
I J C T A, 9(24), 2016, pp. 385-391
© International Science Press

* Assistant Professor/Department of CSE, SRM University, Kattankulathur-603 203, Tamil Nadu, India, Email:
jayavarthini.c@ktr.srmuniv.ac.in

** Assistant Professor, Department of CSE, SRM University, Kattankulathur-603 203, Tamil Nadu, India, Email: priya.sn@ktr.srmuniv.ac.in

Supporting Fuzzy Keyword Search
in Databases
Jayavarthini C.* and Priya S.

ABSTRACT

An efficient keyword search system computes answers as a user types in a keyword query character by character.
This can also be used to support search-as-you-type on data residing in a RDBMS. This paper deals with how to
support this type of search using SQL and how to utilize the power of the SQL language to support efficient search.
Use of auxiliary indexes to increase search performance is also discussed. Techniques for fuzzy search using SQL
are developed by allowing mismatches between query keywords and answers. Solutions for both single-keyword
queries and multi keyword queries are obtained. In addition to SQL queries with join operations, auxiliary tables,
foreign key constraints, built-in indexes on key attributes, and incremental algorithms using cached results are
carefully designed so that these SQL queries can be executed efficiently by the DBMS search engine to achieve a
high speed.

Keywords: Keyword query, search-as-you-type, SQL, fuzzy search, index, auxiliary tables

1. INTRODUCTION

Data mining refers to the extraction of knowledge from huge data. By data processing, fascinating
information, regularities, or high-level data will be extracted from databases and viewed or browsed from
completely different angles. Ancient data systems retrieve answers once a user submits a whole question.
Users typically feel troublesome if they have restricted knowledge regarding the underlying data, and ought
to use several attempts-to-see approach for searching data. Several information systems today improve
user search experiences by providing instant feedback as users formulate search queries. Most search engines
and on-line search forms support auto-completion as a user types in a keyword query, character by
character. For instance, consider the Web search interface at Netflix [1], which allows a user to search for
movie information. If a user types in a partial query “mad,” the system shows movies with a title matching
this keyword as a prefix, such as “Madagascar” and “Mad Men: Season 1. “ The instant feedback helps the
user not only in formulating the query, but also in under-standing the underlying data. This type of search is
generally called search-as-you-type or type-ahead search.

A search-as-you-type system computes answers as a user types in a keyword query character by character.
Search-as-you-type is to be combined with SQL for better performance to retrieve the data from RDBMS.
To make all the databases support search-as-you-type, many approaches were proposed. One approach is to
develop an application layer with indexes followed by algorithms to support this so that, it can be used in
all databases. Next is to use DB extenders. Third is to use SQL [2]. Third can be achieved, as SQL is highly
portable and compatible.

Here is a challenge how to force current database functionalities to meet the high-performance
requirement in terms of speed. One way to achieve this is to use auxiliary indexes. Solutions for all type of
queries are to be presented. Fuzzy search is also included with search-as-you-type in SQL to allow mismatches

ISSN: 0974-5572

386 Jayavarthini C. and Priya S.

between query keywords and answers. Our goal is to utilize the built-in query engine of the database
system as much as possible. In this way, we can reduce the programming efforts to support search-as-you-
type. In addition, the solution developed on one database using standard SQL techniques is portable to
other databases which support the same standard. These techniques enable DBMS systems on a commodity
system to support search-as-you-type.

The remainder of this paper is organized as follows. Section II describes about related works, whereas
Section III describes the problem statement. Section IV describes the Fuzzy Keyword Search using SQL in
Database, whereas Section V describes the exact and fuzzy search, then Section VI about Supporting
Multikeyword Queries, then Section VII describes the results and discussion and Section VIII about the
conclusion and future implementation.

2. RELATED WORKS

There was an efficient approach that leverages the inverted index on the document to identify the subset of
documents relevant to the task and processes only those documents [3]. The key insight is to reduce the
cost of query by exploiting the overlap of tokens among the set of entities. Another approach called BANKS,
an integrated browsing and keyword querying system for relational databases was developed. BANKS
allows users with no knowledge of database systems or schema to query and browse relational database
with ease [4]. Traditional indexing data structures either incur large processing times for a substantial class
of queries, or they use a lot of space. A new indexing data structure that uses no more space than a state-of-
the-art compressed inverted index, but that yields an order of magnitude faster query processing times was
developed [5]. A Tastier system brings instant gratification to users by supporting type-ahead search, which
finds answers “on the fly” as the user types in query keywords [6]. The main challenge was how to achieve
a high interactive speed for large amounts of data in multiple tables, so that a query can be answered
efficiently within milliseconds. Efficient index structures and algorithms for incrementally computing
answers to queries were implemented in order to achieve an interactive speed on large data sets.

