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Introduction

There are specialized cells in most living creatures
called neurons which are specific to generate
signals, to transmit sensory data and to exert
control of movement and cognition through
mechanisms we don’t fully understand. A neuron
is an example of what is called an excitable cell
which is a membrane full of many voltage
gated sodium and potassium channels (Segel
et al., 2013).

Qualitative and quantitative description of
the mechanism’s effect involved in transmission
of the sensory data by nerves has been elucidated
very early in a paper on mathematical model
written by Hodgkin and Huxley (Hodgkin et al.

1952), inspired by the electronic aspect of the
propagating impulse along the axon of the nerve
cell, discovered by L. Galvani and Volta in 1894
and in 1900 respectively. Since, it has assumed
that the propagation of the action potential
through the neuron was a consequence of the
circulation of ions through cell membranes
(Hodgkin, et al., 1949). A set of differential
equations has magnified thoroughly the impact
of the ion channels in change of the conductance
of the membrane, causing a sudden increase in
voltage across the membrane.

It is reported that the membrane of the neural
cell is composed of two kinds of molecules: Lipids
and proteins. The membrane has a structure of a
tiny layer of lipids folded, inside of which proteins
are embedded. This membrane is responsible of
the selective permeability and transport of Na+,
K+, