph for a finite family F of a non-empty set if there is a one-to-one correspondence
between F and V such that two sets in F have non-empty intersection if and only if there corresponding
vertices in V are adjacent to each other. We call F an intersection model of G. For an intersection model F,

we use ( )G F  to denote the intersection graph for F. Depending on the nature of the set F one gets different
intersection graphs. For a survey on intersection graph see [24].

The class of circular-arc graph is a very important subclass of intersection graph. A graph is a circular-
arc graph if there exists a family A of arcs around a circle and a one-to-one correspondence between vertices
of G and arcs A, such that two distinct vertices are adjacent in G if and only if there corresponding arcs
intersect in A. Such a family of arcs is called an arc representation for G. Also, it is observed that an arc A

k

of A and a vertex v
k
 of V are one and same thing. A circular-arc graph and its corresponding circular-arc

representation are shown in Figure 1.

Figure 1: A circular-arc graph and its corresponding circular-arc representation
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A graph G is a proper circular-arc ( )PCA  graph if there exists an arc representation for G such that no
arc is properly included in another. The circular-arc graphs used in this work may or may not be proper. It
is assumed that all the arcs must cover the circle, otherwise the circular-arc graph is nothing but an interval
graph. The degree of the vertex v

k
 corresponding to the arc A

k
 is denoted by d(v

k
) and is defined by the

maximum number of arcs which are adjacent to A
k
. The maximum degree or the degree of a circular-arc

graph G, denoted by ( )G�  or by �, is the maximum degree of all vertices corresponding to the arcs of G.

 Let 1 2 3{ , , , , }nA A A A A� �  be a set of arcs around a circle. While going in a clockwise direction, the

point at which we first encounter an arc is called the starting point of the arc. Similarly, the point at which
we leave an arc is called the finishing point of the arc. A set C � V  is called a clique if every pair of
vertices of C has an edge. The number of vertices of the clique represents its size. A clique is called
maximal if there is no clique of G which properly contains C as a subset. A clique with r  vertices is called
r-clique. A clique is called maximum if there is no clique of G of larger cardinality. The size of the maximum
clique is denoted by w(G) or by w.

Notations: Let G be a circular-arc graph with arc set A, we define the following objects:

(i) ( )kL A : the set of labels which are used before labeling the arc ,k kA A A� .

(ii) ( )i kL A : the set of labels which are used to label the vertices at distance i  ( 1,2,3, 4i � ) from the arc

kA , before labeling the arc kA , kA A� .

(iii) ( )ivl kL A : the set of all valid labels to label the arc kA  satisfying the condition of distance ‘one’, ‘one

and two’, ‘one, two and three’ of (3, 2,1)L -labeling from the arc kA , before labeling kA , for

( 1, 2,3i � ) respectively..

(iv) ( )ivl kL A� : the set of all valid labels to label the arc kA  satisfying the condition of distance ‘one’, ‘one

and two’, ‘one, two and three’, ‘one, two, three and four’ of (4,3, 2,1)L -labeling from the arc kA ,

before labeling kA , for ( 1,2,3, 4i � ) respectively..

(v) jf : the label of the arc jA , jA A� .

(vi)L: the label set, i.e. the set of labels used to label the circular-arc graphG  completely..

Definition 1. For a circular-arc graph G , for each arc jA A�  the set
jAS  is defined as

(a) all arcs of 
jAS are adjacent to jA ,

(b) no two arcs of 
jAS  are adjacent, and

(c) each 
jAS  is maximal.

3. L(3,2,1)-LABELING OF CIRCULAR-ARC GRAPHS

In this section, we present some lemmas related to the proposed algorithm. Also, an algorithm is designed

to solve (3, 2,1)L -labeling problem on circular-arc graph. The time complexity of the algorithm is also
calculated.
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Lemma 1. For a circular-arc graph ,| ( ) | 2 2i kG L A � � � , 2,3, 4i �  for any arc kA A� .

Proof. Case 1: Let 2i �  and let G  be a circular-arc graph and kA  be any arc of G . Also let 2| ( ) |kL A m� .

