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ABSTRACT: In this paper, we have derived some explicit formulae for Pell numbers P
n

and Q
n
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1. INTRODUCTION

Define the sequences {U
n
} and {V

n
} for all integers n by

1 2 0 1

1 2 0 1

, 0, 1,

, 2, .

n n n

n n n

U pU U U U

V pV V V V p

� �

� �

� � � ���
�

� � � ���

For p = 1, we write {U
n
} = {F

n
} and {V

n
} = {L

n
}, which are the Fibonacci [1] and

Lucas numbers respectively. Their Binet forms, obtained by using standard techniques
for solving linear recurrences, are

n n

nF
� ��

�
� ��

and L
n
 = �n + bn,

where � and � are the roots of x2 – x – 1 = 0.

For p = 2, we write

1 2 0 1

1 2 0 1

2 , 0, 1,

2 , 2, 2.

n n n

n n n

P P P P P

Q Q Q Q Q

� �

� �

� � � ���
�

� � � ���

Here {P
n
} and {Q

n
} are the Pell and Pell-Lucas Sequences respectively. Their Binet

forms are given by [6]

n n

nP
� � �

�
� � �

and Q
n
 = � n + �n,
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where � and � are the roots of x2 – 2x – 1 = 0 i.e., 1 2� � �  and 1 2� � � .

2. EXPLICIT FORMULAE

Here we derive explicit formula for P
n
 and Q

n
. Since | � | < 1, so when n is large �n � 0

and hence using Binet Formula we can write 
2 2

n

nP �� . So we compute the value of

2 2

n�  for the first ten values of n and look for a pattern:

0.85355339,
2 2

�
�

2

2.060660172,
2 2

�
�

3

4.974873734,
2 2

�
�

4

12.01040764,
2 2

�
�

5

28.995689091,
2 2

�
�

6

70.00178567,
2 2

�
�

7

168.9992604,
2 2

�
�

8

408.0003064,
2 2

�
�

9

984.9998731,
2 2

�
�

10

2378.000053
2 2

�
� .

Now add 1
2  to each and see the pattern which emerges:

1
1.35355339,

22 2

�
� �

2 1
2.560660172,

22 2

�
� �

3 1
5.474873734,

22 2

�
� �

4 1
12.51040764,

22 2

�
� �

5 1
29.495689091,

22 2

�
� �

6 1
70.50178567,

22 2

�
� �

7 1
169.4992604,

22 2

�
� �

8 1
408.5003064,

22 2

�
� �

9 1
985.4998731,

22 2

�
� �

10 1
2378.500053.

22 2

�
� �
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Thus, we get

1
1.35355339 1,

22 2

�� �
� � �� �� �� �

� �

2 1
2.560660172 2,

22 2

� ��
� � �� �� � � �

� �

3 1
5.474873734 5,

22 2

� ��
� � �� �� � � �

� �

4 1
12.51040764 12,

22 2

� ��
� � �� �� � � �

� �

5 1
29.495689091 29,

22 2

� ��
� � �� �� � � �

� �

6 1
70.50178567 70,

22 2

� ��
� � �� �� � � �

� �

7 1
169.4992604 169,

22 2

� ��
� � �� �� � � �

� �

8 1
408.5003064 408,

22 2

� ��
� � �� �� � � �

� �

9 1
985.4998731 985,

22 2

� ��
� � �� �� � � �

� �

10 1
2378.500053 2378.

22 2

� ��
� � �� �� � � �

� �

Hence we found that 1
22 2

n

nP�� �� �� � . Theorem 1 confirms this result. To establish

it, we need the following Lemma 1 [5].

Lemma 1: 
1

0 1.
22 2

n�
� � �

Proof: Since 0, | |� � � � �� . Also, since 0 | | 1, 0 | 1,n� � � � � � ,

So 
2 2 1

0 0 .
2 22 2

n
n �

� � � � � �

Case I: Let n be even. Then | |n n� � � , so | | 1
22 2

0
n�� �  and hence

1 1
1

2 22 2

n�
� � � .

Case II: Let n be odd. Then | |n n� � �� , so 1
22 2

0
n��� �  and hence

1 1 1
0 0

2 2 22 2 2 2

nn �� �
� � � � � � .
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Thus in both cases,

1
0 1

22 2

n�
� � � .