A graph-partition-based method and query prediction techniques were proposed to improve search
efficiency. Traditional information systems return answers after a user submits a complete query. An
information-access paradigm, called “interactive, fuzzy search,” was developed in which the system searches
the underlying data “on the fly” as the user types in query keywords. It extends autocomplete interfaces by
allowing keywords to appear in multiple attributes of the underlying data then it finds relevant records that
have keywords matching query keywords approximately [7]. It also explained how to efficiently find in a
collection of strings those similar to a given string. The existing methodology used individual filters for
approximate search. Existing filtering techniques was integrated with the filtering algorithms to show that
they should be used together judiciously, since the way to do the integration can greatly affect the performance
[8]. The complete search is an interactive search engine. Context-sensitive prefix search and completion
mechanisms are used [9] to reduce the amount of data that has to be processed per query.

Features like automatic query completion, semi-structured (XML) retrieval, semantic search, DB-style
joins and grouping and arbitrary combinations were also implemented [9]. The central completion mechanism
of the Complete Search engine makes use of a novel kind of index data structure, called HYB in order to
reduce the amount of data processed per query. Real-world applications require solving a similarity search
problem where one is interested in all pairs of objects whose similarity is above a specified threshold.
Inverted list based approach and All-Pairs algorithm that is easy to implement and does not require any
parameter tuning was developed. This reduces the search space and All-Pairs algorithm is 1.3 to 15 times
faster than an approximate algorithm [10]. It also handles a variety of datasets across a wide setting of
similarity thresholds, with large speedups. A primitive operator SSJoin was implemented for performing
similarity joins. The similarity joins based on a variety of textual and non-textual similarity functions can

 Supporting Fuzzy Keyword Search in Databases 387

be efficiently implemented using the SSJoin operator [11]. The SSJoin operator compares values based on
“sets” associated with each one of them. The design and implementation of this logical operator leverages
the existing set of relational operators, and helps in defining a rich space of alternatives for optimizing
queries involving similarity joins. A system called DISCOVER was presented, which performs keyword
search in relational databases. It proceeds in three steps. First it generates the smallest set of candidate
networks that guarantee that all MTJNT’s will be produced [12].

Then the greedy algorithm creates a near-optimal execution plan to evaluate the set of candidate networks.
Finally, the execution plan is executed by the DBMS. This keyword search enables information discovery
without requiring from the user to know the schema of the database, SQL or some QBE-like interface, and
the roles of the various entities and terms used in the query databases that do not require knowledge of the
database schema or of a querying language.

3. PROBLEM STATEMENT

The challenges include: SQL meet the high performance requirement to implement an interactive search
interface and some important functionality to support search-as-you-type requires join operations, which
could be rather expensive to execute by the query engine. The previous approaches support search-as-you-
type using the native SQL language.

To address these challenges we propose two types of methods to support search-as-you-type for single-
keyword queries, based on whether they require additional index structures stored as auxiliary tables. The
main consideration was to increase the speed by using auxiliary indexes stored as tables. We discuss the
methods that use SQL to scan a table and verify each record by calling a user-defined function (UDF) or
using the LIKE predicate. Exact search for single keyword queries are done using UDF, LIKE predicate
and inverted-index table and the prefix table. Exact search for multi keyword queries are done using UDF,
LIKE predicate, full-text indexes and UDF (called “FI+UDF”), full-text indexes and the LIKE predicate
(called “FI+LIKE”), the inverted-index table with prefix table and word-level incremental method. We also
support fuzzy search for single-keyword queries.

Fuzzy search for single keyword queries are implemented using UDF, gram-based method,
neighbourhood-generation-based method, character-level incremental algorithms. As the gram-based
method and a UDF-based method has a low performance, we propose a new neighbourhood-generation
based method, using the idea that two strings are similar only if they have common neighbours obtained
by deleting characters. We extend the techniques to support multi-keyword queries that when deployed
in a Web application, the incremental-computation algorithms do not need to maintain session
information, since the results of earlier queries are stored inside the database and shared by future
queries.

Fuzzy search for multi keyword queries are implemented using word-level incremental algorithms,
called NGB+ and Incre+. The approach using inverted index tables and prefix tables supports prefix, fuzzy
search and achieve the best performance. The experimental results on large, real data sets showed that the
proposed techniques can enable DBMS systems to support search-as-you-type on large tables.

