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ACTION FUNCTIONALS FOR STOCHASTIC DIFFERENTIAL

EQUATIONS WITH LÉVY NOISE

SHENGLAN YUAN AND JINQIAO DUAN*

Abstract. This article is about stochastic dynamical systems with small
non-Gaussian Lévy noise. We review the recent works on the large deviation
techniques that deal with the decay of probabilities of rare events on an
exponential scale. We focus on deriving the action functionals for dynamical
systems with Lévy processes of finite exponential moments. This is achieved
with help of the extended contraction principle, Legendre transform and Lévy
symbols. We also illustrate the results with an example.

1. Introduction

Stochastic effects are ubiquitous in complex systems from science and engineer-
ing [1]. Although random mechanisms may appear to be very small or very fast,
their long time impacts on the system evolution may be delicate or even profound
[13]. Mathematical modeling of complex systems under uncertainty often leads to
stochastic differential equations (SDEs), as seen in, for example, [2, 14, 18, 19].
Fluctuations appeared in these SDEs are often non-Gaussian rather than Gauss-
ian.

The long time large deviation behaviors of slow-fast systems have attracted a lot
of attention because of the various applications in statistical physics, biophysics,
geophysics, climate dynamics engineering, chemistry and financial mathematics
[3, 8, 11]. Large deviations for SDEs driven by Brownian motion are now well-
known [5, 10, 17], while certain large deviation results for SDEs with Lévy noise
are available more recently [4, 12].

Action functionals play an important role in understanding transitions in the
context of large deviations [9, 15, 16]. The main goal of this review article is to
derive the action functionals for the following SDE with a Lévy process

dXε
t = b(Xε

t−)dt+
√
εσ(Xε

t−)dBt + η(Xε
t−)dL

ε
t ,

where Lε
t := εL t

ε
is a scaled Lévy process with finite exponential moments.

We first show that the scaled Lévy process satisfies a large deviation principle,
and obtain its action functional. Then we construct continuous mappings to get an
exponentially good approximations. Finally, we derive the action functionals for
SDEs with Lévy noise by using extended contraction principle, Legendre transform
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NOTE ON THE EFFECTIVE SAMPLE SIZE WHEN 

POPULATION DEFECT RATE IS ONE PART PER MILLION 

SEOK HO CHANG1* 

Abstract. In this paper, we examine the effective sample size to 
obtain a reliable conclusion when the population defect rate is one 
part per million (PPM). Although such problems are of great 
importance in the context of quality management, classical 
textbooks of statistics only discuss the situation in which the 
defective rate is fairly high compared to one PPM or suggest 
approximate methods. In this paper, we first summarize previous 
formulae for sample size and present their limitations in handling 
situations in which the defective rate is one PPM. We then present 
two formulae for sample size that are effective in handling situations 
in which the population defect rate is one PPM. Based on our 
formulae, we present the sample size numerically by varying the 
desired level of accuracy and confidence coefficient. Based on our 
results, we also offer practical suggestions for determining sample 
sizes in low-defect cases.  

KEYWORDS sample size, one part per million defective, fraction 
defective, confidence interval, estimation, precision and accuracy. 

1. Introduction  

Consumer demands for products and services are changing rapidly in the 

dynamic global economic environment of the early 21st century. In a situation 

marked by such high levels of change and competition, there is an urgent need 

to improve the quality of both products and services.  

For products that damage people’s lives in the event of failure, the sales 

market demands a fairly high level (e.g., one part per million [PPM] defective) 

of quality for each component. This can be illustrated by the following simple 

example: suppose there is a product that consists of an assembly of 1,200 

components, and all 1,200 components must be nondefective for the product 

function satisfactorily. If each component is under three-sigma quality, the 

probability that any specific unit of the product is nondefective is 0.99731200= 

0.03899265869, which means that about 3.9% of products under three-sigma 

quality will be nondefective. This situation is not desirable considering that                     
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the products damage people’s lives in the event of failure. If we use six-sigma 

quality for each component, the situation is much better: the probability that 

any specific unit of the product is non-defective is 0.9999999981200=0.9999976, 

which means that about 99.99976% of the product will be nondefective. 

This article considers the following situation: for a product manufacturer 

(such as airplanes or ships) requiring several million components, vendors want 

to deliver parts for manufacture. Suppose that the defective rate of the lot that 

is a large set of components currently used in the company is one PPM. 

