

* Department of Computer Applications
National Institute of Technology Jamshedpur, Jamshedpur, Jharkhand, India
Email- chandan.jha150286@gmail.com

** Department of Computer Applications

National Institute of Technology Jamshedpur, Jamshedpur, Jharkhand, India
dkyadav1@gmail.com

DEFECT ESTIMATION AND SEVERITY
ANALYSIS OF SOFTWARE ARTIFACTS
Chandan Kumar*,and Dilip Kumar Yadav**

1. INTRODUCTION
The causes of software failure are software defects, which are generated in the process of software

development. The defects in software are generated either within a phase of software development
process or at the interface between two different software development phases. However, software defects
vary considerably with respect to their severity in different phases of software development. The IEEE
standard states, ‘‘Identifying the severity of the defects is a mandatory category as is identifying the
project schedule, and project cost impacts of any possible solution for the defects’’[1]. Software defect
severity prediction plays an important role in producing reliable software product. In order to estimate the
total defect of the software, it is also required to predict the severity of defect at the end of each phase of
the SDLC. The importance of defect severity is identified as early as 1979 by Crosby [2]. The importance
of measuring severity levels rather than simply identifying the number of defects is reemphasized by
Jones [3]. Therefore, there is a need to develop phase wise software defect severity analysis prediction
model that can be used to identify that which phase of the SDLC is more defective. The software
practitioners can use that model with respect to high severity of defects and focus on those phases of the
SDLC. The top agenda item for software developing companies is quality and reliability of the software.
The reliability and quality of a software product is totally dependent on the process through which the
software product is developed i.e. SDLC. The software quality does not depend only on technical

Abstract:Defect estimation and severity analysis of software artifacts are very helpful for developing
reliable software product. In order to achieve the reliable software within time and costs every software
organization want to know how many software defect can be exit in developing software and which phase
of software development life cycle is more severe. In this paper phase wise software defect severity
analysis method is proposed using Bayesian networks. In the proposed method, severity of software defect
in each phase of SDLC is predicted using top ranked reliability relevant software metrics. Bayesian belief
network (BBN) and the linguistic values of software metrics related to requirement analysis, design,
coding and testing phase have been considered to develop the proposed model. To validate the proposed
model, 20 real software project data sets have been used. The predictive accuracy of the proposed model
is validated and compared with existing work.

Key Words: Defect Severity, Defect Estimation, Software Metrics, Bayesian Belief Network, Software
Reliability

I J C T A, 9(41) 2016, pp. 863-872 ISSN: 0974-5572
© International Science Press

Chandan Kumar, and Dilip Kumar Yadav 864

competence but people, tools, techniques and management are also responsible. Therefore, the software
development management system should address all the situations in which the software is being
developed i.e. from requirement specification, to design, coding and testing.

In literature [4-6], it is found that BBN play a vital role to predict the quality and reliability of software
product using defect estimation and detection approach. Amasaki et al. [4] proposed a BBN based software
quality prediction model, they have tried to apply BBN to find the risky project using the software metrics
that are highly correlated to SDLC phase. Fenton et al. [5] found that only size and complexity metrics are
incapable for estimating the residual software defects accurately. In another study of Fenton et al. [6]
suggested to use BBN in software defect and software reliability prediction. Their approach allows
software analyst to incorporate the causal relationships of software metrics as well as combining the
qualitative and quantitative measures of software metrics to solve the limitation of traditional software
metrics methods. Kumar and Mishra [7] proposed a model for software reliability prediction, that can
identified the phases of SDLC in which phase corrective actions are needed to be performed to achieve the
required target reliability. Pandey et al. [8] proposed a residual fault prediction model using fuzzy logic
approach. They have predicted defect in multistage of SDLC. A similar study performed by Yadav et al.
[9], where defect density is predicted at the end of each phase of SDLC.

Khoshgoftaar et al. [10] have shown that software metrics plays vital role in software quality and
reliability modelling. In literature [11-12] it is also found that software metrics have great impact on
software reliability. Regarding this Zhang et al. [11] suggested thirty two software metrics in all stage of
software development process. Software reliability has also influenced by the ranking of software
reliability relevant metrics. Li et al. [12] ranked the reliability relevant software metrics according to their
skill in predicting the software reliability by an expert opinion elicitation process. A systematic review of
software metrics in software defect prediction approach is conducted by Catel et al. [13]. The ability of
design phase metrics in software defect prediction is analyzed by Maa et al. [14]. Recently, a requirement
phase based software fault prediction model is proposed by Chatterjee et al. [15], where only the software
metrics belongs to requirement phase are considered for model development.
The observations based on the above literature survey and reviews are as follows:

• Software defect prediction can play a vital role in software reliability modeling.

