EXPLICIT FORMULAE FOR \boldsymbol{P}_{n} AND \boldsymbol{Q}_{n}

Naresh Patel and Punit Shrivastava

Abstract

In this paper, we have derived some explicit formulae for Pell numbers P_{n} and Q_{n} Pell-Lucas numbersin terms of ceiling and floor functions. We have also derived their predecessor and successor formulae to get predecessor or successor of any given Pell or Pell-Lucas number.

MSC 2000 Classification: 11B39.
Keywords: Identities, Explicit formulae, Binet forms, Pell numbers, Pell-Lucas numbers, Predecessor, Successor.

1. Introduction

Define the sequences $\left\{U_{n}\right\}$ and $\left\{V_{n}\right\}$ for all integers n by

$$
\left\{\begin{array}{l}
U_{n}=p U_{n-1}+U_{n-2}, U_{0}=0, U_{1}=1, \\
V_{n}=p V_{n-1}+V_{n-2}, V_{0}=2, V_{1}=p
\end{array}\right.
$$

For $p=1$, we write $\left\{U_{n}\right\}=\left\{F_{n}\right\}$ and $\left\{V_{n}\right\}=\left\{L_{n}\right\}$, which are the Fibonacci [1] and Lucas numbers respectively. Their Binet forms, obtained by using standard techniques for solving linear recurrences, are

$$
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \quad \text { and } \quad L_{n}=\alpha^{n}+b^{n}
$$

where α and β are the roots of $x^{2}-x-1=0$.
For $p=2$, we write

$$
\left\{\begin{array}{l}
P_{n}=2 P_{n-1}+P_{n-2}, P_{0}=0, P_{1}=1, \\
Q_{n}=2 Q_{n-1}+Q_{n-2}, Q_{0}=2, Q_{1}=2 .
\end{array}\right.
$$

Here $\left\{P_{n}\right\}$ and $\left\{Q_{n}\right\}$ are the Pell and Pell-Lucas Sequences respectively. Their Binet forms are given by [6]

$$
P_{n}=\frac{\gamma^{n}-\delta^{n}}{\gamma-\delta} \quad \text { and } \quad Q_{n}=\gamma^{n}+\delta^{n}
$$

where γ and δ are the roots of $x^{2}-2 x-1=0$ i.e., $\gamma=1+\sqrt{2}$ and $\delta=1-\sqrt{2}$.

2. Explicit Formulae

Here we derive explicit formula for P_{n} and Q_{n}. Since $|\delta|<1$, so when n is large $\delta^{n} \rightarrow 0$ and hence using Binet Formula we can write $P_{n} \approx \frac{\gamma^{n}}{2 \sqrt{2}}$. So we compute the value of $\frac{\gamma^{n}}{2 \sqrt{2}}$ for the first ten values of n and look for a pattern:

$$
\begin{array}{ll}
\frac{\gamma}{2 \sqrt{2}} \approx 0.85355339, & \frac{\gamma^{2}}{2 \sqrt{2}} \approx 2.060660172, \\
\frac{\gamma^{3}}{2 \sqrt{2}} \approx 4.974873734, & \frac{\gamma^{4}}{2 \sqrt{2}} \approx 12.01040764, \\
\frac{\gamma^{5}}{2 \sqrt{2}} \approx 28.995689091, & \frac{\gamma^{6}}{2 \sqrt{2}} \approx 70.00178567, \\
\frac{\gamma^{7}}{2 \sqrt{2}} \approx 168.9992604, & \frac{\gamma^{8}}{2 \sqrt{2}} \approx 408.0003064, \\
\frac{\gamma^{9}}{2 \sqrt{2}} \approx 984.9998731, & \frac{\gamma^{10}}{2 \sqrt{2}} \approx 2378.000053 .
\end{array}
$$

Now add $\frac{1}{2}$ to each and see the pattern which emerges:

$$
\begin{array}{ll}
\frac{\gamma}{2 \sqrt{2}}+\frac{1}{2} \approx 1.35355339, & \frac{\gamma^{2}}{2 \sqrt{2}}+\frac{1}{2} \approx 2.560660172, \\
\frac{\gamma^{3}}{2 \sqrt{2}}+\frac{1}{2} \approx 5.474873734, & \frac{\gamma^{4}}{2 \sqrt{2}}+\frac{1}{2} \approx 12.51040764, \\
\frac{\gamma^{5}}{2 \sqrt{2}}+\frac{1}{2} \approx 29.495689091, & \frac{\gamma^{6}}{2 \sqrt{2}}+\frac{1}{2} \approx 70.50178567, \\
\frac{\gamma^{7}}{2 \sqrt{2}}+\frac{1}{2} \approx 169.4992604, & \frac{\gamma^{8}}{2 \sqrt{2}}+\frac{1}{2} \approx 408.5003064, \\
\frac{\gamma^{9}}{2 \sqrt{2}}+\frac{1}{2} \approx 985.4998731, & \frac{\gamma^{10}}{2 \sqrt{2}}+\frac{1}{2} \approx 2378.500053 .
\end{array}
$$