This establishes the lemma.

Theorem 1: 
1

.
22 2

n

nP
� ��

� �� �
� �

Proof: Using Binet formula, we can write

1 1
2 22 2 2 2

n n n n

nP
� � � �� � � � �

� � � � �� � � �� � � � � � �
(1)

1 1
1

2 22 2 2 2

n n

n nP P
� � � �� �

� � � � � � �� � � �
� � � �

(Using Lemma 1)

Since � �1
22 2

0,
n� � �  it follows from (1) that � �1

22 2

n

nP �� � .

Thus,

1

1
22 2

n

n nP P �

� ��
� � �� �
� �

.

Consequently,

1
.

22 2

n

nP
� ��

� �� �
� �

(2)

For example,

20 1
15994428.5,

22 2

�
� � so

20

20

1
15994428.5 15994428

22 2
P

� ��
� � � �� �� � � �

� �

Corollary 1: 
1

.
22 2

n

nP
� ��

� �� �
� �
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Proof: Since 1x x� �� � � �� � � �  for non-integral real number x, it follows that

1
1

22 2

n

nP
� ��

� � �� �
� �

(Using 2)

But x n x n� � �� � � �� � � �  for integer n

1 1
1

2 22 2 2 2

n n

nP
� � � �� �

� � � � � �� � � �
� � � �

.

For example,

.
20 20

10

1 1
2377.500053 2377.500053 2378

2 22 2 2 2
P

� �� �
� � � � � � �� �� � � �

� �
.

Similarly,

15 15

15

1 1
195024.5 195024.5 195025

2 22 2 2 2
P

� �� �
� � � � � � �� �� � � �

� �
.

Here is yet another interesting observation:

3 5 7 9

1 3 5 7 9

2 4 6 8 10

2 4 6 8 10

, , , , .
2 2 2 2 2 2 2 2 2 2

& , , , , .
2 2 2 2 2 2 2 2 2 2

P P P P P

P P P P P

� � � � � � � �� � � � �� �
� � � � �� � � � � � � �� �� � � � � � � � � �

� � � � � � � � � �� � � � �
� � � � �� � � � � � � � � �

� � � � � � � � � �

Thus, we have

2 2 1

2 2 1and
2 2 2 2

n n

n nP P
�

�

� � � �� �
� �� � � �

� � � �
.

The following corollary confirms these two observations:

Corollary 2: 
2 2 1

2 2 1and
2 2 2 2

n n

n nP P
�

�

� � � �� �
� �� � � �

� � � �
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Proof: Let n be even. Then, using Lemma 1, we have

1
1

2 2 2

n�
� � , so

1
1

2 2 2

n�
� � � � � .

Then,

1
1

22 2 2 2 2 2 2 2

n n n n� � � �
� � � � � ,

Or

1
1

22 2 2 2

n n

nP
� �

� � � � .

But, x x�� �� �  and x x n� �� � � �� � � �

1
1

22 2 2 2

n n

nP
� �� �

� � � � �� �
� �

Or

1
2 2 2 2

n n

nP
� �� �

� � �� �
� �

.

Thus,

2 2

n

nP
� ��

� � �
� �

.

Similarly, we can establish the case when n is odd and similar proof can be given
to the second part also.

Theorem 2: 
1

.
2

n
nQ

� �� � �� �� �

For example, 13 1
94642.50001

2
� � �

13

1
94642

2
n Q

� �� � � � �� �� �
.
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Corollary 3: (i) 1
2

n
nQ � �� � �� �

(ii) 2 2 1
2 2 1( ) and .n n
n nQ Q �

�� � � �� � � �� � � �

For example, 9 1
2 2785.500359� � �

9 12
9 12

1
2786 , 39201.99997 39202

2
Q Q

� � � �� � � � � � � � �� �� �� � � �� �
,

and 17
173215042 3215042 Q� �� � � �� �� �� � .

In every explicit formula, we needed to know the value of n in order to compute P
n
.

But knowing a Pell number, we can easily compute its successor. The next theorem
provides such a formula, but first we need to lay some groundwork in the form of a
lemma, similar to Lemma 1.

