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Analysis, Control, Synchronization and
LabVIEW Implementation of a Seven-
Term Novel Chaotic System

Sundarapandian Vaidyanathan* and K arthikeyan Rajagopal**

Abstract: First, this paper announces a seven-term novel 3-D chaotic system with a cubic nonlinearity and two
guadratic nonlinearities. The phase portraits of the novel 3-D chaotic system aredisplayed and the mathematical
properties are discussed. The proposed novel 3-D chaotic system has three equilibrium points, which are all
unstable. We shall show that the equilibrium point at the origin isasaddle point, while the other two equilibrium
points are saddl e-foci. The Lyapunov exponents of the novel 3-D chaotic system areobtained asL, = 3.20885,
L,=0andL,=-23.63597. Thus, the Maximal Lyapunov Exponent (MLE) of the novel 3-D chaotic systemis
obtained as L, = 3.20885. Also, the Kaplan-Yorke dimension of the novel 3-D chaotic system is derived as
D,, = 2.13576. Since the sum of the Lyapunov exponents of the novel chaotic system is negative, it follows
that the novel chaotic system is dissipative. Next, an adaptive controller is designed to globally stabilize the
novel 3-D chaotic system with unknown parameters. Moreover, an adaptive controller is also designed to
achieve global and exponential synchronization of the identical novel 3-D chaotic systems with unknown
parameters. The main adaptive results for stabilization and synchronization are established using Lyapunov
stability theory. MATLAB simulations are depicted to illustrate all the main results derived in this work.
Finally, acircuit design of thenovel 3-D chaotic system isimplemented in LabVIEW to validate the theoretical
chaotic model.

Keywords: Chaos, chaotic systems, dissi pative systems, chaos control, chaos synchronization, circuit simulation,
LabVIEW implementation.

1. INTRODUCTION

Chaos theory describes the qualitative study of unstable aperiodic behaviour in deterministic nonlinear
dynamical systems. A dynamica system is called chaotic if it satisfies the three properties. boundedness,
infinite recurrence and sensitive dependence on initial conditions [1]. Chaos theory has applications in
severa areas in Science and Engineering.

A significant development in chaos theory occurred when Lorenz discovered a 3-D chaotic system
of aweather model [2]. Subsequently, Roéssler found a 3-D chaotic system [3], which is algebraically
simpler than the Lorenz system. Indeed, Lorenz’s system is a seven-term chaotic system with two
guadratic nonlinearities, while Réssler’s system is a seven-term chaotic system with just one quadratic
nonlinearity.

Some well-known paradigms of 3-D chaotic systems are Arneodo system [4], Sprott systems[5], Chen
system [6], LU-Chen system [7], Liu system [8], Cal system [9], Tigan system [10], etc.

In the last two decades, many new chaotic systems have been also discovered like Li system [11],
Sundarapandian systems [12-13], Vaidyanathan systems [14-33], Pehlivan systems [34-35], Pham systems
[36-37], Jafari system [38], etc.

* Research and Development Centre, Ve Tech University, Avadi, Chennai, India, Email: sundarvtu@gmail.com
**  Department of Electronics Engineering, Defence Engineering College, DebreZeit, Ethiopia, Email: rkarthiekeyan@gmail.com



152 Sundarapandian Vaidyanathan and Karthikeyan Rajagopal

Hyperchaotic systems are the chaotic systems with more than one positive Lyapunov exponent. They
have important applications in control and communication engineering. Some recently discovered 4-D
hyperchaotic systems are hyperchaotic Vaidyanathan systems [39-40], hyperchaotic Vaidyanathan-Azar
system [41], etc. A 5-D hyperchaotic system with three positive Lyapunov exponents was also recently
found [42].

Chaostheory has several applicationsin avariety of fields such as oscillators [43-44], chemical reactors
[45-58], biology [59-80], ecology [81-82], neural networks [83-84], robotics [85-86], memristors[87-89],
fuzzy systems [90-91], etc.

The problem of control of achaotic systemisto find a state feedback control law to stabilize a chaotic
system around its unstable equilibrium [92-93]. Some popular methods for chaos control are active control
[94-98], adaptive control [99-100], diding mode control [101-103], etc.