Suppose that one supplier claims that the defective rate of the lot provided is 

less than one PPM. Sampling inspection can be performed to determine 

whether their claims are valid or not. In this case, an important question is 

how many samples are necessary to draw a reliable conclusion. Increasing the 

sample size increases the accuracy of the estimate, but can increase sampling 

costs and data processing time. Predetermining the size of the sample needed 

to meet a given accuracy is an important issue for decision-makers. For 

products that damage people’s lives in the event of failure, highly accurate 

estimates should be reflected in decision making.  

This paper seeks to resolve the difficulty and determine the effective sample 

size to verify whether a population defect rate is one PPM. Although such 

problems are of great importance, classical statistics textbooks discuss cases in 

which the defective rate is fairly high (such as 0.1, 0.01 or 0.001) compared to 
one PPM or suggest approximate methods ([3,5,6], and the references therein). 

We first summarize previous formulae to determine sample size and present 

their limitations in handling cases in which the defective rate is one PPM. We 

then present two formulae to determine sample size that are effective in 

handling such situations. We present numerical sample sizes based on our 

formulae by varying the desired level of accuracy and confidence coefficient. 

Based on our results, we also offer practical suggestions for determining sample 

sizes in low-defect cases.  

The rest of this article is organized as follow. In section 2, we summarize 

previous formulae for the sample size, and present their limitations in handling 

the case where the defective rate is one PPM. In section 3, we present two 

formulae for the sample size, which are effective in handling the case when the 

population defect rate is one PPM. Based on our formulae, we present the 

sample size numerically by varying the desired value of accuracy and 

confidence coefficient. In section 4, we conclude this paper, and suggest 

practical suggestion for determining sample sizes in low-defect cases.   

2. The limitations of previous approaches 

In this section, we summarize previous formulae for sample size, and present 

their limitations in handling situations in which the defective rate is one PPM. 
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Sample size formula based on normal approximation interval  

A commonly used formula for a confidence interval for unknown fraction 

defective of a population relies on approximating the binomial distribution 

with a normal distribution, which is based on the central limit theorem 

[1,3,5,6]. The normal approximation to binomial is known to be satisfactory 

for the unknown defective rate (or fraction defective) 𝑃𝑃𝑃𝑃 of approximation is 

1/2 and sample size 𝑛𝑛𝑛𝑛 >10 [1,3,5,6]. For other values of 𝑃𝑃𝑃𝑃, larger values of 

sample size 𝑛𝑛𝑛𝑛 is required [1,3,5,6].  

Using the normal approximation, 100×(1-𝛼𝛼𝛼𝛼)% confidence interval for the 

unknown defective rate 𝑃𝑃𝑃𝑃 of a population is  

  [�̂�𝑃𝑃𝑃 − 𝑧𝑧𝑧𝑧𝛼𝛼𝛼𝛼
2
√�̂�𝑃𝑃𝑃(1−�̂�𝑃𝑃𝑃)

𝑛𝑛𝑛𝑛 ,    �̂�𝑃𝑃𝑃 + 𝑧𝑧𝑧𝑧𝛼𝛼𝛼𝛼
2
√�̂�𝑃𝑃𝑃(1−�̂�𝑃𝑃𝑃)

𝑛𝑛𝑛𝑛  ],                               (2-1) 

where �̂�𝑃𝑃𝑃 denotes the sample fraction defective (or sample defective rate), 𝑛𝑛𝑛𝑛 

denotes the sample size, and 𝑧𝑧𝑧𝑧𝛼𝛼𝛼𝛼
2
 denotes the (1- 

𝛼𝛼𝛼𝛼
2) quantile of standard normal 

distribution corresponding to target error rate 𝛼𝛼𝛼𝛼. For a 95% confidence 

interval, the error 𝛼𝛼𝛼𝛼= 1-0.95=0.05, so (1- 
𝛼𝛼𝛼𝛼
2 ) = 0.975, and 𝑧𝑧𝑧𝑧𝛼𝛼𝛼𝛼

2
 = 1.96.  

Based on the confidence interval, we can calculate the minimum sample 

size for the unknown defective rate (fraction defective) of a population using 

the following formula: 

𝑛𝑛𝑛𝑛 = ( 
𝑧𝑧𝑧𝑧𝛼𝛼𝛼𝛼

2√�̂�𝑃𝑃𝑃(1−�̂�𝑃𝑃𝑃)

𝐵𝐵𝐵𝐵  )2,                                   (2-2) 

where 𝐵𝐵𝐵𝐵 denotes the desired level of precision [3]. 