This implies that m  distinct labels are used to label the arcs which are at distance two from the arc kA ,

before labeling the arc A
k
.

Since � is the degree of the graph G so, A
k
 is adjacent to at most � arcs of G. Since G is a circular-arc

graph, among the arcs those are adjacent to A
k
, there must exists at most two arcs (the arcs of maximum

length) in opposite direction of the arc A
k
, each of which are adjacent to at most ��– 1 arcs (except A

k
) of G,

obviously these arcs are at distance two from A
k
. In figure 2, all the two distances vertices of A

k
 are adjacent

to either 
1kA  or 

2kA . Except kA ,
1kA  is adjacent at most 1� �  arcs. Similarly, except kA ,

2kA  is adjacent at

most ��– 1 arcs. Hence, 2( 1)m � � � , i.e. 2| ( ) | 2 2kL A � � � .

Case 2: Let i = 3 and let G be a circular-arc graph and A
k
 be any arc of G and let 3| ( ) |kL A r� . This

implies that r distinct labels are used to label the arcs which are at distance three from the arc A
k
, before

labeling the arc A
k
.

Since � is the degree of the graph G so, A
k
 is adjacent to at most � arcs of G. Since G is a circular-arc

graph, among the arcs those are adjacent to A
k
, there must exists at most two arcs (the arcs of maximum

length) in opposite direction of the arc A
k
, each of which are adjacent to at most � arcs of G. In figure 2, 

1kA

and 
2kA  are those arcs each of which are adjacent to at most � arcs of G. Among the arcs those are adjacent

to 
1kA  and of distance two from A

k
, there exists at most one arc (the arcs of maximum length) which is

adjacent to at most �–1 arcs (expect 
1pA ) obviously these arcs are at distance three from A

k
. Again among

the arcs which are adjacent to 
2kA  and of distance two from A

k
, there exists at most one arc (the arcs of

maximum length) which is adjacent to at most �–1 arcs (except 
2pA ), obviously these arcs are at distance

three from kA . In figure 2, all the three distances arcs are adjacent to either 
1pA or 

2pA . Except 
1kA ,

1pA  is

adjacent at most ��– 1 arcs. Similarly, except 
2kA ,

2pA  is adjacent at most 1� �  arcs. Hence, 2( 1)r � � � ,

i.e.  3| ( ) | 2 2kL A � � � .

Figure 2: A circular-arc graph
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The proof of the other case is similar.

Lemma 2. For a circular-arc graph G , ( ) ( )i k kL A L A� , for any arc kA  ofG  and 1,2,3, 4i � .

Proof. Any label used to label a circular-arc graphG  belong to ( )kL A . So any label ( )i kl L A�  implies

( )kl L A� , for 1, 2,3, 4.i �  Hence ( ) ( )i k kL A L A� , for any arc kA  ofG  and 1,2,3, 4i � .

Lemma 3. ( )kvl jL A  is the non empty largest set satisfying the condition of distance 1,2,,...,k for 1,2,3,k �

of (3, 2,1)L -labeling, where l p�  for all ( )kvl jl L A�  and { ( )} 3jp max L A� � , for any jA A�  and 1,2,3k � .

Proof. Since ( ) ( )i j jL A L A�  for 1, 2,3i �  (by Lemma 2) and { ( )} 3jp max L A� � , so | | 3ip l� �  for any

( ), 1, 2,3i i jl L A i� � . Therefore, ( )kvl jp L A�  for 1, 2,3k � . Hence ( )kvl jL A  is non empty set for 1, 2,3k � .

Again, let B  be any set of labels satisfying the condition of distance 1,2,...,k for 1,2,3,k �  of (3, 2,1)L -

labeling, where l p�  for all l B� . Also, let b B� . Then | | 4ib l i� � �  for any ( )i i jl L A�  and for

2, 1,i k k k� � � , where 0i � . Thus, ( )kvl jb L A� , for 1,2,3k � . So b B�  implies ( )kvl jb L A� , for

1, 2,3k � . Therefore, ( )kvl jB L A� , for 1, 2,3k � . Since B  is arbitrary, so, so ( )kvl jL A  is the largest set of

labels satisfying the condition of distance 1,2,...,k for 1,2,3,k �  of (3, 2,1)L -labeling, where l p�  for

all ( )kvl jl L A�  for 1, 2,3k � .