Chaos synchronization problem can be stated as follows. If a particular chaotic system is called the
master or drive system and another chaotic system is called the dave or response system, then the idea of
the synchronization is to use the output of the master system to control the Slave system so that the output
of the dave system tracks the output of the master system asymptotically.

The synchronization of chaotic systems has applications in secure communications [104-107],
cryptosystems [108-109], encryption [110-111], e

The chaos synchronization problem has been paid great attention in the literature and a variety of
impressive approaches have been proposed. Since the pioneering work by Pecoraand Carroll [112-113] for
the chaos synchronization problem, many different methods have been proposed in the control literature
such asactive control method [114-132], adaptive control method [ 133-149], sampled-data feedback control
method [150-151], time-delay feedback approach [152], backstepping method [153-164], sliding mode
control method [165-173], etc.

In this paper, we announce a novel 3-D chaotic system with a cubic nonlinearity and two quadratic
nonlinearities. We discuss the qualitative properties of the novel 3-D chaotic system and display the phase
portraits of the novel 3-D chaotic system. The proposed novel chaotic system has three equilibrium points,
which are all unstable.

The Lyapunov exponents of the novel 3-D chaotic system are obtained as L, = 3.20885, L, = 0 and
L, =-23.63597. Thus, the Maximal Lyapunov Exponent (MLE) of the novel 3-D chaotic systemis obtained
as L, = 3.20885. Also, the Kaplan-Yorke dimension of the novel 3-D chaotic system is derived as
D, = 2.13576. Since the sum of the Lyapunov exponents of the novel chaotic systemis negative, it follows
that the novel chaotic system is dissipative.

Next, this paper derives an adaptive control law that stabilizes the novel 3-D chaotic system with
unknown system parameters. This paper also derives an adaptive control law that achieves global chaos
synchronization of identical 3-D chaotic systems with unknown parameters.

In most of the synchronization approaches, the master-dave or drive-response formalismis used. If a
particular chaotic system is calledmaster or drive system, and another chaotic system is called slave or
response system, then the idea of synchronization is to use the output of the master system to control the
response of the dave system so that the dlave system tracks the output of the master system asymptotically.

This paper is organized as follows. In Section 2, we describe the seven-term novel 3-D chaotic system.
In Section 3, we describe the qualitative properties of the novel 3-D chaotic system. In Section 4, we detail
the adaptive control design for the global chaos stabilization of the novel 3-D chaotic system with unknown
parameters. In Section 5, we detail the adaptive control design for the global and exponential synchronization
of the identical novel 3-D chaotic systems. In Section 6, we give the circuit implementation of the novel
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chaotic systemin LabVIEW, which validates the theoretical chaotic model. In Section 7, we give asummary
of the main results derived in this work.

2. A SEVEN-TERM NOVEL 3-D CHAOTIC SYSTEM

In this section, we describe aneight-term novel 3-D chaotic system with a cubic nonlinearity and two
quadratic nonlinearities, which is modeled by the 3-D dynamics

% =a(X —X) + PXX;
X, = sz - X1X32 (1)
X = —CX + XX,

where x , X,, X,are state variables and a, b, ¢, p are constant, positive, parameters of the system.

The system (1) is chaotic when we take the parameter values as

a=30, b=14, c=45, p=14 2
For numerical simulations, we take the initial conditions of the state as
%(0)=1.2, x,(0)=0.8, x,(0)=1.2 3

The Lyapunov exponents of the 3-D chaotic system (1) for the parameter values (2) and the initial
conditions (3) are numerically calculated as

L, =3.20855, L, =0, L,=-23.63597 (4)

We note that the sum of the Lyapunov exponents of the chaotic system (1) is negative. Thus, the novel
3-D chaotic system (1) is dissipative.

The Kaplan-Yorke dimension of the 3-D novel chaotic system (1) is derived as

Dy, =2+ _ 213576 5
AT ©

Figure 1 shows the 3-D phase portrait of the novel 3-D chaotic system (1). Figures 2-4 show the 2-D
projection of the novel chaotic system (1) on the (x,, X,), (X, X;) and (X, X,) planes, respectively.
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Figure 1: Phase portrait of the novel 3-D Figure 2: 2-D projection of the novel chactic system on the
chaoticsystem (X, X,) plane
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Figure 3: 2-D projection of the novel chactic system on the Figure 4: 2-D projection of the novel chactic system on the
(X, ;) plane (X, ;) plane

3. PROPERTIES OF THE NOVEL3-D CHAOTIC SYSTEM

In this section, we discuss the qualitative properties of the novel 3-D chaotic system (1) introduced in
Section 2. We suppose that the parameter values of the system (1) are asin the chaotic case (2), i.e. a= 30,
b=14,c=45and p=14.