A common mistake in using sample size formula based on 
normal approximation 

A common mistake that can be made in using the formula (2-1) and (2-2) is 

that one can choose the sample size 𝑛𝑛𝑛𝑛 that satisfies 𝑛𝑛𝑛𝑛 > 30 in handling 

situations in which the population defective rate is one PPM. This mistake is 

due to the argument that the normal approximation to binomial is based on 

central limit theorem [1,3,5,6] which usually hold for  𝑛𝑛𝑛𝑛 > 30. 

Suppose we choose the sample size 𝑛𝑛𝑛𝑛 = 40 since it satisfies the inequality 

𝑛𝑛𝑛𝑛 > 30. Assume that the defective rate of a company’s lot is known to be one 

PPM. A random sampling (sampling with replacement) is used to estimate the 

unknown defective rate. For convenience, we assume an infinite population. If 

the defective rate of the lot is one PPM, the probability that all the parts 
contained in the sample of size 40 are not defective is equal to (1-0.000001)40 

= 0.99996000078, which is close to 1. Then, sample fraction defective is equal 
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to 1-0.99996000078=0.00003999922, which is close to 0. If we roughly plug �̂�𝑃𝑃𝑃 =
0 into the formulae (2-1) and (2-2), we get the following results:  

100×(1-𝛼𝛼𝛼𝛼)% confidence interval for the unknown defective rate 𝑃𝑃𝑃𝑃 of a 

population is [0 , 0],                                                                      (2-3) 

the minimum sample size for the unknown defective rate (fraction defective) 

of a population is equal to 0.                                                           (2-4) 

(2-3) and (2-4) suggest that the formulae (2-1) and (2-2) are not effective in 

handling situations in which the population defective rate is one PPM. For 
readers reference, we summarize the probability that all the parts contained in 

the sample are not defective for various values of the sample size in Appendix 

1. As you can see Appendix 1, the probability that all the parts contained in 

the sample (of size 10,000) are not defective is 0.99004982879, which is close 

to 1. If the sample size is 1,000,000, the probability that all the parts contained 

in the sample are not defective becomes 0.36787925722. 

Wilson’s approximate formula   

Wilson [3,4] presents the approximate confidence interval for the event where 

the defects are relatively rare:  

100×(1-𝛼𝛼𝛼𝛼)% confidence interval for the unknown defective rate 𝑃𝑃𝑃𝑃 of a 

population is     

[�̃�𝑃𝑃𝑃 − 𝑧𝑧𝑧𝑧𝛼𝛼𝛼𝛼
2
√�̃�𝑃𝑃𝑃(1−�̃�𝑃𝑃𝑃)

𝑛𝑛𝑛𝑛+4  ,    �̃�𝑃𝑃𝑃 + 𝑧𝑧𝑧𝑧𝛼𝛼𝛼𝛼
2
√�̃�𝑃𝑃𝑃(1−�̃�𝑃𝑃𝑃)

𝑛𝑛𝑛𝑛+4  ],                           (2-5) 

where  �̃�𝑃𝑃𝑃 denotes the estimate of the fraction defective, and it satisfies  

                   �̃�𝑃𝑃𝑃 =  𝑥𝑥𝑥𝑥+2
𝑛𝑛𝑛𝑛+4,                                        (2-6) 

where 𝑛𝑛𝑛𝑛 denotes the sample size, and 𝑥𝑥𝑥𝑥 denotes the number of defects in the 

sample size. 

A limitation in Wilson’s formulae 

Suppose we choose the sample size 𝑛𝑛𝑛𝑛 = 40 since it satisfies the inequality 𝑛𝑛𝑛𝑛 >
30. If the defective rate of the lot is one PPM, the probability that all the 

parts contained in the sample of size 40 are not defective is equal to (1-

0.000001)40 = 0.99996000078, which is close to 1. Then, sample fraction 

defective is equal to 1-0.99996000078=0.00003999922, which is close to 0. If we 

plug 𝑥𝑥𝑥𝑥 = 0 and 𝑛𝑛𝑛𝑛 = 40, into the formula (2-6), we get the following result: 

the estimate of the fraction defective �̃�𝑃𝑃𝑃  satisfies  

                   �̃�𝑃𝑃𝑃 =  0+2
40+4 = 1

22 = 0.04545454545.                      (2-7)                                     

The estimate of the fraction defective �̃�𝑃𝑃𝑃 is 0.04545, which is much higher 

than true fraction defective (one PPM). Improved methods are needed to make 

more accurate, precise and reasonable estimate.  
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Duncan’s approximate formula  

Duncan [2] presents the approximate confidence interval and sample size 

formula using the Poisson approximation. Readers are referred to [2,3,5,6] and 

the references therein for other approximate methods.  