Thus, we get

$$
\begin{aligned}
& \left\lfloor\frac{\gamma}{2 \sqrt{2}}+\frac{1}{2}\right\rfloor \approx\lfloor 1.35355339\rfloor=1, \quad\left\lfloor\frac{\gamma^{2}}{2 \sqrt{2}}+\frac{1}{2}\right\rfloor \approx\lfloor 2.560660172\rfloor=2, \\
& \left\lfloor\frac{\gamma^{3}}{2 \sqrt{2}}+\frac{1}{2}\right\rfloor \approx\lfloor 5.474873734\rfloor=5, \quad\left\lfloor\frac{\gamma^{4}}{2 \sqrt{2}}+\frac{1}{2}\right\rfloor \approx\lfloor 12.51040764\rfloor=12, \\
& \left\lfloor\frac{\gamma^{5}}{2 \sqrt{2}}+\frac{1}{2}\right\rfloor \approx\lfloor 29.495689091\rfloor=29, \quad\left\lfloor\frac{\gamma^{6}}{2 \sqrt{2}}+\frac{1}{2}\right\rfloor \approx\lfloor 70.50178567\rfloor=70, \\
& \left\lfloor\frac{\gamma^{7}}{2 \sqrt{2}}+\frac{1}{2}\right\rfloor \approx\lfloor 169.4992604\rfloor=169, \quad\left\lfloor\frac{\gamma^{8}}{2 \sqrt{2}}+\frac{1}{2}\right\rfloor \approx\lfloor 408.5003064\rfloor=408, \\
& \left\lfloor\frac{\gamma^{9}}{2 \sqrt{2}}+\frac{1}{2}\right\rfloor \approx\lceil 985.4998731\rceil=985, \quad\left\lfloor\frac{\gamma^{10}}{2 \sqrt{2}}+\frac{1}{2}\right\rfloor \approx\lfloor 2378.500053\rfloor=2378 .
\end{aligned}
$$

Hence we found that $\left\lfloor\frac{\gamma^{n}}{2 \sqrt{2}}+\frac{1}{2}\right\rfloor=P_{n}$. Theorem 1 confirms this result. To establish it, we need the following Lemma 1 [5].

Lemma 1: $0<\frac{\delta^{n}}{2 \sqrt{2}}+\frac{1}{2}<1$.
Proof: Since $\delta<0,|\delta|=-\delta$. Also, since $0<|\delta|<1,0<\left.\delta\right|^{n}<1$,
So $0<|\delta|^{n}<\frac{2 \sqrt{2}}{2} \Rightarrow 0<\frac{|\delta|^{n}}{2 \sqrt{2}}<\frac{1}{2}$.
Case I: Let n be even. Then $|\delta|^{n}=\delta^{n}$, so $0<\frac{|\bar{\phi}|^{n}}{2 \sqrt{2}}<\frac{1}{2}$ and hence

$$
\frac{1}{2}<\frac{|\delta|^{n}}{2 \sqrt{2}}+\frac{1}{2}<1
$$

Case II: Let n be odd. Then $|\delta|^{n}=-\delta^{n}$, so $0<\frac{-\delta^{n}}{2 \sqrt{2}}<\frac{1}{2}$ and hence

$$
0>\frac{\delta^{n}}{2 \sqrt{2}}>\frac{-1}{2} \Rightarrow 0<\frac{|\delta|^{n}}{2 \sqrt{2}}+\frac{1}{2}<\frac{1}{2} .
$$

Thus in both cases,

$$
0<\frac{|\delta|^{n}}{2 \sqrt{2}}+\frac{1}{2}<1
$$

This establishes the lemma.
Theorem 1: $P_{n}=\left\lfloor\frac{\gamma^{n}}{2 \sqrt{2}}+\frac{1}{2}\right\rfloor$.
Proof: Using Binet formula, we can write

$$
\begin{align*}
& P_{n}=\frac{\gamma^{n}-\delta^{n}}{\gamma-\delta}=\left(\frac{\gamma^{n}}{2 \sqrt{2}}+\frac{1}{2}\right)-\left(\frac{\delta^{n}}{2 \sqrt{2}}+\frac{1}{2}\right) \tag{1}\\
& \therefore\left(\frac{\gamma^{n}}{2 \sqrt{2}}+\frac{1}{2}\right)=P_{n}+\left(\frac{\delta^{n}}{2 \sqrt{2}}+\frac{1}{2}\right)<P_{n}+1 \quad \text { (Using Lemma 1) }
\end{align*}
$$

Since $\left(\frac{\delta^{n}}{2 \sqrt{2}}+\frac{1}{2}\right)>0$, it follows from (1) that $P_{n}<\left(\frac{\gamma^{n}}{2 \sqrt{2}}+\frac{1}{2}\right)$.
Thus,

$$
P_{n}<\left(\frac{\gamma^{n}}{2 \sqrt{2}}+\frac{1}{2}\right)<P_{n+1} .
$$

Consequently,

$$
\begin{equation*}
P_{n}=\left\lfloor\frac{\gamma^{n}}{2 \sqrt{2}}+\frac{1}{2}\right\rfloor . \tag{2}
\end{equation*}
$$

For example,

$$
\frac{\gamma^{20}}{2 \sqrt{2}}+\frac{1}{2} \approx 15994428.5, \quad \text { so } \quad\left\lfloor\frac{\gamma^{20}}{2 \sqrt{2}}+\frac{1}{2}\right\rfloor \approx\lfloor 15994428.5\rfloor=15994428=P_{20}
$$

Corollary 1: $P_{n}=\left\lceil\frac{\gamma^{n}}{2 \sqrt{2}}-\frac{1}{2}\right\rceil$.