3.1. Dissipativity
In vector notation, we may express the system (1) as

£ (% %, %)
x=f(X)=| f,0%, %, %) (6)
fa (% %, %)

where

FL (%%, %) = (%, = %) + PX, X
1,002, %) =bX, =% ™
Fa(X %50 %) = —CX + XX,
Let Q be any region in R®* with a smooth boundary and also Q(t) = @, (2), where @, isthe flow of the
vector field f Furthermore, let V/(t) denote the volume of Q(t).
By Liouville's theorem, we have
V= Q.[t)(v- f)dx, dx, dx, )
The divergence of the novel chaotic system (1) is easily found as
of, N of, N of,

V.f="1422 . %
oX, 0%, 0%

=-a+b-c=-u 9)

wherep=a-b+c=20.5>0.
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Substituting (9) into (8), we obtain the first order ODE

V=—V (10)
Integrating (10), we obtain the unique solution as
V(t) =exp(-ut) V() for alt >0 (11)

Since n > 0, it follows that V(t) — 0 exponentialy as t —» «. This shows that the 3-D novel chaotic
system (1) isdissipative. Thus, the system limit sets are ultimately confined into a specific limit set of zero
volume, and the asymptotic motion of the novel chaotic system (1) settles onto a strange attractor of the
system.

3.2. Symmetry
It is easy to see that the system (1) is invariant under the coordinates transformation

(%%, X3) = (=%, =%, =) (12)
Thus, the system (1) exhibits point reflection symmetry about the origin in R3,

3.3. Equilibrium Points
The equilibrium points of the system (1) are obtained by solving the system of equations

a(x,—x)+ pxx =0
bx, — % x5 =0

(13)
—CX;+ XX =0

Solving the system (13) with the values of the parameters as given in (2), we obtain three equilibrium
points

0 4.9872 —4.9872
E,=|0|, E,=|22855|, E, =| —2.2855 (14)
0 2.5330 2.5330
The Jacobian of the system (1) at any point X € R® isgiven by
-a a+X X, -30 30+x, X,
=% b -26(=-x 14 2% (15)
X X —C X, X -4.5
We find that
-30 30 O
Jo=J(E,)=| 0O 14 O (16)
0O 0 -45

Since J, is triangular, its eigenvalues are given by the diagonal entries, viz.

A4 =-30, 4,=14, 4,=-45 a7
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This shows that the equilibrium E_ is a saddle-point, which is unstable.
Next, we find that

-30.0000 32.5330 2.2855
J,=J(E)=| 64161 14.0000 -25.2652

(18)
22855 49872 -4.5000
The eigenvalues of J, are numerically determined as
A =-275611, 2,,=35306+12.7930i (19)
This shows that the equilibrium point E, is a saddle-focus, which is unstable.
We aso find that
—-30.0000 32.5330 -2.2855
J,=J(E,)=| -6.4161 14.0000 25.2652 (20)
-2.2855 -4.9872 -4.5000
The eigenvalues of J, are numerically determined as
A =-275611, 2,,=35306+12.7930i (21)

This shows that the equilibrium point E, is a saddle-focus, which is unstable.

3.4. Lyapunov Exponents and K aplan-yorke Dimension

We take the parameter values of the novel system (1) asin the chaotic case (2),1.e.a=30,b=14,c=45
and p = 14.

We choose the initia values of the state as x, (0) = 1.2, x, (0) = 0.8 and X, (0) = 1.2.
Then we obtain the Lyapunov exponents of the system (1) as

L, =3.20885, L,=0, L,=-23.63597. (22
Figure 5 shows the Lyapunov exponents of the system (1) as determined by MATLAB.

We note that the sum of the Lyapunov exponents of the system (1) is negative. This shows that the
novel chaotic system (1) is dissipative.