Now, we discuss about the bounds of 3,2,1( )G�  for a circular-arc graphs.

Theorem 1. For any circular-arc graph G , 3,2,1( ) 2 1G k� � �  where max | |
j

j
A

A A
k S

�
� , 1, 2,3, ,j n� � .

Proof. Let G  be a circular-arc graph and 1 2 3{ , , , , }nA A A A A� � . Let A A� �  such that

| | max | |
j

j
A A

A A
S S k

� �
� � , then clearly { }AS A

� ��  forms a subgraph of G . Thus when we label this subgraph by

(3, 2,1)L -labeling, then any member of AS
�

 and A�  takes labels so that each differs the other by at least 3

and all other members get labels so that each label differs from the other by at least 2 . Thus exactly,, 2 1k �

labels (namely 0,3,5,7, , 2 1k� � ) are needed to label the subgraph { }AS A
� �� . Hence, 3,2,1( ) 2 1.G k� � �

Theorem 2. For any circular-arc graph G , 3,2,1( ) 9 6G� � � � , where�  is the degree of the graph G .

Proof. Let the total number of arcs of the circular-arc graph G  be n  and the set of arcs

1 2 3{ , , , , }nA A A A A� � . Let ( ) {0,1,2, ,9 6}kL A � � �� , where kA A� . Then | ( ) | 9 5kL A � �� . Now

3,2,1( ) 9 6G� � � � , if we can prove that the label in the set ( )kL A  is sufficient to label all the arcs of G .

Suppose, we are going to label the arc kA  by (3, 2,1)L -labeling. We know that 1| ( ) | .kL A � �  So in the extreme

unfavorable cases at least ( 9 5) 3 6 5� � � � � � �  labels of the set ( )kL A  are available satisfying the condition

of distance one of (3, 2,1)L -labeling. Also, since 2| ( ) | 2 2kL A � � � , (by Lemma 1). So in the extreme

unfavorable cases at least ( 6 5) 2(2 2) 2 1� � � � � � � �  labels of the set ( )kL A  are available satisfying the
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condition of distance one and two of (3, 2,1)L -labeling. Again, since 3| ( ) | 2 2kL A � � � , (by Lemma 1), so

in the most unfavorable cases at least one (viz: (2 1) (2 2) 1� � � � � � ) label of the set ( )kL A  is available

satisfying (3, 2,1)L -labeling condition. Since kA  is arbitrary, so we can label any arc of the circular-arc

graph satisfying (3, 2,1)L -labeling condition by using the labels from the set ( )kL A .

If we take ( )kL A  so that ( ) {0,1, 2, ,9 6}kL A � � ��  and we are going to label the arc kA  by (3, 2,1)L -

labeling, then by similar arguments, it follows that the set ( )kL A  may or may not contain a label satisfying

(3, 2,1)L -labeling condition. Hence, 3,2,1( ) 9 6G� � � � .

3.1. Algorithm for L(3,2,1)-labeling

In this subsection, an algorithm to (3, 2,1)L -label a circular-arc graph is designed. The main idea of the
algorithm is discuss below:

First we find out the set of labels which satisfies the condition of distance one of (3, 2,1)L -labeling.

Among these labels we find the set of labels which also satisfies the condition of distance two of (3, 2,1)L -
labeling. Among these labels we find the set of labels which satisfies the condition of distance three of

(3, 2,1)L -labeling. Then we take the least element of that set, which obviously satisfies (3, 2,1)L -labeling
condition.

Algorithm L321

Input: A set of ordered arcs A  of a circular-arc graph.

//assume that the arcs are ordered with respect to clockwise direction i.e. 1 2 3{ , , , , }nA A A A A� �  //

Output: jf , the (3, 2,1)L -label of jA , 1, 2,3, ,j n� � .