Lemma 2: If 2,n �  then 1
20 1.n� � � �

Proof: Since 2 1
2| | 0.414, | | ,� � � �  so 1

2| |n� �  when 2.n �

Since | | | |,n n� � �  this yields 1 1
2 2

n� � � � . Then 1
21 0;n� � � � �

That is, 1
20 1.n� � � �

Theorem 3: 1
1 2 , 2.n nP P n� � � � �� �� �

Proof: By Binet formula

P
n
 =

n n� � �
� � �

� �P
n
 =

1

2 2

n n�� � ��

=
1 1 1 1( )

2 2

n n n n� � � �� � �� � � � � �

=
1 1 1 1( ) {( ) }

2 2

n n n n� � � �� � � � ��� � � �
( 1)�� � ��
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=
1 2

1

( )

2 2

n

nP
�

�
� ��� � �

�

=
1

1

{( ) ( )}

2 2

n

nP
�

�
� �� � � �

�

=
1

1

{ 2 2( ) }

2 2

n

nP
�

�
� � ��

� ( 2 2)� � � ��

= 1
n

nP � � �

1
2nP� � �  = 1

1
2

n
nP �

� �� � �� �
� �

(3)

Since 1
2( ) 0,n� � �  this implies that 1

1 2( )n nP P� � � � .

Besides, since 1
2( ) 1,n� � �  using (3), we can write 1

12 1n nP P �� � � � .

Thus, 1
1 12( ) 1n n nP P P� �� � � � � , so 1

1 2 .n nP P� � � �� �� � .

For example, let P
n
 = 985. Its successor is given by 1

2985 2378.500359 2378�� � �� � � �� �� �
as expected. Substituting for � in the formula for P

n
 yields the following result:

Corollary 4: 2 2 2 1
1 2 , 2.n nP P

nP n� �
�

� �� �� �

We can use the recursive formula theorem 3 or corollary 4 to compute the ratio
1n

n

P
P
�  as n � �, as the following corollary demonstrates. Its proof employs the following

fact; x k�� �� �  if then x = k + �, where 0 � � < 1.

Corollary 5: 1lim .n

n

P
Pn

�

��
� �

Proof: By Theorem 3, 1
1 2n nP P� � � � � �  where 0 � � < 1.

1

1

1
2

lim .

n

n n n

n

n
n

P

P P P

P

P

�

�

��

�
� � � �

� � �
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Since 1x x� �� � � �� � � � , for any non-integral real number x. We can express these two
formulas in terms of the ceiling function, as the next corollary states:

Corollary 6: (i) 1
1 2 , 2.n nP P n� � � � �� �� �

(ii) 2 2 2 1
1 2 , 2.n nP P

nP n� �
�

� �� �� �

For example, the successor of the Pell number 2378 is given by
1
22378 5740.499851 5741� � � �� � � �� �� � .

Theorem 4: 1
1 2 , 2.n nP Q n� � � � �� �� �

For example, the successor of the Pell-Lucas number 478 is given by
1
2478 1154.494083 1154� � � �� � � �� �� � . Notice that Q7 = 478 and Q8 = 1154.

Corollary 7: 1lim .n

n

Q
Qn

�

��
� �

Corollary 6: (i) 2 2 2 1
1 2 , 2.nQ

nQ n� �
�

� �� �� �

(ii) 1
1 2 , 2.n nQ Q n� � � � �� �� �

(iii) 2 2 2 1
1 2 , 2.n nQ Q

nQ n� �
�

� �� �� �

For example, the successor of the Pell-Lucas number 2786 is given by
1
22786 6725.498985 6726� � � �� � � �� �� � . Notice that Q9 = 2786 and Q10 = 6726.

There is yet another recursive formula that expresses each Pell number in terms of
its predecessor and one that expresses each Pell-Lucas number in terms of its
predecessor. We find both in the following theorem:

Theorem 5: (i)
22 8 4( 1)

1 2

n
n nP P

nP � � �
� �

(ii)
22 8 [ 4( 1) ]

1 2

n
n nQ Q

nQ � � �
� �

This theorem can easily be proved using following three identities [2]:

1

1

2 2

2 2

2 8 2

8 4( 1) .

n n n

n n n

n
n n

P P Q

Q P Q

Q P

�

�

� �

� �

� � �
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There is still another formula that expresses a Pell number in terms of its predecessor.