Also, the Maximal Lyapunov Exponent of the system (1) is L, = 3.20885.
The Kaplan-Yorke dimension of the novel 3-D chaotic system (1) is derived as

_,, L+l 320885+0
L] 23.63597

= 2.13576 (23)
which is fractional.

4. ADAPTIVE CONTROL DESIGN FOR THE STABILIZATION OF THE NOVEL
CHAOTIC SYSTEM

In this section, we use adaptive control method to derive an adaptive feedback control law for globally and
exponentially stabilizing the novel 3-D chaotic system with unknown parameters.
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Figure 5: Lyapunov exponents of the novel chaotic system
Thus, we consider the novel 3-D chaotic system given by
¥ = a(X = %)+ PXoXs + Uy
; 2
X, =X, — X5 +U, (24)

X, = —CX; + X, X, + U,

In (24), x,, X,, X, are the states and u,, u,, u, are adaptive controls to be determined using estimates

a(), B(t), c(t)and p(t) for the unknown parameters a, b, ¢ and p, respectively.

We consider the adaptive control law defined by

U, = —a(t) (X, — %) = P(t)X%; — kX,
u, = _b(t)xz + X1X32 - kzxz
U; = é(t)X3 XX - k3X3
wherek , k,, k, are positive gain constants.
Substituting (25) into (24), we get the closed-loop plant dynamics as

% =[a-a(t)](x, —x)+[p— PM)]xx —kx

%, =[b—b()]%, —k,%,
% = —[c— &(1)]% — kX,

(25)

(26)
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The parameter estimation errors are defined as

ea(t) =a- é-(t)
& (t) =b—b(t)
e.(t) =c—c(t) (27)
e, (t) = p-p(t)
Using (27), we can simplify the plant dynamics (26) as
¥ =606 = %) +€,%X— KX

X, = €%, — kzxz (28)
X =—€X;— k3X3

Differentiating (27) with respect to we obtain

&,(t) =-a(t)
&,(t) =)
&.(t) =—C(t) (29)
e,(t)=—p()

We use adaptive control theory to find an update law for the parameter estimates.

We consider the quadratic candidate Lyapunov function defined by
V(x,ea,eo,ec,ep):%(xf+x§+x32+e§+e§+ef+e§) (30)

Clearly, V is a positive definite function on R’.

Differentiating V along the trgjectories of (28) and (29), we obtain

V =k~ —kd + 6, [ %0 -x) -8 ]+ b
re[ 6 -Clre [ xxx -] -

In view of (31), we take the parameter update law as follows:

E=-x (32)

Theorem 1. The novel 3-D chaotic system (24) with unknown system parameters is globally and
exponentially stabilized for al initial conditions x(0) e R® by the adaptive control law (25) and the parameter
update law (32), where k , k,, k, are positive gain constants.
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Proof. We prove this result by using Lyapunov stability theory [174].
We consider the quadratic Lyapunov function defined by (30), which is positive definite on R’
By substituting the parameter update law (32) into (31), we obtain the time derivative of V as

V = kX = kX — kox (33)
From (33), it is clear that \/ is a negative semi-definite function on R,

Thus, we conclude that the state vector x(t) and the parameter estimation error are globally bounded, i.e.

[xt) e® &t ab) e®] L,
We define k = min {k , k,, k.}. Thus, it follows from (33) that

V < —k|x(®)[ (34)

Thus, we have

kx| <-V (35
Integrating the inequality (35) from O to t, we get

k[x(@)[ dr <V (@) -V (t) (36)

From (36), it followsthat xeL,. Using (28), we can conclude that xe L.

Using Barbalat’s lemma [174], we can conclude that x(t) — O exponentially ast — oo for all initia
conditions x(0) e R3.

This completes the proof. m

For numerical simulations, the classical fourth-order Runge-Kutta method with step size h = 108is
used to solve the systems (24) and (32), when the adaptive control law (25) is applied.

The parameter values of the novel chaotic system (24) are taken asin the chaotic case (2), i.e.
a=30, b=14, c=45, p=14 (37)
We take the positive gain constants ask = 5fori =1, 2, 3.
Furthermore, as initial conditions of the novel chaotic system (24), we take
% (0)=-5.4, x,(0)=12.7, x,(0)=-3.9 (38)
Also, as initial conditions of the parameter estimates, we take
4(0)=5.8 b(0)=24, &0)=13 p(0)=123 (39)
Figure 6 showsthe exponential convergence of the controlled state trgjectories of the 3-D novel chaotic

system (24).