• It is better to predict the severity of software defects in each phase of SDLC along with the total
numbers of residual software defects for software quality improvement.

• Top ranked reliability relevant software metrics should be considered in software defect prediction
modeling.

• Uncertainty modeling is a major challenge in software defect prediction modeling. Fuzzy logic
and BBN are very useful approach for uncertainty modeling. BBN has some additional feature
then fuzzy logic like: BBN is a probabilistic approach and it can handle the situations where some
data entries are missing or unavailable.

Therefore, based on the above observations, in this paper, a BBN model is proposed for defect estimation
and severity analysis of defect in different phases of SDLC.

The rest of the paper is organized as follows. Proposed methodology is presented in section II.
Experimental results are presented by case study in section III. Model validations are done in section IV.
Concluding remarks are given in section V.

2. PROPOSED METHODOLOGY
The proposed methodology heavily depends on BBN and top ranked reliability relevant software

metrics. The detailed description of BBN is described in [16-17].Top ranked reliability relevant metrics for
different phase (requirement, design, coding and testing) of SDLC are taken from Li et al. [12].

Multiphase Software Defect Severity Analysis: A Bayesian Belief Network Approach 865

Requirements stability, requirement fault density, and review, inspection, and walk-through software
metrics have been considered as input in the requirements analysis phase to predict the probabilistic values
of defect severity at the end of the requirement analysis phase. Probabilistic values of defect severity in
requirement phase (PDRP), software complexity, and design review effectiveness software metrics have
been considered as input in the design phase to predict the probabilistic values of defect severity at the end
of the design phase. The probabilistic values of defect severity in design phase (PDDP), programmer
capability, and process maturity software metrics have been considered as input in coding phase to predict
the probabilistic values of defect severity at the end of coding phase. Similarly, the probabilistic values of
defect severity in coding phase (PDCP), staff experience, and quality of documented test cases have been
considered as input in testing phase to predict the probabilistic values of defect severity at the end of the
testing phase (PDTP). The following steps are involved in this proposed model.
Step 1- Selection of software metrics
Step 2- Model development (BBN Model)
Step 3- Designingof node probability table (NPT)
Step 4- Compile the BBN model
Step 5-Apply the evidence of software metrics on BBN model
Step 6- Analysis the severity of software defect in each of phase SDLC
Step 7- Estimate the residual software defects
In this section steps 1, 2, 3 and 4 are explained other steps like steps 5, 6 and 7 will be explained with the
help of case studies which is shown in section IV.

3.1 Selection of software metrics –
There are numbers of software metrics are available in literature [6, 11-12]. To consider all the software
metrics in any software defect prediction model is very critical task. Therefore, considering the most
important software metrics in defect prediction model is another challenging task. Regarding this Li et al
[12] were ranked the software metrics according to their ability in predicting the software reliability
through expert elicitation process. Author considered the top three software metrics applicable in four
different phases (requirements analysis, design, coding and testing) of SDLC from Li et al. [12] study.The
considered top most reliability relevant software metrics are shown in Table 1.
RFD, Rs, and RIW metrics are taken as input metrics for predicting the severity of defect in requirement
analysis phase. Similarly, PDRP, DRC and SC metrics are taken as input metrics for predicting the severity
of defect in design phase. PDDP, PC and PM metrics are taken as input metrics for predicting the severity
of defect in coding phase. PDCP, SE and QDT are taken as input metrics for predicting the severity of
defect in testing phase.

Table-1 Considered top three software metrics present in first four phases of the SDLC

Sl.
No

Requirements
Phase Design Phase Coding Phase Testing Phase

1
Requirement
Fault Density

(RFD)

Design Review
Effectiveness

(DRE)

Programmer
Capability (PC)

Staff Experience
(SE)

2
Requirements
Stability (RS)

Software
Complexity (SC)

Process Maturity
(PM)

Quality of
Document Test
Cases (QDT)

3 Reviews, Requirement Software Code defect

Chandan Kumar, and Dilip Kumar Yadav 866

Inspections and
Walkthroughs(R

IW)

Fault Density Complexity density

3.2 BBN model development
In literature [16-17] it is found that there are three different approaches have been used to construct the
BBN model 1) Data-based approach 2) Knowledge-based approach and 3) Causal mapping approach. The
data-based approaches use conditional independence semantics from the data to induce the BBN models.
The knowledge-based approach use causal knowledge of domain experts in constructing BBN models. The
causal mapping approach use cause-effect relations and expert knowledge in constructing BBN models
[17]. We have considered the causal mapping approach for the construction of BBN model, because in
literature [17] it is found that this is the perfect method to build the BBN modes. The proposed model is
shown in Figure1. Netica tool [18] is used for model development.