Theorem 6: 
22 1 8 4 1

1 2 , 2n n nP P P
nP n� � � �
�

� �� �� �� �
.

Proof: Since 1 12 2( ) 2 2n n n n n nQ P P P P P� �� � � � � (4)

Also, 2 28 4( 1)n
n nQ P� � � , where n � 1. When n � 2, 14( 1) 4n

nP �� � .

Therefore, when n � 2, we have

2 2
18 4n n nQ P P �� �

Or 2 28 2( 2 )n n n nQ P Q P� � � Using (4)

Or 2 2( 1) 8 4 1n n nQ P P� � � � (5)

But, 12 2n n nQ P P�� �

� Using (5), we can write

2 2
1(2 2 1) 8 4 1n n n nP P P P� � � � � � .

Thus, 2
1(2 2 1) 8 4 1n n n nP P P P� � � � � �

Or
2

1

2 1 8 4 1

2
n n n

n

P P P
P �

� � � �
� (6)

Also, Q
n
 + 2P

n
 = 2P

n + 1. So when n � 2,

14( 1) 4n
nP �� �

Or 14( 1) 4n
nP �� � � �

� 2 28 2( 2 )n n n nQ P Q P� � � �

Or 2 22 8 4n n n nQ Q P P� � �

Or 2 2( 1) 8 4 1n n nQ P P� � � �

� 2 2
1(2 2 1) 8 4 1n n n nP P P P� � � � � �
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Thus, 2
1(2 2 1) 8 4 1n n n nP P P P� � � � � �

2

1

2 1 8 4 1

2
n n n

n

P P P
P �

� � � �
� (7)

2

1

2 1 8 4 1

2
n n n

n

P P P
P �

� �� � � �
� ��
� �� � (8)

From equation (6) and (7), we have

2 2

1

2 1 8 4 1 2 1 8 4 1

2 2
n n n n n n

n

P P P P P P
P �

� �� � � � � � � �
� � � �
� �� �

.

Since P
n + 1 is an integer, it follows that

2

1

2 1 8 4 1
, 2

2
n n n

n

P P P
P n�

� �� � � �
� �� �
� �� �

.

For example, the successor of the Pell number 985 is given by

22(985) 1 8(985) 4(985) 1
2378.14685 2378.

2

� �� � � �
� �� � � �� �

� �� �

Similar to Pell numbers, there is a formula for Pell-Lucas numbers also given as
follows:

Theorem 7: 
22 1 8 4 1

1 2 , 4n n nQ Q Q
nQ n� � � �
�

� �� �� �� �
.

For example, the successor of the Pell-Lucas number 1154 is given by

22(1154) 1 8(1154) 4(1154) 1
2786.148936 2786.

2

� �� � � �
� �� � � �� �

� �� �

We can also compute the predecessor of a given Pell number, as the following
theorem states:
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Theorem 8: � �1 1
1 2 , 2n nP P n��

� �� � �� � .

Proof: Since 1x x x� � �� �� � , using Theorem 3 we can write

1

1 1
2 2n n nP P P�� � � � � �

Or 11 1
2 2

n
n n

P
P P�� � � �

� � �

Then, 1

1 1
2n nP P �

� �� �� �� � �
and 1

1 1
2n nP P �

� �� �� �� � �

Or 1 1

1 1 1 1
2 2n n nP P P� �

� � � �� � � �� � � �� �� � � �

Since 1 1 1 1 1
1 12 2( ) ( ) 0.4142n nP P� �� � �� � � � �  and P

n
 is an integer, it follows that

1

1 1
, 2

2n nP P n�

� �� �� � �� �� �� � �� �
.

For example, the predecessor of the Pell number 13860 is given by
1 1

2(13860 ) 5741.207081 5741�
� �� � �� �� �� � . Notice that P12 = 13860 and P11 = 5741.

Theorem 9: 1 1
1 2( ) , 2n nQ Q n��

� �� � �� � .