5. ADAPTIVE SYNCHRONIZATION OF THE IDENTICAL NOVEL CHAOTIC SYSTEMS

In this section, we use adaptive control method to derive an adaptive feedback control law for globally
synchronizing identical 3-D novel chaotic systems with unknown parameters.
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Figure 6: Time-history of the controlled state trajectories of the novel chaotic system

As the master system, we consider the novel chaotic system given by

% =a(X —X)+ PXX;
X, =bx, — X1X32
X = —CX + X%,
where x , X,, X, are the states and a, b, ¢, p are unknown system parameters.

As the dave system, we consider the controlled novel chaotic system given by

Yi=a(Y, = Yi) + Y, Ys + U
yZ = byz - y1y§ +U,

Y3 =—CY;+ V1Y, +U;

(40)

(41)

where y,, y,, Yy, are the states and u,, u,, u, are adaptive controls to be determined using estimates

a(t), b(t), &(t), p(t) for the unknown system parameters a, b, ¢, p, respectively.

The synchronization error between the novel chaotic systems (40) and (41) is defined by

(42)
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Then the error dynamics is obtained as

& =a(e,— )+ P(Y,Y; — X X5) +Uy
&, =be,— y,y5 + X5 +U,

&="C&+ Y,Y, = XX +U;
We consider the adaptive feedback control law
u =-a(t)(e, —&) - P)(Y.Ys — %%) — ke

u, = _B(t)ez + y1y§ - X1X§ - kze2
U; = 6(t)es, —YiYo X% — ks%

(43)

(44)

where k, k,, k, are positive constants and A(t), b(t), &(t), p(t) are estimates of the unknown parameters

a, b, ¢, p, respectively.
Substituting (44) into (43), we can smplify the error dynamics (43) as

& =[a-a()](e,—&)+[p- PMOI(Y,Ys —X%X%) — ke
e =[b-b(t)le,~ ke,
&, =-[c—C(t)le, - ke

The parameter estimation errors are defined as

e, =a—a(t)

& =b-b(t)

e. =c—C(t)

e, = p-p(t)
Substituting (46) into (45), the error dynamics is smplified as

e =e(e-a)+e(¥.Y:—%X)-ke
& =68 ke
6 =-66-kg

Differentiating (43) with respect to t, we obtain

e =—a(t)
& =—b(t)
e =—¢(t)
e =—p(t)

We consider the quadratic candidate Lyapunov function defined by

(45)

(46)

(47)

(48)
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V@@M%QﬁJ:a§+§+§+§+ﬁ+§+ﬁ) (49)
Differentiating V along the trgjectories of (47) and (48), we obtain

Y =—klef—kzeé—kse§+ea[el(ez—el)—é}+eo[e§—5}
A A (50)
+e[-€-¢|+e [ a(y,ys—%%) - b

In view of (50), we take the parameter update law as follows.

- Q»
Il

e(e—e)

O
Il
ALY

(51)

€
=6 (Y,Ys— %%)

¢
p
Next, we state and prove the main result of this section.

Theorem 2. The novel 3-D chaotic systems (40) and (41) with unknown system parameters are globally
and exponentially synchronized for all initial conditions x(0), y(0) € R® by the adaptive control law (44) and
the parameter update law (51), where k , k,, k, are positive constants.

Proof. We prove this result by applying Lyapunov stability theory [174].
We consider the quadratic Lyapunov function defined by (49), which is positive definite on R’
By substituting the parameter update law (51) into (50), we obtain the time-derivative of V as
V =kl —k,& k€l (52)
From (52), it is clear that \/ is a negative semi-definite function on R’.

Thus, we can conclude that the synchronization error vector e(t) and the parameter estimation error are
globally bounded, i.e.

[e) e &) a® e®)] eL, (53)
We define k = min {k,, k,, k.}. Then it follows from (52) that
V < ke[’ (54)
Thus, we have
kle®]’ <~V (55)

Integrating the inequality (55) from O to t, we get
t
[Ke@[ dz<v(©@-V () (56)
0

From (56), it follows that ecL,. Using (47), we can concludethat ée L.