Fig 1. Proposed model

3.3 Designing of node probability table
There are different approaches are exist in literature [19-21] for designing the NPT of BBN. For example:
Noisy-OR method [19], Noisy-MAX method [20] and Weighted function method [21]. However, all are
problem dependent. Therefore, domain expert based NPT design can be universally apply for all types of
problems but designing the large size of NPT from domain expert is not an easy task. So, fuzzy logic
approach is applied to reduce the effort of domain expert in NPT development [22-23]. Here, fuzzy logic
and domain expert opinion method is applied for NPT development.

3.4 Compile the BBN model
After NPT development for all the nodes of BBN model, the compilation process is carried out. The
compile mode of BBN is shown in Figure 2.

Multiphase Software Defect Severity Analysis: A Bayesian Belief Network Approach 867

Fig 2. Compile mode of proposed BBN model

III. CASE STUDY
Twenty case studies are illustrated to explain the proposed methodology. Qualitative values of software
metrics for 20 different software projects are taken from [6] and reproduced in Table 2 where the
qualitative value of software metrics are represented in terms of Low (L), Medium (M) and High (H).

Table-2 Qualitative value of software metrics

Case
Study

No.

Project
No. [6]

Size
(KLoC)

RS RFD RIW SC DRE PC PM SE QDT

1 1 6 L H H M H H H H H

2 2 0.9 H H H L H H H H H

3 3 53.9 H H H H H H H H H

4 7 21 M L H L H H H M H

5 8 5.8 H L H M M H H M M

6 9 2.5 H M H L H H H H H

7 10 4.8 H M H M H H H M M

8 11 4.4 H H H H H H M H M

9 12 19 L M H H M M H H M

10 13 49.1 L H M H H H M M M

11 15 154 L H H H H H H H M

12 16 26.7 M H H L H H H H M

13 17 33 M H M L H M M L H

14 19 87 M H H H H H H M H

15 20 50 L M M H L L H L H

16 21 22 M M H L H H H H H

17 22 44 L M M M L M H M H

18 24 99 L H M M H H H M M

19 29 11 H M H M H H H H H

20 30 1 H M H L H H H H H

Chandan Kumar, and Dilip Kumar Yadav 868

4.1 Model illustration: Case Study 1
Software project #1 [6] has been considered to explain the proposed approach. Following are the steps for
finding the severity of software defect in each phase of SDLC for case study 1.
Step 1: Selection of software metrics: The selected reliability relevant software metrics and their
qualitative values are shown in Table 2.
Step 2: BBN Model Development: Based on the selected metrics and their causal relationships, the BBN
model is constructed which is shown in Figure 1.
Step 3: NPT Development:The node probability tables (NPT) are constructed for all the nodes. NPT
development process is described in Section 3.3.
Step 4: Compilation of BBN Model: After NPT development for all the nodes of BBN model, the
compilation process is carried out. The compile mode of proposed BBN model is shown in Figure2.
Step 5:Apply the evidence of software metrics on BBN model: To obtain the phase wise severity of
software defect (probabilistic value) from the proposed model evidence of nodes (qualitative value of
software metrics) are applied on compiled mode of proposed BBN model. The resultant values are as
follows:
Case study no.: 1
Probabilistic values of defect severity in requirement phase (PDRP): High- 50.2, Medium- 30.6, and Low-
19.2
Probabilistic values of defect severity in design phase (PDDP): High- 25.5, Medium- 40.6, and Low- 33.9
Probabilistic values of defect severity in coding phase (PDCP): High- 20.5, Medium- 33.6, and Low- 45.9
Probabilistic values of defect severity in testing phase (PDTP): High- 19.5, Medium- 33.7, and Low- 46.8
Step 6: Analysis the severity of software defect in different phases of SDLC: From the result of
probabilistic values of defect severity in case study 1, it can be observed that the requirement phase is
more severe then design, coding and testing phase. High probability value of software defect in
requirement phase is 50.2 whereas it is in design phase 25.5, in coding phase 20.5 and in testing phase
19.5. Similarly, based on the above steps the proposed model has been experimented for other case
studies. The resultant probabilistic values of defect severity in each phase of SDLC for all 20 real
software projects are shown in Figure 3. The graphical representation of resultant value of defect severity
is shown in Figure 4. From Figure 4, it can be observed that in most of the projects requirement phase and
design phase is more severe than the coding and testing phase. For example the probability value of
software defects is high in the requirement phase of case study 1, 2, 6, 10, 12, 16, 17, 18 and 20. Similarly
the probability value of software defects is high in the design phase of case study 3, 8, 9, 11, 14, 15 and
19. In literature [8-9, 14-15] it is also found that initial phase metrics like requirement and design phase
metrics are more responsible for defects present in the software. In sum we can say that software metrics
that are responsible for defects present in the initial phases (requirement and design) of SDLC need to be
considered with more attention than the metrics that become available in the later phases (coding and
testing) of SDLC.