Proof: Since $\lfloor x\rfloor=\lceil x\rceil-1$ for non-integral real number x, it follows that

$$
P_{n}=\left\lceil\frac{\gamma^{n}}{2 \sqrt{2}}+\frac{1}{2}\right\rceil-1 \quad(\text { Using } 2)
$$

But $\lceil x+n\rceil=\lceil x\rceil+n$ for integer n

$$
\therefore P_{n}=\left\lceil\frac{\gamma^{n}}{2 \sqrt{2}}+\frac{1}{2}-1\right\rceil=\left\lceil\frac{\gamma^{n}}{2 \sqrt{2}}-\frac{1}{2}\right\rceil .
$$

For example,

$$
\cdot \frac{\gamma^{20}}{2 \sqrt{2}}-\frac{1}{2} \approx 2377.500053 \quad \therefore\left\lceil\frac{\gamma^{20}}{2 \sqrt{2}}-\frac{1}{2}\right\rceil \approx\lceil 2377.500053\rceil=2378=P_{10} .
$$

Similarly,

$$
\frac{\gamma^{15}}{2 \sqrt{2}}-\frac{1}{2} \approx 195024.5 \quad \therefore\left\lceil\frac{\gamma^{15}}{2 \sqrt{2}}-\frac{1}{2}\right\rceil \approx\lceil 195024.5\rceil=195025=P_{15}
$$

Here is yet another interesting observation:

$$
\begin{aligned}
& \quad\left\lceil\frac{\gamma}{2 \sqrt{2}}\right]=P_{1}, \quad\left[\frac{\gamma^{3}}{2 \sqrt{2}}\right\rceil=P_{3}, \quad\left[\frac{\gamma^{5}}{2 \sqrt{2}}\right]=P_{5}, \quad\left[\frac{\gamma^{7}}{2 \sqrt{2}}\right\rceil=P_{7}, \quad\left[\frac{\gamma^{9}}{2 \sqrt{2}}\right\rceil=P_{9} . \\
& \left.\& \quad\left\lfloor\frac{\gamma^{2}}{2 \sqrt{2}}\right\rfloor=P_{2}, \quad\left\lfloor\frac{\gamma^{4}}{2 \sqrt{2}}\right\rfloor=P_{4}, \quad\left\lfloor\frac{\gamma^{6}}{2 \sqrt{2}}\right\rfloor=P_{6}, \quad\left\lfloor\frac{\gamma^{8}}{2 \sqrt{2}}\right\rfloor=P_{8}, \quad \left\lvert\, \frac{\gamma^{10}}{2 \sqrt{2}}\right.\right\rfloor=P_{10} .
\end{aligned}
$$

Thus, we have

$$
\left\lfloor\frac{\gamma^{2 n}}{2 \sqrt{2}}\right\rfloor=P_{2 n} \quad \text { and } \quad\left\lceil\frac{\gamma^{2 n+1}}{2 \sqrt{2}}\right\rceil=P_{2 n+1} .
$$

The following corollary confirms these two observations:
Corollary 2: $\left\lfloor\frac{\gamma^{2 n}}{2 \sqrt{2}}\right\rfloor=P_{2 n}$ and $\left\lceil\frac{\gamma^{2 n+1}}{2 \sqrt{2}}\right\rceil=P_{2 n+1}$

Proof: Let n be even. Then, using Lemma 1, we have

$$
\frac{1}{2}<\frac{\delta^{n}}{2 \sqrt{2}}<1, \quad \text { so } \quad-\frac{1}{2}>-\frac{\delta^{n}}{2 \sqrt{2}}>-1
$$

Then,

$$
\frac{\gamma^{n}}{2 \sqrt{2}}-\frac{1}{2}>\frac{\gamma^{n}}{2 \sqrt{2}}-\frac{\delta^{n}}{2 \sqrt{2}}>\frac{\gamma^{n}}{2 \sqrt{2}}-1,
$$

Or

$$
\frac{\gamma^{n}}{2 \sqrt{2}}-1<P_{n}<\frac{\gamma^{n}}{2 \sqrt{2}}-\frac{1}{2} .
$$

But, $\lfloor x\rfloor \leq x$ and $\lfloor x\rfloor=\lfloor x\rfloor+n$

$$
\therefore\left\lfloor\frac{\gamma^{n}}{2 \sqrt{2}}\right\rfloor-1<P_{n}<\frac{\gamma^{n}}{2 \sqrt{2}}-\frac{1}{2}
$$

Or

$$
\left\lfloor\frac{\gamma^{n}}{2 \sqrt{2}}\right\rfloor-1<P_{n}<\frac{\gamma^{n}}{2 \sqrt{2}} .
$$

Thus,

$$
P_{n}=\left\lfloor\frac{\gamma^{n}}{2 \sqrt{2}}\right\rfloor .
$$

Similarly, we can establish the case when n is odd and similar proof can be given to the second part also.