For example, the predecessor of the Pell-Lucas number 39202 is given by
1 1

2(39202 ) 16238.20718 16238�
� �� � �� �� �� � . Notice that Q12 = 39202 and Q11 = 16238.

Theorem 10: 1
2 , 1.k

n n kP P n k�� �� � � � �� �
Proof: Since the theorem is true for k = 1. Assume that n � k � 2. Using Binet

formula,

�k P
n
 =

2 2

n k k n�� � � �

=
2 2

n k k n n k n k� � �� � � � � � � �
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=
2 2 2 2

n k n k k n n k� � �� � � � � � �
�

= n
n k kP P� � �

1
2

k
nP� � �  =

1
2

n
n kP �

� �� � �� �
� �

. (9)

Now we shall prove that 1
20 ( ) 1n

kP� � � � . When n = k, | �nP
k | has its largest

value. Notice that | �
n

 | � 0 as n � �.

Also,

2( 1)
.

2 2 2 2

k k k k
k k

kP
� �� � � � ��

� � � �� �
� �

Case I: Let k be even. Then

21

2 2

1 0 1 1
lim .

22 2 2 2

k
k

k

k
k

k

P

P
��

� �
� �

�
� � � � �

Since | �
n

 | = | �
k
 |, it follows that 1

20 | | .n
kP� � �

Case II: Let k be odd. Then

2 21 1

2 2 2 2

k k
k

kP
� � � � �

� � �

When k = 3, 2 0.005050633883k� � . So

1.005050633883 1
0.355339 .

22 2
k

kP� � � �

As k increases, �2k gets smaller and smaller. So 1
2| |k

kP� �  for k > 3 also. Thus
1
20 | |n

kP� � � , since | �
n

 | < | �
k
 |.
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Consequently,

1
0 2;

2
n

kP n k� � � � � �

Or 1 1
2 2

n
kP� � � �

Or 1
0 1

2
n

kP� � � �

Using (9), we have

1

1
1

2
k

n k n nP P P� �� � � � �

Thus,

1
, 1.

2
k

n n kP P n k�
� �� � � � �� �� �

For example,

7 7
8 15 8 7

1 1
(408) 195025.3536 195025

2 2
P P P �

� � � �� � � � � � � � �� �� �� � � �� � � �
.

Notice that

8
7 15

1
195026

2
P P

� �� � � �� �� �
.

Corollary 9: 1
2

k
n n kP P �� �� � �� � where n � k � 1.

For example,

9 9
11 20 11 9

1 1
(5741) 15994427.56 15994427

2 2
P P P �

� � � �� � � � � � � � �� �� �� � � �� � � �
.

Theorem 11: 1
2 , 4, 1.k

n n kQ Q n k�� �� � � � �� �
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Proof: Since. 1 1
1 ( ) ( ) ( ) 8n n n n n n

n nQ Q � �
�� � � � � � � � � � � � � � � � � �  When n � 4.

4 4

1

1
8 8 8(1 2) 0.0658

2

1
.

2

n

n nQ Q �

� � � � � � �

� � � �

Or 1
1 20 1n nQ Q �� � � � � , so 1

12n nQ Q �� � �� �� � . Thus the theorem is true for k = 1.
Now assume n � k + 2 where k � 2.

Notice that 2 6 2 6 0.176620633.� �� � � � � � � �

Since k � 2, this implies 2 2 2 1
2 ;k� � �� � � �

Or 2 1
( )

2
k k k� � �� � � � � .

Since n � k + 2, this implies 1
2( ) ;n k k� �� � � � �

1
( )

2
n k k� � � � � � .

That is, 1
2

k
n n kQ Q �� � � .

This implies that 1
2 .k

n n kQ Q �� �� � �� �

For example,

3 3
11 14 11 3

1 1
(16238) 228486.4991 228486

2 2
P Q Q �

� � � �� � � � � � � � �� �� �� � � �� � � �
.

Corollary 10: 1
2

k
n n kQ Q �� �� � �� �  where n � 4, k � 1.

For example,

4 4
10 14 10 4

1 1
(6726) 228485.505 228486

2 2
Q Q Q �

� � � �� � � � � � � � �� �� �� � � �� � � �
.
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