Multiphase Software Defect Severity Analysis: A Bayesian Belief Network Approach 869

High Medium Low High Medium Low High Medium Low High Medium Low
1 1 6 50.2 30.6 19.2 25.5 40.6 33.9 20.5 33.6 45.9 19.5 33.7 46.8
2 2 0.9 24.2 30 45.8 15.6 27.2 57.3 17 29.2 53.8 18.2 31.9 49.9
3 3 53.9 24.2 30 45.9 38.6 31.5 29.9 21.1 33.3 45.7 19.6 33.7 46.8
4 7 21 14.6 24.8 60.6 13.7 25.3 61 16.4 28.5 55.1 26.4 38 35.6
5 8 5.8 14.6 24.8 60.6 26.6 41.7 31.7 20.8 34.1 45.2 33.7 42.3 24
6 9 2.5 19.6 24.6 55.8 14.5 25.8 59.7 16.6 28.7 54.7 18 31.7 50.3
7 10 4.8 19.6 24.6 55.8 22.4 36.6 41 19.4 32.3 48.3 33.4 42.2 24.4
8 11 4.4 24.2 30 45.9 38.6 31.5 29.9 24.4 34.4 41.3 23.7 37.5 38.7
9 12 19 34.5 40.1 25.4 48.4 33.3 18.4 25.7 40.9 33.4 24.9 39.6 35.5

10 13 49.1 60.1 24.4 15.5 54.6 27 18.4 26 35.9 38.2 34.9 41.9 23.1
11 15 154 50.2 30.6 19.2 50.7 29 20.3 22.5 34.3 43.2 23.4 37.3 39.3
12 16 26.7 30.1 40.4 29.5 17.3 29.5 53.3 17.6 29.9 52.5 21.9 35.5 42.6
13 17 33 32.1 45.4 22.5 17.9 30.5 51.6 31.5 41.3 27.2 51.9 27.3 20.8
14 19 87 30.1 40.4 29.5 42.4 32.6 25 21.8 34 44.2 27.4 39 33.6
15 20 50 45.5 35.1 19.4 60.8 28.9 10.3 58 24.7 17.3 59.3 23.9 16.8
16 21 22 19.5 45.1 35.4 15.9 29.1 55 17.3 29.7 53 18.3 32.1 49.6
17 22 44 45.5 35.1 19.4 43.9 39.9 16.2 25.3 41.6 33.1 28.2 40.4 31.4
18 24 99 60.1 24.4 15.5 26.5 39.6 33.9 20.5 33.5 46 33.7 42.2 24.1
19 29 11 19.6 24.6 55.8 22.4 36.6 41 19.4 32.3 48.3 19.1 33.2 47.8
20 30 1 19.6 24.6 55.8 14.5 25.8 59.7 16.6 28.7 54.7 18 31.7 50.3

Coding Phase Testing PhaseRequirement PhaseCase Study
No.

Project
No.

Size
(KLoC)

Design Phase

Fig 3. Probability value of software defect in each phase of SDLC

Fig 4. Graphical representation of severity of software defects in each phase of SDLC

Step 7-Estimate the residual software defects: Residual software defects are calculated using
theprobabilistic values of defect severity in testing phase and the pessimistic and optimistic value of
software defectsobtained from domain experts.The complete resultsare shown in Table 3.