Theorem 2: $Q_{n}=\left\lfloor\gamma^{n}+\frac{1}{2}\right\rfloor$.
For example, $\gamma^{13}+\frac{1}{2} \approx 94642.50001$

$$
\therefore\left\lfloor\gamma^{n}+\frac{1}{2}\right\rfloor=94642=Q_{13} .
$$

Corollary 3: (i) $Q_{n}=\left\lceil\gamma^{n}-\frac{1}{2}\right\rceil$
(ii) $Q_{2 n}=\left\lceil(\gamma)^{2 n}\right\rceil$ and $Q_{2 n+1}=\left\lfloor\gamma^{2 n+1}\right\rfloor$.

For example, $\gamma^{9}-\frac{1}{2} \approx 2785.500359$

$$
\therefore\left\lfloor\gamma^{9}-\frac{1}{2}\right\rfloor=2786=Q_{9}, \quad\left\lceil\gamma^{12}\right\rceil=\lceil 39201.99997\rceil=39202=Q_{12},
$$

and

$$
\left\lfloor\gamma^{17}\right\rfloor=\lfloor 3215042\rfloor=3215042=Q_{17} .
$$

In every explicit formula, we needed to know the value of n in order to compute P_{n}. But knowing a Pell number, we can easily compute its successor. The next theorem provides such a formula, but first we need to lay some groundwork in the form of a lemma, similar to Lemma 1.

Lemma 2: If $n \geq 2$, then $0<\frac{1}{2}-\delta^{n}<1$.
Proof: Since $|\delta|<0.414,|\delta|^{2}<\frac{1}{2}$, so $|\delta|^{n}<\frac{1}{2}$ when $n \geq 2$.
Since $|\delta|^{n}=\left|\delta^{n}\right|$, this yields $-\frac{1}{2}<\delta^{n}<\frac{1}{2}$. Then $-1<\delta^{n}-\frac{1}{2}<0$;
That is, $0<\frac{1}{2}-\delta^{n}<1$.
Theorem 3: $P_{n+1}=\left\lfloor\gamma P_{n}+\frac{1}{2}\right\rfloor, n \geq 2$.
Proof: By Binet formula

$$
\begin{aligned}
P_{n} & =\frac{\gamma^{n}-\delta^{n}}{\gamma-\delta} \\
\Rightarrow \gamma P_{n} & =\frac{\gamma^{n+1}-\gamma \delta^{n}}{2 \sqrt{2}} \\
& =\frac{\gamma^{n+1}-\gamma \delta\left(\delta^{n-1}\right)+\delta^{n+1}-\delta^{n+1}}{2 \sqrt{2}} \\
& =\frac{\left(\gamma^{n+1}-\delta^{n+1}\right)+\left\{(-\gamma \delta) \delta^{n-1}+\delta^{n+1}\right\}}{2 \sqrt{2}} \quad(\because \gamma \delta=-1)
\end{aligned}
$$

$$
\begin{align*}
& =P_{n+1}+\frac{\delta^{n-1}\left(-\gamma \delta+\delta^{2}\right)}{2 \sqrt{2}} \\
& =P_{n+1}+\frac{\delta^{n-1}\{(-\delta)(\gamma-\delta)\}}{2 \sqrt{2}} \\
& =P_{n+1}+\frac{\delta^{n-1}\{-2 \sqrt{2}(-\delta)\}}{2 \sqrt{2}} \\
& =P_{n+1}-\delta^{n} \\
\therefore \quad \gamma P_{n}+\frac{1}{2} & =P_{n+1}+\left(\frac{1}{2}-\delta^{n}\right) \tag{3}
\end{align*}
$$

$$
(\because \gamma-\delta=2 \sqrt{2})
$$

Since $\left(\frac{1}{2}-\delta^{n}\right)>0$, this implies that $P_{n+1}<\left(\gamma P_{n}+\frac{1}{2}\right)$.
Besides, since $\left(\frac{1}{2}-\delta^{n}\right)<1$, using (3), we can write $\gamma P_{n}+\frac{1}{2}<P_{n+1}+1$.
Thus, $P_{n+1}<\left(\gamma P_{n}+\frac{1}{2}\right)<P_{n+1}+1$, so $P_{n+1}=\left\lfloor\gamma P_{n}+\frac{1}{2}\right\rfloor$.
For example, let $P_{n}=985$. Its successor is given by $\left\lfloor 985 \gamma+\frac{1}{2}\right\rfloor=\lfloor 2378.500359\rfloor=2378$ as expected. Substituting for γ in the formula for P_{n} yields the following result:

Corollary 4: $P_{n+1}=\left\lfloor\frac{2 P_{n}+2 \sqrt{2} P_{n}+1}{2}\right\rfloor, n \geq 2$.
We can use the recursive formula theorem 3 or corollary 4 to compute the ratio $\frac{P_{n+1}}{P_{n}}$ as $n \rightarrow \infty$, as the following corollary demonstrates. Its proof employs the following fact; $\lfloor x\rfloor=k$ if then $x=k+\theta$, where $0 \leq \theta<1$.