Using Barbalat’slemma[174], we concludethat e(t) — 0 exponentially ast — oo for all initial conditions
g0 eR
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This completes the proof. m

For numerical smulations, we take the parameter values of the chaotic systems (40) and (41) asin the
chaotic case (2), i.e.
a=30, b=14, c=45, p=14 (57)
We take the positive gain constantsask = 5fori =1, 2, 3.

Asinitial conditions of the master system (40), we take

x(0) =113, x,(0)=8.2, x,(0)=-7.9 (58)
Asinitial conditions of the dave system (41), we take
y,(0)=14.7, vy,(0)=-7.2, y,(0) =10.4 (59)
Asinitial conditions of the parameter estimates, we take
4(0)=5.2, b(0)=18, ¢&0)=47, p0)=1.3 (60)

Figures 7-9 depict the synchronization of the novel chaotic systems (40) and (41).

Figure 10 depicts the time-history of the complete synchronization errors e, e,, €.
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6. CIRCUIT SIMULATION AND LABVIEW IMPLEMENTATION

In this paper, the proposed Chaotic System is implemented in LabVIEW using the Control Design and
Simulation Loop(CDS). Figure 11 shows the block diagram of the Chaotic System. The Simulation
parameters are chosen to run the simulation loop with breakpoints. Figures 12 shows the time history of the
states X1, X2, X3. Figure 13 shows the 2D phase portraits of states X1X2, X2X3, X3X1. The Adaptive
controller is implemented in the CDS loop using the feedback-Summing methodology. Figure 14 shows
the Block diagram of the Parameter update law. Figure 15 shows the designed adaptive controller.. The
Master and the dave systems are identical chaotic systems with different initial conditions. Figure 16

shows the Time history of the synchronisation errors €1, €2, €3.
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Figure 11: LabVIEW Blockdiagram of the Chaotic System



Analysis, Control, Synchronization and LabVIEW Implementation of a Seven-Term Novel... 165

15- b
10- 4
5- d
ﬂ-
E|-
: R 2
s 4-
'lﬂ' 'ﬁ'
-15- 8-
-20 r 1 & 1 1= & 1T 1 71 1 -10 ] 1 1 ] ]
2115 29 30 31 32 33 34 35 363715 2 N T 35 36 i
Time Time

2

1

0.._

R

1-

2=

-3 (L T 1 T I T I

2115 29 30 31 32 33 34 35 36 3715

Time
Figure 12: Time-history of the states

-200

150 100 -50 00 50 100 150 150 100 50 00 50 100




166 Sundarapandian Vaidyanathan and Karthikeyan Rajagopal

((@ [

30 20 -0 0D 10 20 30
Figure 13: 2D Phase Portraits of the states X1X2, X2X3, X3X1.

ahat sugn 2 Multiplication 4 .mammu

bhat bm 2 | ll':ultiplicatich rator 5
: L | - } H
JEEh :E 5 ®

chiat

— s 4 Multiplicatiof Sin 3 Int vor 6
TEh—— il R i el
i ¥ Hx — : &
phat T

- :I';lultlpllcatmnﬁ Intenrator7
5 i @

o ’

3

Figure 14: LabVIEW Block diagram of the Parameter Update L aw

7. CONCLUSIONS

In this paper, we have proposed a seven-term novel 3-D chaotic system with a cubic nonlinearity and two
guadratic nonlinearities. The qualitative properties of the novel chaotic system have been discussed. The
proposed novel 3-D chaotic system has three equilibrium points, which are all unstable. We showed that
the equilibrium point at the origin is a saddle point, while the other two equilibrium points are saddle-foci.
The Lyapunov exponents of the novel 3-D chaotic system were obtained as and Also, the Kaplan-Yorke
dimension of the novel 3-D chaotic system was derived as Next, an adaptive controller was designed to
globally stabilize the novel 3-D chaotic system with unknown parameters. Moreover, an adaptive controller
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was designed to achieve global and exponential synchronization of the identical novel 3-D chaotic systems
with unknown parameters. The main adaptive results for stabilization and synchronization were established
using Lyapunov stability theory. MATLAB simulations have been shown to illustrate all the main results
derived in this work. Finally, a circuit design of the novel 3-D chaotic system has been implemented in
LabVIEW to validate the theoretical chaotic model.
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