Table 3. Predicted value of software defect

Case Actual Defects predicted by

Chandan Kumar, and Dilip Kumar Yadav 870

Study
No.

Defects Fenton
1.7

et al. [6]

Pandey
et al.
[8]

Chatterjee
et al. [15]

Proposed
Model

1 148 75 56 96 138

2 31 52 6 3 29

3 209 254 211 216 195

4 204 262 113 210 199

5 53 48 54 52 54

6 17 57 -- 8 16

7 29 203 26 29 30

8 71 51 41 66 68

9 90 347 176 114 88

10 129 516 337 393 133

11 1768 1526 1651 1540 1698

12 109 145 128 134 103

13 688 444 136 627 741

14 476 581 574 435 469

15 928 986 869 900 1027

16 196 259 106 198 181

17 184 501 291 220 183

18 1597 1514 -- 1485 1635

19 91 116 110 88 85

20 5 46 6 8 5

4. COMPARISON AND VALIDATION OF THE PROPOSED MODEL
The performance of the proposed model has been compared with the previous work done by Fenton et al.
[6], Pandey et al. [8] and Chatterjee et al. [15] which is shown in Table 5. To validate the proposed model,
following commonly used and suggested evaluation measures [6, 8, 15, 24] have been taken:
i. Mean Magnitude of Relative Error (MMRE): MMRE is the mean of absolute percentage errors and a

measure of the spread of the variable z, where z = estimate / actual

1

ˆ1 | () |
n

i i
i

i

y yMMRE
n y

=

−
= ∑ (1)

ii. Balanced mean magnitude of relative error (BMMRE): MMRE is unbalanced and penalizes
overestimates more than underestimates. For this reason, a balanced mean magnitude of relative error
measure is also considered which is as follows:

Multiphase Software Defect Severity Analysis: A Bayesian Belief Network Approach 871

,
1

ˆ1 | () |
ˆ()

n
i i

i i
i

y yBMMRE
n Min y y

=

−
= ∑ (2)

Where iy is the actual value and ˆiy is the predicted value and iy is the arithmetic mean of the actual
values.
The computed values of MMRE and BMMRE with the help of Eq. 1 and Eq.2 is tabulated in Table 4, for
the proposed model and the previous work of Fenton et al. [6], Pandey et al.[8] and Chatterjee et al. [15].
Table 4shows that the proposed model has lesser values of MMRE and BMMRE than the previous work.
Hence, the prediction accuracy of the proposed model is better than the previous work.

Table 4- Compared values of model evaluation measures

Evaluation
Measure

Proposed
Model

Chatterjeeet
al.[15]

Pandey et al.
[8]

Fenton et al.
[6]

MMRE 0.044 0.286 0.431 1.396

BMMRE 0.046 0.749 0.915 1.437

CONCLUSION
In this paper, BBN approach is used to construct the model. The proposed model considers the top most
software metrics of each phase of SDLC. The severity of software defect at each phase of SDLC is
analyzed based on the evidence of software metrics. The analyzed severity of software defects in different
phases of SDLC is very useful for software project manager to take correct decision in recourse utilization.
Software development team may easily detectmost defective phases of SDLC and accordingly they can
take correct decision to reduce the defects level.To measure the performance level of proposed model,
twenty real software projects data sets have been applied. The predicted defect for twenty software projects
are found very near to the actual defects. The performance of the proposed model has been compared with
the previous work [6, 8, 15]. The proposed model is very useful for software developers for developing a
reliable software product at reduced cost.

REFERENCES

[1] IEEE Std. 1044-1993,“IEEE standard classification for software anomalies,”1994.

[2] P.B. Crosby, “Quality Is Free,” McGraw-Hill, 1979

[3] C. Jones, “Measuring Defect Potentials and Defect RemovalEfficiency,” CrossTalk,
http://www.stsc.hill.af.mil/crosstalk/2008/06/0806Jones.html, June 2008.

[4] S. Amasaki, Y. Takagi, O. Mizuno and T. Kikuno, “A bayesian belief network for assessing the likelihood of fault
content,” Proc. of 14th international symposium on software reliability engineering (ISSRE), pp. 215–226, 2003.

[5] N. E. Fenton and M. Neil, “A Critique of Software Defect Prediction Models,” IEEE Transactions on Software
Engineering, vol 25(5), pp. 675-689, 1999.