Corollary 5: $\lim _{n \rightarrow \infty} \frac{P_{n+1}}{P_{n}}=\gamma$.
Proof: By Theorem 3, $P_{n+1}=\gamma P_{n}+\frac{1}{2}+\theta$ where $0 \leq \theta<1$.

$$
\begin{aligned}
& \frac{P_{n+1}}{P_{n}}=\gamma+\frac{1}{2 P_{n}}+\frac{\theta}{P_{n}} \\
\therefore \quad & \lim _{n \rightarrow \infty} \frac{P_{n+1}}{P_{n}}=\gamma .
\end{aligned}
$$

Since $\lfloor x\rfloor=\lceil x\rceil-1$, for any non-integral real number x. We can express these two formulas in terms of the ceiling function, as the next corollary states:

Corollary 6: (i) $P_{n+1}=\left\lceil\gamma P_{n}-\frac{1}{2}\right\rceil, n \geq 2$.
(ii) $P_{n+1}=\left\lfloor\frac{2 P_{n}+2 \sqrt{2} P_{n}-1}{2}\right\rfloor, n \geq 2$.

For example, the successor of the Pell number 2378 is given by $\left\lceil\gamma 2378-\frac{1}{2}\right\rceil=\lceil 5740.499851\rceil=5741$.

Theorem 4: $P_{n+1}=\left\lfloor\gamma Q_{n}+\frac{1}{2}\right\rfloor, n \geq 2$.
For example, the successor of the Pell-Lucas number 478 is given by $\left\lceil\gamma 478+\frac{1}{2}\right\rceil=\lceil 1154.494083\rceil=1154$. Notice that $Q_{7}=478$ and $Q_{8}=1154$.

Corollary 7: $\lim _{n \rightarrow \infty} \frac{Q_{n+1}}{Q_{n}}=\gamma$.
Corollary 6: (i) $Q_{n+1}=\left\lfloor\frac{2 Q_{n}+2 \sqrt{2}+1}{2}\right\rfloor, n \geq 2$.
(ii) $Q_{n+1}=\left\lceil\gamma Q_{n}-\frac{1}{2}\right\rceil, n \geq 2$.
(iii) $Q_{n+1}=\left\lceil\frac{2 Q_{n}-2 \sqrt{2} Q_{n}-1}{2}\right\rceil, n \geq 2$.

For example, the successor of the Pell-Lucas number 2786 is given by $\left\lceil 2786 \gamma-\frac{1}{2}\right\rceil=\lceil 6725.498985\rceil=6726$. Notice that $Q_{9}=2786$ and $Q_{10}=6726$.

There is yet another recursive formula that expresses each Pell number in terms of its predecessor and one that expresses each Pell-Lucas number in terms of its predecessor. We find both in the following theorem:

Theorem 5: (i) $P_{n+1}=\frac{2 P_{n}+\sqrt{P_{n}^{2}+4(-1)^{n}}}{2}$
(ii) $Q_{n+1}=\frac{2 Q_{n}+\sqrt{8\left\{Q_{n}^{2}-4(-1)^{n}\right)}}{2}$

This theorem can easily be proved using following three identities [2]:

$$
\begin{aligned}
2 P_{n+1} & =2 P_{n}+Q_{n} \\
2 Q_{n+1} & =8 P_{n}+2 Q_{n} \\
Q_{n}^{2}-8 P_{n}^{2} & =4(-1)^{n} .
\end{aligned}
$$

There is still another formula that expresses a Pell number in terms of its predecessor.
Theorem 6: $P_{n+1}=\left\lfloor\frac{2 P_{n}+1+\sqrt{8 P_{n}^{2}-4 P_{n}+1}}{2}\right\rfloor, n \geq 2$.
Proof: Since

$$
\begin{equation*}
Q_{n}-2 P_{n}=2\left(P_{n-1}+P_{n}\right)-2 P_{n}=2 P_{n-1} \tag{4}
\end{equation*}
$$

Also, $Q_{n}^{2}-8 P_{n}^{2}=4(-1)^{n}$, where $n \geq 1$. When $n \geq 2,4(-1)^{n} \leq 4 P_{n-1}$.
Therefore, when $n \geq 2$, we have

Or

$$
\begin{gather*}
Q_{n}^{2}-8 P_{n}^{2} \leq 4 P_{n-1} \\
Q_{n}^{2}-8 P_{n}^{2} \leq 2\left(Q_{n}-2 P_{n}\right) \\
\left(Q_{n}-1\right)^{2} \leq 8 P_{n}^{2}-4 P_{n}+1 \tag{5}
\end{gather*}
$$