3. Main results  

In this section, we present main results. Readers are referred to Appendix 2 

for the proofs of main results. 

 
Assumptions 

Assume that the defective rate of a company’s lot is known to be one PPM. 

Suppose that one supplier claims that the defective rate of the lot provided is 

less than one PPM. To verify his/her claim, we consider the following 

hypotheses: 

H0: the defective rate of the lot = one PPM.  

H1: the defective rate of the lot < one PPM. 

Assume that the random sampling (i.e., the sampling with replacement) is 

used to verify the claim of the supplier. For convenience, we assume an infinite 

population. For this type of hypothesis testing, we present the effective sample 

size to draw a reliable conclusion in the following Lemma 1 and Theorem 1. 

Lemma 1. The effective sample size for estimating the unknown defective rate 

(fraction defective) of a population is greater than 1/ 𝑃𝑃𝑃𝑃, where 𝑃𝑃𝑃𝑃 denotes 

unknown defective rate of a population.  

Remark 1. See Appendix 2 for the proof of Lemma 1. As you can see Lemma 

1, we need an estimate of 𝑃𝑃𝑃𝑃. We can replace 𝑃𝑃𝑃𝑃 by the value (one PPM) specified 

in the null hypothesis H0 in the hypothesis testing procedure. We then have 

the following result:  

The effective sample size for estimating the unknown defective rate (fraction 

defective) of a population is greater than 1,000,000 (one million).                               

(3-1) 

Remark 2. When the population defective rate is one PPM, Lemma 1 is more 

reliable than the formula based on normal approximation to binomial and 

Wilson’s formula. However, there is still a room for improvement in Lemma 1. 

Although Lemma 1 is simple, easy to use, and produces more reliable results 

in handling the situations in which the population defect rate is one PPM than 

previous approaches, it does not use the information of desired level of accuracy 

and confidence coefficient. To get a more precise and reliable conclusion, we 

need the following Theorem 1.  

We define the following notation: 
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Let 𝑎𝑎𝑎𝑎 denotes desired level of accuracy in the estimation of an unknown 

defective rate.  

Remark 3. Note that 𝑎𝑎𝑎𝑎 is a term related to the length of the confidence interval 

of the unknown population defective rate. Under the assumption that the 

confidence coefficient is fixed, the shorter the length of the confidence interval, 

the higher the accuracy of the estimate [1]. 

Theorem 1.   

If 0 < 𝑎𝑎𝑎𝑎 ≤ 2 �̂�𝑃𝑃𝑃, 

The effective sample size 𝑛𝑛𝑛𝑛 ≥
4𝑧𝑧𝑧𝑧𝛼𝛼𝛼𝛼

2
2�̂�𝑃𝑃𝑃(1−�̂�𝑃𝑃𝑃)

𝑎𝑎𝑎𝑎2                    (3-2) 

Otherwise (i.e., 𝑎𝑎𝑎𝑎 > 2 �̂�𝑃𝑃𝑃), 

       The effective sample size 𝑛𝑛𝑛𝑛 ≥
𝑧𝑧𝑧𝑧𝛼𝛼𝛼𝛼

2
2�̂�𝑃𝑃𝑃(1−�̂�𝑃𝑃𝑃)

𝑎𝑎𝑎𝑎2                     (3-3) 

where the definitions of �̂�𝑃𝑃𝑃 and 𝑧𝑧𝑧𝑧𝛼𝛼𝛼𝛼
2
 are in (2-1).  

Remark 4. For the proof of Theorem 1, see Appendix 2. In Theorem 1,  𝑃𝑃𝑃𝑃 ̂= 

one PPM. Theorem 1 is more reliable than Lemma 1 in the sense that it 

contains the information of the desired level of accuracy (𝑎𝑎𝑎𝑎) and confidence 

coefficient in the estimation. As you can see Theorem 1, we need to specify the 

desired level of accuracy (𝑎𝑎𝑎𝑎) and the target error rate 𝛼𝛼𝛼𝛼 to use Theorem 1.  