[6] N. E. Fenton, M. Neil, W. March, P. Hearty, L. Radlinski and P. Krause, “On the effectiveness of early life cycle
defect prediction with Bayesian Nets,” Empirical Software Engineering, vol.13, pp. 499 –537, 2008.

[7] Kumar KS, Misra RB, “An enhanced model for early softwarereliability prediction using software engineering
metrics,” In: Proc.of 2ndinternational conference on secure systemintegration and reliability improvement, IEEE, pp.
177–178, 2008.

[8] K. Pandey, N. K. Goyal, “Multistage model for residual fault prediction,” In Early Software Reliability Prediction,
Springer India, pp. 59–80, 2013.

Chandan Kumar, and Dilip Kumar Yadav 872

[9] Harikesh Bahadur Yadav, Dilip Kumar Yadav, “A fuzzy logic based approach for phase-wise software defects
prediction using software metrics,” Information and Software Technology, vol. 63 pp. 44–57, 2015

[10] Khoshgoftaar, T. M., Allen, E. B., Jones, W. D., and Hudepohl, J. P.,“Accuracy of software quality models over
multiple releases,” Annals of Software Engineering, vol. 9, pp. 103–116, 2000.

[11] X. Zhang, H. Pham, “An Analysis of Factors Affecting Software Reliability,” The Journal of Systems and Software,
vol. 50 (1), pp. 43–56, 2000.

[12] M. Li and C. Smidts, “A Ranking of Software Engineering Measures Based on Expert Opinion,” IEEE Transactions
on Software Engineering, vol.29, pp. 811– 824, 2003.

[13] Catal, “Software fault Prediction: A literature review and current trends,” Expert System with Applications,
vol. 38, pp. 4626–4636, 2011.

[14] Y. Maa, S. Zhua, K. Qinb, G. Luob, “Combining The Requirement Information For Software Defect Estimation In
Design Time,” Information Processing Letters, vol. 114(9), pp. 469–474, 2014.

[15] Subhashis Chatterjee, Bappa Maji, “A new fuzzy rule based algorithm for estimating software faults in early phase of
development,” Soft Computing, DOI 10.1007/s00500-015-1738-x, 2015

[16] FV Jensen, “An introduction to bayesian networks,” Springer Verlag New York, Inc., Secaucus. ISBN 0387915028,
1996.

[17] Sucheta Nadkarni, Prakash P. Shenoy, “A Causal Mapping Approach to Constructing Bayesian Networks,” Decision
Support Systems, vol. 38, Issue 2, pp. 259-281, 2004.

[18] Netica, Available at http://www.norsys.com; 2010.

[19] K. Huang and M. Henrion, “Efficient Search-Based Inference for Noisy-OR Belief Networks,” Twelfth Conference
on Uncertainty in Artificial Intelligence, Portland, pp. 325-331, 1996.

[20] F.J. Díez, “Parameter adjustment in Bayes networks: the generalized noisy or-gate,” Proc. Ninth Conference on
Uncertainty in Artificial Intelligence, pp. 99-105, 1993.

[21] Das, “Generating node probabilities for Bayesian networks: Easing the knowledge acquisition problem,” arXiv
preprint cs/0411034, 2004.

[22] K.F.R. Liu,J.Y. Kuo, K. Yeh, C.W. Chen, H.H. Liang and Y.H. Sun, “Using fuzzy logic to generate conditional
probabilities in Bayesianbelief networks: a case study of ecological assessment,” Int. J. Environ. Sci. Technol, DOI
10.1007/s13762-013-0459-x, 2013.

[23] Kumar, D. K. Yadav, “A Method for Developing Node Probability Table Using Qualitative Value of Software
Metrics,” Proc. of C3IT 2015: 3rd International conference on Computer, Communication, Control and Information
Technology, Hooghly, India, 7-8 Feb. 2015, Publisher: IEEE, DOI: http://dx.doi.org/10.1109/C3IT.2015.7060187

[24] C. Kumar, D. K. Yadav, “Software defects estimation using metrics of early phases of software development life
cycle,” International Journal of System Assurance Engineering and Management, Springer, DOI: 10.1007/s13198-
014-0326-2, December 2014.

	Introduction
	Proposed methodology
	Selection of software metrics –
	BBN model development
	Designing of node probability table
	Compile the BBN model

	iii. case study
	Model illustration: Case Study 1

	Comparison and Validation of the Proposed Model
	CONCLUSION
	References