Or
But, $Q_{n}=2 P_{n+1}-2 P_{n}$
$\therefore \quad$ Using (5), we can write

$$
\left(2 P_{n+1}-2 P_{n}-1\right)^{2} \leq 8 P_{n}^{2}-4 P_{n}+1
$$

Thus,

$$
\left(2 P_{n+1}-2 P_{n}-1\right) \leq \sqrt{8 P_{n}^{2}-4 P_{n}+1}
$$

Or

$$
\begin{equation*}
P_{n+1} \leq \frac{2 P_{n}+1+\sqrt{8 P_{n}^{2}-4 P_{n}+1}}{2} \tag{6}
\end{equation*}
$$

Also, $Q_{n}+2 P_{n}=2 P_{n+1}$. So when $n \geq 2$,

Or

$$
4(-1)^{n}<4 P_{n-1}
$$

$$
-4(-1)^{n}>-4 P_{n-1}
$$

$$
\therefore \quad Q_{n}^{2}-8 P_{n}^{2}>-2\left(Q_{n}+2 P_{n}\right)
$$

Or

$$
Q_{n}^{2}+2 Q_{n}>8 P_{n}^{2}-4 P_{n}
$$

Or

$$
\left(Q_{n}+1\right)^{2}>8 P_{n}^{2}-4 P_{n}+1
$$

$$
\therefore \quad\left(2 P_{n+1}-2 P_{n}+1\right)^{2}>8 P_{n}^{2}-4 P_{n}+1
$$

Thus,

$$
\begin{align*}
& \left(2 P_{n+1}-2 P_{n}+1\right)>\sqrt{8 P_{n}^{2}-4 P_{n}+1} \\
& P_{n+1}>\frac{2 P_{n}-1+\sqrt{8 P_{n}^{2}-4 P_{n}+1}}{2} \tag{7}\\
& P_{n+1}>\left\lfloor\frac{2 P_{n}-1+\sqrt{8 P_{n}^{2}-4 P_{n}+1}}{2}\right\rfloor \tag{8}
\end{align*}
$$

From equation (6) and (7), we have

$$
\left\lfloor\frac{2 P_{n}-1+\sqrt{8 P_{n}^{2}-4 P_{n}+1}}{2}\right\rfloor<P_{n+1} \leq \frac{2 P_{n}+1+\sqrt{8 P_{n}^{2}-4 P_{n}+1}}{2} .
$$

Since P_{n+1} is an integer, it follows that

$$
P_{n+1}=\left\lfloor\frac{2 P_{n}+1+\sqrt{8 P_{n}^{2}-4 P_{n}+1}}{2}\right\rfloor, n \geq 2 .
$$

For example, the successor of the Pell number 985 is given by

$$
\left\lfloor\frac{2(985)+1+\sqrt{8(985)^{2}-4(985)+1}}{2}\right\rfloor=\lfloor 2378.14685\rfloor=2378 .
$$

Similar to Pell numbers, there is a formula for Pell-Lucas numbers also given as follows:

Theorem 7: $Q_{n+1}=\left\lfloor\frac{2 Q_{n}+1+\sqrt{8 Q_{n}^{2}-4 Q_{n}+1}}{2}\right\rfloor, n \geq 4$.
For example, the successor of the Pell-Lucas number 1154 is given by

$$
\left\lfloor\frac{2(1154)+1+\sqrt{8(1154)^{2}-4(1154)+1}}{2}\right\rfloor=\lfloor 2786.148936\rfloor=2786 .
$$

We can also compute the predecessor of a given Pell number, as the following theorem states:

Theorem 8: $P_{n}=\left\lfloor\frac{1}{\gamma}\left(P_{n+1}+\frac{1}{2}\right)\right\rfloor, n \geq 2$.
Proof: Since $x-1<\lfloor x\rfloor \leq x$, using Theorem 3 we can write

Or

$$
\begin{aligned}
& \gamma P_{n}-\frac{1}{2}<P_{n+1} \leq \gamma P_{n}+\frac{1}{2} \\
& P_{n}-\frac{1}{2 \gamma}<\frac{P_{n+1}}{\gamma} \leq P_{n}+\frac{1}{2 \gamma}
\end{aligned}
$$

Then,

$$
P_{n}<\frac{1}{\gamma}\left(P_{n+1}+\frac{1}{2}\right) \quad \text { and } \quad P_{n} \geq \frac{1}{\gamma}\left(P_{n+1}-\frac{1}{2}\right)
$$

Or

$$
\frac{1}{\gamma}\left(P_{n+1}-\frac{1}{2}\right)<P_{n} \leq \frac{1}{\gamma}\left(P_{n+1}+\frac{1}{2}\right)
$$

Since $\frac{1}{\gamma}\left(P_{n+1}+\frac{1}{2}\right)-\frac{1}{\gamma}\left(P_{n+1}-\frac{1}{2}\right)=\frac{1}{\gamma} \approx 0.4142$ and P_{n} is an integer, it follows that

$$
P_{n}=\left\lfloor\frac{1}{\gamma}\left(P_{n+1}+\frac{1}{2}\right)\right\rfloor, n \geq 2 .
$$

For example, the predecessor of the Pell number 13860 is given by $\left\lfloor\frac{1}{\gamma}\left(13860+\frac{1}{2}\right)\right\rfloor=\lfloor 5741.207081\rfloor=5741$. Notice that $P_{12}=13860$ and $P_{11}=5741$.