4. FUZZY KEYWORD SEARCH USING SQL IN DATABASE

The keyword table, inverted index table, prefix table, gram table were already created for related data in
RDBMS. When the user types a keyword query, the presence of keyword with tuple id is obtained using
keyword, inverted and prefix table. The approximate matching of keywords is done with the help of gram
table. Now the data related to user entered keywords are obtained using incremental computation and
neighborhood generation method.

388 Jayavarthini C. and Priya S.

5. EXACT AND FUZZY SEARCH

5.1. Exact Search

During Exact search, a user types a single partial key word W character by character, search as you type
system finds the record that contain keyword with a prefix W. It is also known as prefix search.

5.1.1. Index Search

Inverted index and prefix tables are created to facilitate prefix search. Inverted index table contains {k
id
, t

id
}

whereas, k
id
 is a unique id assigned in alphabetical order for the keywords and t

id
 is the id assigned for each

tuple in a relation. Prefix table contains {p,lk
id
, uk

id
) whereas p is the prefix, lk

id
is least id of those keywords

in table T (contains all the prefixes of keywords) and uk
id

is greatest id of those keywords in table T. Given
partial keyword w, keyword range is obtained using prefix table P

t
 and then find the records in the keyword

range through inverted index.

5.1.2. No-Index Search

SQL query is given, which scans each record and verifies whether the record is an answer to the query.
There are two ways to do this:

1) To Call User-Defined Functions (UDFs). We can add modules into databases to validate whether a
record contains the query keyword

2) To use the LIKE predicate. Databases provide a LIKE predicate to perform string matching. It can be
used to check whether a record contains the query keyword. But this method may introduce false positives.

5.2. Fuzzy Search

A fuzzy search is a search process that locates contents that are likely to be relevant to a keyword in an
approximate manner so that even when the keyword does not exactly match the desired information.

5.2.1. No-Index Methods

In Exact search, two methods were used. But in fuzzy search, only UDF can be used and LIKE predicate
cannot be used since it does approximate matching. Given a keyword w and string s, minimal edit distance

Figure 1: Architectural diagram for fuzzy keyword search using databases.

 Supporting Fuzzy Keyword Search in Databases 389

is calculated between keyword and prefix and returned as answer. Using the minimal edit distance, we can
measure the relevance of keyword to the desired information.

5.2.2. Index- Based Methods

UDF

We can find similar prefixes of given keyword from prefix table using UDF. Similar prefix is identified
using the edit distance. Then the k

id
 of inverted table is compared with both lk

id
 and uk

id
 of prefix table. The

records in the table are retrieved if lk
id
 < = k

id
> = uk

id
and also t

id
is the same in both inverted table and table,

where the records are stored.

GRAM based

There are many q-gram-based methods to support approximate string search . Given a string s, its q-grams
are its substrings with length q. To find similar prefixes of a query keyword, besides use the inverted-index
table and the prefix table, also in need to create a q-gram table with records.

Neighbourhood-generation method

A neighbourhood-generation-based method to support approximate string search was developed. We extend
this method to use SQL to support fuzzy search-as-you-type. Given a keyword w, the substrings of w by
deleting I characters are called “i-deletion neighbourhoods” of w.

Incremental Computing

Word-Level Incremental Computation use previously computed results to incrementally answer a query.
Assuming a user has typed in a query with keywords create a temporary table to cache the record ids of
query. If the user types in a new keyword and submits a new query with keywords use temporary table to
incrementally answer the new query. Exact search focus on the method that uses the prefix table and
inverted-index table. Fuzzy search consider character level incremental method. Fuzzy search consider
character level incremental method, the user arbitrarily modifies the query, can easily extend this method to
answer new query.

6. SUPPORTING MULTIKEYWORD QUERIES

Multi-keyword Search updates is given a multi-keyword query Q with m keywords, using the
“INTERSECT” Operator first compute records for each keyword and then use INTERSECT operator to
join these records for different keywords to compute answers. Using Full-text Indexes first use full-text
indexes to find records matching the first complete keywords and then use proposed methods to find
records matching the last prefix keyword. Two methods cannot use pre-computed results lead to low
performance.

6.1. Supporting First N-Queries

The above methods cannot be easily extended to support fuzzy search, as they cannot distinguish the
results of exact search and fuzzy search. Generally, we need to first return the “best results” with smaller
edit distances. To address this issue, we propose to progressively compute the results.

As an example, we consider the character-level incremental method. For a single-keyword query w, we
first get the results with edit distance 0. If we have gotten N answers, we terminate the execution; otherwise,
we progressively increase the edit distance threshold and select the records with edit-distance thresholds
1; 2; . . .;, until we get N answers.