Initialization: 1 0f � ;

2( ) {0}L A � ;

for each 2j �  to 1n�  compute 1( )jL A , 2 ( )jL A  and 3( )jL A

for 0i �  to r , //where { ( )} 3jr max L A� � //

for 1k �  to 1| ( ) |jL A

if | | 3ki l� � , then 1 ( ) { }vl jL A i�  //where 1( )k jl L A� //

end for;

end for;

for 1k �  to 2

for 1m �  to | ( ) |kvl jL A

for 1n �  to 1| ( ) |k jL A�

if | | 3m nl p k� � � , then 1 ( ) { }k vl j mL A l� �
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//where ( )m kvl jl L A�  and 1( )n k jp L A��  //

end for;

end for;

end for;

jf �min 3{ ( )}vl jL A ;

1( ) ( ) { }j j jL A L A f� � � ;

end for;

for 0i �  to s , where { ( )} 3ns max L A� �

for 1k �  to 1| ( ) |nL A

if | | 3ki l� � , then 1 ( ) { }vl nL A i�  //where 1( )k nl L A� //

end for;

end for;

for k = 1 to 2

for 1m �  to | ( ) |kvl nL A

for 1q �  to 1| ( ) |k nL A�

if | | 3m ql p k� � � , then 1 ( ) { }k vl n mL A l� �

//where 1 ( )m k vl nl L A��  and 1( )q k np L A��  //

end for;

end for;

end for;

nf �min 3{ ( )}vl nL A ;

( ) { }n nL L A f� � ;

end L321.

Theorem 3. The Algorithm L321 correctly labels the vertices of a circular-arc graph using L321 L(3,2,1)-
labeling condition.

Proof. Let 1 2 3{ , , , , }nA A A A A� � , also let 1 0f � , 2( ) {0}L A � . If the graph has only one vertex then

2( )L A  is sufficient to label the whole graph and obviously, 3,2,1( ) 0G� � .

If the graph has more than one vertex then the set 2( )L A  is insufficient to label the whole graph G ,

because in this case more than one label is required and 2( )L A  contains only one label. Suppose, we are

going to label the arc jA A� . ( )kvl jL A  is the non empty largest set satisfying the condition of distance

1,2,...,k for 1,2,3,k �  of (3, 2,1)L -labeling, where l p�  for all ( )kvl jl L A�  and { ( )} 3jp max L A� � , for

any jA A�  and 1, 2,3k �  (by Lemma 3). Also no label 3 ( )vl jl L A�  and l p�  satisfying the condition of
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(3, 2,1)L -labeling of graph. So the labels on the set are the only valid labels for jA , which is less than or

equal to p  and satisfying (3, 2,1)L -labeling condition.

Our aim is to label the arc jA  by using as few labels as possible, satisfying (3, 2,1)L -labeling condition.

So jf q� , where 3{ ( )}vl jq min L A� . Now q  is the least label for jA , because no label less thanq  satisfies

(3, 2,1)L -labeling condition. Since jA  is arbitrary so this algorithm spent minimum number of labels to

label any arc of a circular-arc graph satisfying (3, 2,1)L -labeling condition and 3,2,1( ) { ( ) { }}n nG max L A f� � � .

Theorem 4. A circular-arc graph can be (3, 2,1)L -labeled using 2( )O n�  time, where n , and�  represent

number of vertices and the degree of the graph G .

Proof. Let L  be the label set and |L|be its cardinality. According to the algorithm L321, | ( ) | | |i kL A L�  for

i=1,2,3, for any kA A� , and also 9 3r � �� , where { ( )} 3jr max L A� � . So we can compute 1 ( )vl jL A  using

at most | | (9 3)L � �  time, i.e. using at most ( | |)O L�  time. Also, | ( ) | 9 6kvl jL A � � �  for 1, 2k � , so for each

1, 2k � , 1 ( )k vl jL A�  can be computed using at most | | (9 6)L � �  time, i.e. using at most ( | |)O L�  time. ThisThis

process is repeated for 1n�  t imes. So the total time complexity for the algorithm L321 is

(( 1) | |) ( | |)O n L O n L� � � � . Since, | | 9 5L � � � , therefore the running time for the algorithm L321 is
2( )O n� .

Illustration of the algorithm L321

Let us consider a circular-arc graph of Fig. 3 to illustrate the algorithm L321.

Figure 3: Illustration of Algorithm L321
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For this graph, 1 2 3 10{ , , , , }A A A A A� �  and 4.� �

jf �  the label of the arc jA , for 1,2,3, ,10.j � �

1 0f � , 2( ) {0}L A � .

Iteration 1: For 2j � .

1 2( ) {0}L A � , 2 2( )L A �� , 3 2( )L A �� .

1 2( ) {3}vlL A � , 2 2( ) {3}vlL A � , 3 2( ) {3}vlL A � .

Therefore, 2 3 2min{ ( )} 3vlf L A� �  and 3 2 2( ) ( ) { } {0} {3} {0,3}L A L A f� � � � � .

Iteration 2: For 3j � .

1 3( ) {0}L A � , 2 3( ) {3}L A � , 3 3( )L A �� .

1 3( ) {3, 4,5,6}vlL A � , 2 3( ) {5,6}vlL A � , 3 3( ) {5,6}vlL A � .

So 3 3 3min{ ( )} 5vlf L A� �  and 4 3 3( ) ( ) { } {0,3,} {5} {0,3,5}L A L A f� � � � � .

Iteration 3: For 4j � .

1 4( ) {0,5}L A � , 2 4( ) {3}L A � , 3 4( )L A �� .

1 4( ) {8}vlL A � , 2 4( ) {8}vlL A � , 3 4( ) {8}vlL A � .

Therefore, 4 3 4min{ ( )} 8vlf L A� �  and 5 4 4( ) ( ) { } {0,3,5} {8} {0,3,5,8}L A L A f� � � � � .

Iteration 4: For 5j � .

1 5( ) {5,8}L A � , 2 5( ) {0}L A � , 3 5( ) {3}L A � .

1 5( ) {0,1, 2,11}vlL A � , 2 5( ) {2,11}vlL A � , 3 5( ) {2,11}vlL A � .

Therefore, 5 3 5min{ ( )} 2vlf L A� �  and 6 5 5( ) ( ) { } {0,3,5,8} {2} {0, 2,3,5,8}L A L A f� � � � � .

In this way 6 11f � , 7 14f �  8 6f � , 9 9f � , and finally, , 10 12f � . The vertices and the label of the

corresponding vertices its are given below:

Vertices A1 A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

L (3, 2, 1)-labels 0 3 5 8 2 11 14 6 9 12

4. L(4,3,2,1)-LABELING OF CIRCULAR-ARC GRAPH

By extending the idea of (3, 2,1)L -labeling, we design an algorithm for (4,3, 2,1)L -labeling of circular-arc

graph. In this section, we present some lemmas related to our work, bounds of (4,3, 2,1)L -labeling, the
algorithm L4321 and time complexity of the proposed algorithm L4321
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Lemma 4. ( )kvl jL A�  is the non empty largest set satisfying the condition of distance 1,2,..., k

for 1, 2,3,4k �  of (4,3, 2,1)L -labeling, where l p�  for all ( )kvl jl L A��  and { ( )} 4jp max L A� � , for

any jA A�  and 1, 2,3,4k � .

Proof. Since ( ) ( )i j jL A L A�  for 1,2,3, 4i �  (by Lemma 3) and { ( )} 4jp max L A� � , so | | 4ip l� �  for

any ( ), 1, 2,3, 4i i jl L A i� � . Therefore, ( )kvl jp L A��  for 1, 2,3,4k � . Hence, ( )kvl jL A�  is non empty set for

1, 2,3,4k � .