Theorem 9: $Q_{n}=\left\lfloor\frac{1}{\gamma}\left(Q_{n+1}+\frac{1}{2}\right)\right\rfloor, n \geq 2$.
For example, the predecessor of the Pell-Lucas number 39202 is given by $\left\lfloor\frac{1}{\gamma}\left(39202+\frac{1}{2}\right)\right\rfloor=\lfloor 16238.20718\rfloor=16238$. Notice that $Q_{12}=39202$ and $Q_{11}=16238$.

Theorem 10: $\left\lfloor\gamma^{k} P_{n}+\frac{1}{2}\right\rfloor=P_{n+k}, n \geq k \geq 1$.
Proof: Since the theorem is true for $k=1$. Assume that $n \geq k \geq 2$. Using Binet formula,

$$
\begin{aligned}
\gamma^{k} \boldsymbol{P}_{n} & =\frac{\gamma^{n+k}-\gamma^{k} \delta^{n}}{2 \sqrt{2}} \\
& =\frac{\gamma^{n+k}-\gamma^{k} \delta^{n}+\delta^{n+k}-\delta^{n+k}}{2 \sqrt{2}}
\end{aligned}
$$

$$
\begin{align*}
& \text { EXPLICIT FORMULAE FOR } P_{n} \text { AND } Q_{n} \\
= & \frac{\gamma^{n+k}-\delta^{n+k}}{2 \sqrt{2}}-\frac{\gamma^{k} \delta^{n}-\delta^{n+k}}{2 \sqrt{2}} \\
= & P_{n+k}-\delta^{n} P_{k} \\
\therefore \quad \gamma^{k} P_{n}+\frac{1}{2}= & P_{n+k}+\left(\frac{1}{2}-\delta^{n}\right) . \tag{9}
\end{align*}
$$

Now we shall prove that $0<\left(\frac{1}{2}-\delta^{n} P_{k}\right)<1$. When $n=k,\left|\delta^{n} P_{k}\right|$ has its largest value. Notice that $\left|\delta^{n}\right| \rightarrow 0$ as $n \rightarrow \infty$.

Also,

$$
\left|\delta^{k} P_{k}\right|=\left|\delta^{k}\left(\frac{\gamma^{k}-\delta^{k}}{2 \sqrt{2}}\right)\right|=\left|\frac{(-1)^{k}-\delta^{2 k}}{2 \sqrt{2}}\right|
$$

Case I: Let k be even. Then

$$
\begin{gathered}
\left|\delta^{k} P_{k}\right|=\left|\frac{1-\delta^{2 k}}{2 \sqrt{2}}\right| \\
\Rightarrow \quad \lim _{k \rightarrow \infty}\left|\delta^{k} P_{k}\right|=\left|\frac{1-0}{2 \sqrt{2}}\right|=\frac{1}{2 \sqrt{2}}<\frac{1}{2} .
\end{gathered}
$$

Since $\left|\delta^{n}\right|=\left|\delta^{k}\right|$, it follows that $0<\left|\delta^{n} P_{k}\right|<\frac{1}{2}$.
Case II: Let k be odd. Then

$$
\left|\delta^{k} P_{k}\right|=\left|\frac{-1-\delta^{2 k}}{2 \sqrt{2}}\right|=\left|\frac{1+\delta^{2 k}}{2 \sqrt{2}}\right|
$$

When $k=3, \delta^{2 k} \approx 0.005050633883$. So

$$
\left|\delta^{k} P_{k}\right|=\left|\frac{1.005050633883}{2 \sqrt{2}}\right|=0.355339<\frac{1}{2} .
$$

As k increases, $\delta^{2 k}$ gets smaller and smaller. So $\left|\delta^{k} P_{k}\right|<\frac{1}{2}$ for $k>3$ also. Thus $0<\left|\delta^{n} P_{k}\right|<\frac{1}{2}$, since $\left|\delta^{n}\right|<\left|\delta^{k}\right|$.