Remark 5. When the population defect rate is one PPM, it is desirable that 

users are required to specify the desired level of accuracy (𝑎𝑎𝑎𝑎) in a fairly low 

level (e.g., one PPM or two PPM) to get an accurate and reasonable sample 

size. 

Assume that the desired level of accuracy is specified by two PPM. We also 

assume 95 % confidence interval (i.e., 𝑧𝑧𝑧𝑧𝛼𝛼𝛼𝛼
2
 = 1.96). For this case, the effective 

sample size can be calculated using (3-2): 

The effective sample size 𝑛𝑛𝑛𝑛 ≥ 3,841,596.1584                 (3-4) 

That is, minimum sample size is 3,841,596 to obtain a reliable conclusion.  

We present numerical sample sizes based on our formulae by varying the 

desired level of accuracy and confidence coefficient in the following Table 1: 

Table 1: The effective sample size for several different values of desired value of accuracy 
(𝒂𝒂𝒂𝒂) and confidence level 

𝑎𝑎𝑎𝑎 Confidence level = 90% Confidence level =95% Confidence level  = 99% 

1 ppm 10,824,089 15,366,385 26,543,078 

⋮ ⋮ ⋮ ⋮ 
2 ppm 2,706,022 3,841,596 6,635,769 

⋮ ⋮ ⋮ ⋮ 
3 ppm 300,669 426,844 737,308 

⋮ ⋮ ⋮ ⋮ 
10 ppm 108,241 153,664 265,431 
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4. Conclusion and suggestion  

In this paper, we examine the effective sample size to obtain a reliable 

conclusion when the population defect rate is one part per million (PPM). We 

first summarize previous formulae for sample size and present their limitations 

in handling situations in which the defective rate is one PPM. We then present 

two formulae for sample size that are effective in handling situations in which 

the population defect rate is one PPM. Based on our formulae, we present the 

sample size numerically by varying the desired level of accuracy and confidence 

coefficient.  

As you can see (3-1) and (3-4), the effective sample size is more than 

1,000,000 (one million) or more than 3,841,596 to obtain a reliable conclusion 

in situations in which the population defective rate is one PPM. Our numerical 

results suggest that the number of sample at the full inspection level is required 

to obtain a reliable conclusion. For products that damage people’s lives in the 

event of failure, our results based on highly accurate estimates could be used 

as a reference in decision making. In practice, increasing the accuracy obtained 

by reducing the length of the confidence interval often does not compensate 

for the increase in the cost of sampling and non-sampling errors. For this kind 

of problems, it is suggested that we focus on the process capability index which 

is a statistical tool to measure the ability of a process to produce output within 

specification limits, and control the defect rate of a population.  
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Appendix 1. The probability that all the parts contained in the 
sample are not defective for several different sample sizes 

Assume that the unknown defective rate of a company’s lot is known to be one 

PPM. Suppose that the random sampling (i.e., the sampling with replacement) 

is used to estimate the unknown defective rate 𝑃𝑃𝑃𝑃 of a population. For 

convenience, we assume an infinite population.  

Let W denotes the probability that all the parts contained in the sample 

are not defective.   

We provide W for several different sample sizes in the following tables: 

Table A. The effect of the sample size on the probability that all the parts 

contained in the sample are not defective 

Sample size W 

40 0.99996000078 

50 0.99995000122 

⋮ ⋮ 
100 0.99990000495 

200 0.99980001989 

⋮ ⋮ 
1000 0.99900049933 

10,000 0.99004982879 

⋮ ⋮ 
100,000 0.90483737279 

200,000 0.8187306712 

⋮ ⋮ 
1,000,000 0.36787925722 

2,000,000 0.13533514789 

Remark A-1. We use double precision in presenting the results in Table A.  

Appendix 2. Proofs of Lemma 1 and Theorem 1 

Proof of Lemma 1. 

Suppose that the null hypothesis (the defective rate of the lot = one PPM) is 

true. If we recall the definition of sampling with replacement, the number of 

independent inspections to get the result of first failure follows geometric 

distribution with unknown parameter (probability of failure) given by one 

PPM. The mean of the geometric distribution is simply the reciprocal of the 

unknown parameter (probability of failure), and it is given by one million. 

Therefore, it is reasonable to assume that the effective sample size for 
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9Note oN the effective sample size wheN populatioN...

estimating the unknown defective rate of a population is greater than the mean 

of the geometric distribution.  

 
Proof of Theorem 1. 