 Again, let B be any set of labels satisfying the condition of distance 1,2,...,k for 1, 2,3,4k �  of (4,3, 2,1)L -

labeling , where l p�  for all l B� . Also, let b B� . Then | | 5ib l i� � �  for any ( )i i jl L A�  and for

3, 2, 1,i k k k k� � � � , where 0i � . Thus, ( )kvl jb L A�� , for 1, 2,3,4k � . So b B�  implies ( )kvl jb L A�� , for

1, 2,3,4k � . Therefore, ( )kvl jB L A�� , for 1, 2,3,4k � . Since, B  is arbitrary, so, so ( )kvl jL A�  is the largest set of

labels satisfying the condition of distance 1,2,...,k for 1, 2,3,4k �  of (4,3, 2,1)L -labeling, where l p�  for

all ( )kvl jl L A�� , for 1, 2,3, 4.k �

Hence the lemma.

Now, we discuss about the upper bound of 4,3,2,1( )G� of a circular-arc graphs.

Theorem 5. For any circular-arc graph G, 4,3,2,1( ) 3 1G k� � �  where max | |
j

j
A

A A
k S

�
� , 1, 2,3, ,j n� � .

Proof. Let G  be a circular-arc graph and 1 2 3{ , , , , }nA A A A A� � . Let A A� �  such that

| | max | |
j

j
A A

A A
S S k

� �
� � , then clearly { }AS A

� ��  forms a subgraph of G . Thus, when we label this subgraph

by (4,3, 2,1)L -labeling, then any one member of AS
�

 and A�  takes labels so that each differs the other by

at least 4  and all other members get labels so that each label differs from the other by at least 3 . Thus

exactly, 3 1k �  labels (namely 0, 4,7,9, ,3 1k� � ) are needed to label the subgraph { }.AS A
� ��  Hence,

3,2,1( ) 3 1G k� � � .

Theorem 6. For any circular-arc graph G, 4,3,2,1( ) 16 12G� � � � , where�  is the degree of the graph G.

Proof. Let G be a circular-arc graph having n  arcs and the set of arcs be 1 2 3{ , , , , }nA A A A A� � .

Also, let ( ) {0,1, 2, ,16 12}kL A � � � � , where kA A� . Then | ( ) | 16 11kL A � � � .

Now 4,3,2,1( ) 16 12G� � � � , if we can prove that the label in the set ( )kL A  is sufficient to label all the

arcs of G. Suppose, we are going to label the arc kA  by (4,3, 2,1)L -labeling. We know that 1| ( ) |kL A � � . So

in the extreme unfavorable cases at least (16 11) 4 12 11� � � � � � �  labels of the set ( )kL A  are available

satisfying the condition of distance one of (4,3, 2,1)L -labeling. Also, since 2| ( ) | 2 2kL A � � � , (by Lemma

1). So in the worst case at least (12 11) 3(2 2) 6 5� � � � � � � �  labels of the set ( )kL A  are available satisfying
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the condition of distance one and two of (4,3, 2,1)L -labeling. Again since 3| ( ) | 2 2kL A � � � , (by Lemma

1), so in the most unfavorable cases at least ( 6 5) 2(2 2) 2 1� � � � � � � �  labels of the set ( )kL A  are available

satisfying the condition of distance one, two and three of (4,3, 2,1)L -labeling. Finally, since

4| ( ) | 2 2kL A � � � , (by Lemma 1), so in the most unfavorable cases at least one (viz: (2 1) (2 2) 1� � � � � � )

label of the set ( )kL A  is available satisfying (4,3, 2,1)L -labeling condition. Since A
k
 is arbitrary, so we can

label any arc of the circular-arc graph satisfying (4,3, 2,1)L -labeling condition by using the labels of the set
L(A

k
).

If we take ( )kL A  so that ( ) {0,1,2, ,16 12}kL A � � ��  and we are going to label the arc kA  by (4,3, 2,1)L -

labeling, then by similar arguments, it follows that the set ( )kL A  may or may not contain a label satisfying

(4.3,2,1)L -labeling condition. Hence, 4,3,2,1( ) 16 12G� � � � .

4.1. Algorithm for L(4, 3, 2, 1)-labeling

In this subsection we present an algorithm to solve (4,3, 2,1)L -labeling of circular-arc graph.

Algorithm L4321

Input: A set of ordered arcs A  of a circular-arc graph.

//assume that the arcs are ordered with respect to clockwise direction namely 1 2 3, , , , nA A A A�  where

1 2 3{ , , , , }nA A A A A� �  //

Output: f
j
, the (4,3, 2,1)L -label of jA , 1, 2,3, ,j n� � .

Initialization: 1 0f � ;

2( ) {0}L A � ;

for each 2j �  to n–1 compute ( )p jL A  for 1, 2,3,4p �

for 0i �  to r , where { ( )} 4jr max L A� �

for 1k �  to 1| ( ) |jL A

if | | 4ki l� � , then 1 ( ) { }vl jL A i� �  //where 1( )k jl L A� //

end for;
end for;

for 1k �  to 3

for 1m �  to | ( ) |kvl jL A�

for 1n �  to 1| ( ) |k jL A�

if | | 4m nl p k� � � , then 1 ( ) { }k vl j mL A l�� �

//where ( )m kvl jl L A��  and 1( )n k jp L A�� //

end for;



L(3, 2, 1)-and L(4, 3, 2, 1)- Labeling Problems on Circular-ARC Graphs 881

end for;
end for;

jf �min 4{ ( )}vl jL A� ;

1( ) ( ) { }j j jL A L A f� � � ;

end for;

for 0i �  to s , where { ( )} 4ns max L A� �

for 1k �  to 1| ( ) |nL A

if | | 4ki l� � , then 1 ( ) { }vl nL A i� �  //where 1( )k nl L A� //

end for;
end for;
for 1k �  to 3

for 1m �  to | ( ) |kvl nL A�

for 1q �  to 1| ( ) |k nL A�

if | | 4m ql p k� � � , then 1 ( ) { }k vl n mL A l�� �

//where ( )m kvl nl L A��  and 1( )n k np L A�� //

end for;
end for;

end for;

nf �min 4{ ( )}vl nL A� ;

( ) { }n nL L A f� � ;

end L4321.

Theorem 7. The Algorithm L4321 correctly labels the vertices of a circular-arc graph using L(4,3,2,1)-
labeling condition.

Proof. Let 1 2 3{ , , , , }nA A A A A� � , also let 1 0f � , 2( ) {0}L A � . If the graph has only one vertex then

2( )L A  is sufficient to label the whole graph and obviously, 4,3,2,1( ) 0G� � .

If the graph has more than one vertex then the set 2( )L A  is insufficient to label the whole graph G.

Suppose, we are going to label the arc jA A� . ( )kvl jL A�  is the non empty largest set satisfying the condition

of distance1, 2,......, k  for 1, 2,3,4k �  of (4,3, 2,1)L -labeling, where l p�  for all ( )kvl jl L A��  and

{ ( )} 4jp max L A� � , for any jA A�  and 1, 2,3,4k �  (by Lemma 4). So, the labels in the set 4 ( )vl jL A�  are the

only valid labels for A
j
, which is less than or equal to p  and satisfying (4,3, 2,1)L -labeling condition.

Our aim is to label the arc jA  by using least possible label by (4,3, 2,1)L -labeling. So jf q� , where

4{ ( )}vl jq min L A�� . Now q is the least label for A
j
, because no label less than q satisfies L(4, 3, 2, 1)-labeling

condition. Since A
j
 is arbitrary, so this algorithm spent minimum number of labels to label any arc of a

circular-arc graph by (4,3, 2,1)L -labeling and 4,3,2,1( ) { ( ) { }}n nG max L A f� � � .
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Hence the theorem.

Theorem 8. A circular-arc graph can be (4,3, 2,1)L -labeled using 2( )O n�  time, where n and � represent

number of vertices and the degree of the graphG  respectively..