Consequently,

$$
0<\left|\delta^{n} P_{k}\right|<\frac{1}{2} \quad \forall n \geq k \geq 2 ;
$$

Or

$$
-\frac{1}{2}<\delta^{n} P_{k}<\frac{1}{2}
$$

Or

$$
0<\frac{1}{2}-\delta^{n} P_{k}<1
$$

Using (9), we have

$$
P_{n+k}<\gamma^{k} P_{n}+\frac{1}{2}<P_{n+1}+1
$$

Thus,

$$
\left\lfloor\gamma^{k} P_{n}+\frac{1}{2}\right\rfloor=P_{n+k}, n \geq k \geq 1 .
$$

For example,

$$
\left\lfloor\gamma^{7} P_{8}+\frac{1}{2}\right\rfloor=\left\lfloor\gamma^{7}(408)+\frac{1}{2}\right\rfloor=\lfloor 195025.3536\rfloor=195025=P_{15}=P_{8+7} .
$$

Notice that

$$
\left\lfloor\gamma^{8} P_{7}+\frac{1}{2}\right\rfloor=195026 \neq P_{15} .
$$

Corollary 9: $\left\lceil\gamma^{k} P_{n}-\frac{1}{2}\right\rceil=P_{n+k}$ where $n \geq k \geq 1$.
For example,

$$
\left\lceil\gamma^{9} P_{11}-\frac{1}{2}\right\rceil=\left\lceil\gamma^{9}(5741)-\frac{1}{2}\right\rceil=\lceil 15994427.56\rceil=15994427=P_{20}=P_{11+9} .
$$

Theorem 11: $\left\lfloor\gamma^{k} Q_{n}+\frac{1}{2}\right\rfloor=Q_{n+k}, n \geq 4, k \geq 1$.

Proof: Since. $\gamma Q_{n}-Q_{n+1}=\gamma\left(\gamma^{n}+\delta^{n}\right)-\left(\gamma^{n+1}+\delta^{n+1}\right)=\delta^{n}(\gamma-\delta)=\sqrt{8} \delta^{n}$ When $n \geq 4$.

$$
\begin{aligned}
& \quad\left|\sqrt{8} \delta^{n}\right| \leq \sqrt{8} \delta^{4}=\sqrt{8}(1-\sqrt{2})^{4} \approx 0.0658<\frac{1}{2} \\
& \therefore \quad\left|\gamma Q_{n}-Q_{n+1}\right|<\frac{1}{2} .
\end{aligned}
$$

Or $0<\gamma Q_{n}-Q_{n+1}+\frac{1}{2}<1$, so $\left\lfloor\gamma Q_{n}+\frac{1}{2}\right\rfloor=Q_{n+1}$. Thus the theorem is true for $k=1$. Now assume $n \geq k+2$ where $k \geq 2$.

Notice that $\gamma^{-2}+\gamma^{-6}=\delta^{2}+\delta^{6} \approx 0.176620633$.
Since $k \geq 2$, this implies $\gamma^{-2}+\gamma^{-2 k-2}<\frac{1}{2}$;

Or

$$
\gamma^{-k-2}\left(\gamma^{k}+\gamma^{-k}\right)<\frac{1}{2}
$$

Since $n \geq k+2$, this implies $\gamma^{-n}\left(\gamma^{k}+\gamma^{-k}\right)<\frac{1}{2}$;

$$
\therefore \quad\left|\delta^{n}\left(\gamma^{k}-\delta^{k}\right)\right|<\frac{1}{2} .
$$

That is, $\left|\gamma^{k} Q_{n}-Q_{n+k}\right|<\frac{1}{2}$.
This implies that $\left\lfloor\gamma^{k} Q_{n}+\frac{1}{2}\right\rfloor=Q_{n+k}$.
For example,

$$
\left\lfloor\gamma^{3} P_{11}+\frac{1}{2}\right\rfloor=\left\lfloor\gamma^{3}(16238)+\frac{1}{2}\right\rfloor=\lfloor 228486.4991\rfloor=228486=Q_{14}=Q_{11+3} .
$$

Corollary 10: $\left\lceil\gamma^{k} Q_{n}-\frac{1}{2}\right\rceil=Q_{n+k}$ where $n \geq 4, k \geq 1$.
For example,

$$
\left\lfloor\gamma^{4} Q_{10}-\frac{1}{2}\right\rfloor=\left\lfloor\gamma^{4}(6726)-\frac{1}{2}\right\rfloor=\lfloor 228485.505\rfloor=228486=Q_{14}=Q_{10+4} .
$$

References

[1] Brook, M. "Fibonacci Formulas", Fibonacci Quarterly, 1, (1963), 60.
[2] Horadam A. F., "Pell Identities", Fibonacci Quarterly 9(3), (1971), 245-253, 263.
[3] McDaniel W. L., "Triangular Numbers in the Pell Sequence", The Fibonacci Quarterly, 34, (1996).
[4] Koshy T., Fibonacci and Lucas Numbers with Applications, New York, Wiley, (2001).
[5] Santana S. F., and Diaz-Barrero J. L., "Some Properties of Sums Involving Pell Number", Missouri Journal of Mathematical Sciences, 18(1), (2006).

Naresh Patel

Assistant Professor (Mathematics)
Government College Jobat
Distt. - Alirajpur (M.P.) India.
E-mail: n_patel_1978@yahoo.co.in

Punit Shrivastava

Lecturer (Mathematics),
Dhar Polytechnic College, Dhar (M.P.) India.
E-mail: puneetsri2001@yahoo.co.in

This document was created with the Win2PDF "print to PDF" printer available at http://www.win2pdf.com

This version of Win2PDF 10 is for evaluation and non-commercial use only.
This page will not be added after purchasing Win2PDF.
http://www.win2pdf.com/purchase/