390 Jayavarthini C. and Priya S.

7. RESULTS AND DISCUSSION

We compared different methods to support search-as-you-type. The first graph shows the relationship between
query processing time and number of keywords for various approaches in exact search. From the graph, we
understand that IPT+ has low processing time even though the number of keywords increases. The next
graph shows the relationship between query processing time and number of keywords with respect to
Gram, UDF, Incremental methods of fuzzy search. Incremental Based approach show very low processing
time even when number of keywords increase. Also the results are relevant to the keyword query.

8. CONCLUSION AND FUTURE IMPLEMENTATION

We targeted on the challenge of ways to leverage existing software database functionalities to satisfy the
superior demand to realize an interactive speed. To support prefix matching, we have a tendency to projected
solutions that use auxiliary tables as index structures and SQL queries to support search-as-you-type. We
extended the techniques to the case of fuzzy queries, and projected numerous techniques to boost query
performance. We projected incremental-computation techniques to answer multi-keyword queries, and
studied ways to support first-N queries and progressive updates. Our experimental results on giant, real
knowledge sets showed that the proposed techniques will modify software database systems to support
search-as-you-type on huge tables. So as to realize a high speed, we propose index-based ways. The approach

Figure 3: Comparison of Gram, UDF, NGB, Incremental Based – Fuzzy Search

Figure 2: Comparison of FI, IPT and IPT+ - Exact Search

 Supporting Fuzzy Keyword Search in Databases 391

victimisation inverted-index tables and also the prefix tables will support prefix, fuzzy search, and reach
the most effective performance among of these ways and crush the constitutional ways in SQL Server and
Oracle. Our SQL-based methodology can do a high interactive speed and scale well. There are various
open problems to support search-as-you-type. It includes different ranking approaches to get relevant data
efficiently.

REFERENCES
[1] Y. Koren, Tutorial on recent progress in collaborative filtering, in: Proceed-ings of the 2008 ACM Conference on

Recommender Systems, ACM, Lausanne, Switzerland, 2008, pp. 333–334.

[2] Guoliang Li, Jianhua Feng, Chen Li,Supporting search-as-you-type using SQL in Databases, IEEE Transactions on
knowledge and data engineering, vol. 25, no. 2, 2013

[3] S. Agrawal, K. Chakrabarti, S. Chaudhuri, and V. Ganti, “Scalable Ad-Hoc Entity Extraction from Text Collections,”
Proc. VLDB Endowment, vol. 1, no. 1, pp. 945-957, 2008.

[4] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan, “Keyword Searching and Browsing in Data Bases
Using Banks,” Proc. 18th Int’l Conf. Data Eng. (ICDE ’02), pp. 431-440, 2002.

[5] H. Bast and I. Weber, “Type Less, Find More: Fast Autocompletion Search with a Succinct Index,” Proc. 29th Ann. Int’l
ACM SIGIR Conf. Research and Development in Information Retrieval (SIGIR ’06), pp. 364-371, 2006.

[6] G. Li, S. Ji, C. Li, and J. Feng, “Efficient Type-Ahead Search on Relational Data: A Tastier Approach,” Proc. 35th ACM
SIGMOD Int’l Conf. Management of Data (SIGMOD ’09), pp. 695-706, 2009.

[7] S. Ji, G. Li, C. Li, and J. Feng, “Efficient Interactive Fuzzy Keyword Search,” Proc. 18th ACM SIGMOD Int’l Conf.
World Wide Web (WWW), pp. 371-380, 2009

[8] C. Li, J. Lu, and Y. Lu, “Efficient Merging and Filtering Algorithms for Approximate String Searches,” Proc. IEEE 24th
Int’l Conf. Data Eng. (ICDE ’08), pp. 257-266, 2008.

[9] H. Bast and I. Weber, “The Complete Search Engine: Interactive, Efficient, and Towards IR & DB Integration,” Proc.
Conf. Innovative Data Systems Research (CIDR), pp. 88-95, 2007.

[10] R.J. Bayardo, Y. Ma, and R. Srikant, “Scaling up all Pairs Similarity Search,” Proc. 16th Int’l Conf. World Wide Web
(WWW ’07), pp. 131-140, 2007.

[11] S. Chaudhuri, V. Ganti, and R. Kaushik, “A Primitive Operator for Similarity Joins in Data Cleaning,” Proc. 22nd Int’l
Conf. Data Eng. (ICDE ’06), pp. 5-16, 2006.

[12] V. Hristidis and Y. Papakonstantinou, “Discover: Keyword Search in Relational Data Bases,” Proc. 28th Int’l Conf. Very
Large Data Bases (VLDB ’02), pp. 670-681,2002.