Proof. Let L be the label set and |L| be the cardinality of L. According to the algorithm L4321,| ( ) | | |i kL A L�

for i = 1, 2, 3, 4 and for any kA A� , and also 16 8r � �� , where { ( )} 4jr max L A� � . So 1 ( )vl jL A�  is computed

using at most | | (16 8)L � �  time, i.e. using at most ( | |)O L�  time. Also | ( ) | 16 11kvl jL A� � � �  for 1, 2,3k � ,

so 1 ( )k vl jL A��  can be computed using at most | | (16 11)L � �  time, i.e. using at most ( | |)O L�  time for each

1, 2,3k � . This process is repeated for 1n�  times. So, the total time complexity for the algorithm L4321 is

(( 1) | |) ( | |)O n L O n L� � � � . Since, | | 16 11L � � � , therefore the running time for the algorithm L4321 is
2( )O n� .

Illustration of the algorithm L4321

To illustrate the algorithm we consider a circular-arc graph of Fig. 4.

Figure 4: Illustration of Algorithm L4321

For this graph, 1 2 3 10{ , , , , }V v v v v� �  and 4.� �

jf �  The label of the vertex jv , for 1,2,3, ,10.j � �

1 0f � , 2( ) {0}L v � .

Iteration 1: For 2j � .

1 2( ) {0}L v � , 2 2( )L v �� , 3 2( )L v �� , 4 2( )L v �� .

1 2( ) {4}vlL v� � , 2 2( ) {4}vlL v� � , 3 2( ) {4}vlL v� � , 4 2( ) {4}vlL v� � .

Therefore, 2 4 2min{ ( )} 4vlf L v�� �  and 3 2 2( ) ( ) { } {0} {4} {0, 4}L v L v f� � � � � .
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Iteration 2: For 3j � .

1 3( ) {0}L v � , 2 3( ) {4}L v � , 3 3( )L v �� , 4 3( )L v ��

1 3( ) {4,5,6,7,8}vlL v� � , 2 3( ) {7,8}vlL v� � , 3 3( ) {7,8}vlL v� � , 4 3( ) {7,8}vlL v� � .

Therefore, 3 4 3min{ ( )} 7vlf L v�� �  and 4 0 3 3( ) ( ) { } {0, 4} {7} {0,4,7}L v L v f� � � � � .

Iteration 3: For 4j � .

1 4( ) {0,7}L v � , 2 4( ) {4}L v � , 3 4( )L v �� , 4 4( )L v ��

1 4( ) {11}vlL v� � , 2 4( ) {11}vlL v� � , 3 4( ) {11}vlL v� � , 4 4( ) {11}vlL v� � .

Therefore, 4 4 4min{ ( )} 11vlf L v�� �  and 5 4 4( ) ( ) { } {0, 4,7} {11} {0,4,7,11}L v L v f� � � � � .

Iteration 4: For 5j � .

1 5( ) {7,11}L v � , 2 5( ) {0}L v � , 3 5( ) {4}L v � , 4 4( )L v �� .

1 5( ) {0,1, 2,3,15}vlL v� � , 2 5( ) {3,15}vlL v� � , 3 5( ) {15}vlL v� � , 4 5( ) {15}vlL v� � .

Therefore, 5 4 5min{ ( )} 15vlf L v�� �  and 6 5 5( ) ( ) { } {0, 4,7,11} {15} {0,4,7,11,15}L v L v f� � � � � .

In this way 6 19f � , 7 2f �  8 9f � , 9 22f � , and finally, , 10 17f � .

The vertices and the label of the corresponding vertices are shown below:

Vertices v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
8

v
9

v
10

L (4, 3, 2, 1)-labels 0 4 7 11 15 19 2 9 22 17

5. CONCLUSION

In this paper, we determine the upper bounds for 3,2,1�  and 4,3,2,1�  for a circular-arc graph G, and have

shown that 3,2,1( ) 9 6G� � � �  and 4,3,2,1( ) 16 12G� � � � . These are the first bounds for the problems on

circular-arc graphs. Also, two algorithms are designed to (3, 2,1)L -label and (4,3, 2,1)L -label for circular--

arc graphs. The running time for both the algorithm is 2( )O n� .

Since the upper bounds are not tight, so there is a chance for new upper bounds for the problems. Also
the time complexities of the proposed algorithms may be reduced.
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