Using (2-1), it can be seen that the length of 100×(1- 𝛼𝛼𝛼𝛼)% confidence interval 

(CI) for the unknown defective rate 𝑃𝑃𝑃𝑃 of a population is  

If 0 < 𝑎𝑎𝑎𝑎 ≤ 2 �̂�𝑃𝑃𝑃,  

   𝑇𝑇𝑇𝑇ℎ𝑒𝑒𝑒𝑒 𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  2𝑧𝑧𝑧𝑧𝛼𝛼𝛼𝛼
2

√�̂�𝑃𝑃𝑃(1 − �̂�𝑃𝑃𝑃)
𝑙𝑙𝑙𝑙  

Otherwise (i.e., 𝑎𝑎𝑎𝑎 > 2 �̂�𝑃𝑃𝑃), 

𝑇𝑇𝑇𝑇ℎ𝑒𝑒𝑒𝑒 𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  𝑧𝑧𝑧𝑧𝛼𝛼𝛼𝛼
2

√�̂�𝑃𝑃𝑃(1 − �̂�𝑃𝑃𝑃)
𝑙𝑙𝑙𝑙  

Remark A-1. In the above inequality,  𝑃𝑃𝑃𝑃 ̂= 0.000001 (one PPM). If 𝑎𝑎𝑎𝑎 > 2 �̂�𝑃𝑃𝑃, the 

lower bound of the confidence interval becomes negative. We replace the 

negative lower bound by 0. Then it can be seen that the length of the 

confidence interval become  𝑧𝑧𝑧𝑧𝛼𝛼𝛼𝛼
2
√�̂�𝑃𝑃𝑃(1−�̂�𝑃𝑃𝑃)

𝑛𝑛𝑛𝑛 . 
We want to get the sample size so that it satisfies the following inequality: 

If 0 < 𝑎𝑎𝑎𝑎 ≤ 2 �̂�𝑃𝑃𝑃,  

2𝑧𝑧𝑧𝑧𝛼𝛼𝛼𝛼
2

√�̂�𝑃𝑃𝑃(1 − �̂�𝑃𝑃𝑃)
𝑙𝑙𝑙𝑙 ≤ 𝑎𝑎𝑎𝑎 

Otherwise (i.e., 𝑎𝑎𝑎𝑎 > 2 �̂�𝑃𝑃𝑃), 

 𝑧𝑧𝑧𝑧𝛼𝛼𝛼𝛼
2

√�̂�𝑃𝑃𝑃(1 − �̂�𝑃𝑃𝑃)
𝑙𝑙𝑙𝑙 ≤ 𝑎𝑎𝑎𝑎 

Squaring both sides of the equation, we get the following inequality:  

If 0 < 𝑎𝑎𝑎𝑎 ≤ 2 �̂�𝑃𝑃𝑃,  

4𝑧𝑧𝑧𝑧𝛼𝛼𝛼𝛼
2
2 �̂�𝑃𝑃𝑃(1 − �̂�𝑃𝑃𝑃)

𝑙𝑙𝑙𝑙 ≤ 𝑎𝑎𝑎𝑎2 

Otherwise (i.e., 𝑎𝑎𝑎𝑎 > 2 �̂�𝑃𝑃𝑃), 
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𝑧𝑧𝑧𝑧𝛼𝛼𝛼𝛼
2
2 �̂�𝑃𝑃𝑃(1 − �̂�𝑃𝑃𝑃)

𝑛𝑛𝑛𝑛 ≤ 𝑎𝑎𝑎𝑎2 

from which we get the following inequality: 

 

If 0 < 𝑎𝑎𝑎𝑎 ≤ 2 �̂�𝑃𝑃𝑃,  

       The effective sample size 𝑛𝑛𝑛𝑛 ≥
4𝑧𝑧𝑧𝑧𝛼𝛼𝛼𝛼

2
2�̂�𝑃𝑃𝑃(1−�̂�𝑃𝑃𝑃)

𝑎𝑎𝑎𝑎2                           

Otherwise (i.e., 𝑎𝑎𝑎𝑎 > 2 �̂�𝑃𝑃𝑃), 

       The effective sample size 𝑛𝑛𝑛𝑛 ≥
𝑧𝑧𝑧𝑧𝛼𝛼𝛼𝛼

2
2�̂�𝑃𝑃𝑃(1−�̂�𝑃𝑃𝑃)

𝑎𝑎𝑎𝑎2                            

This completes the proof.  
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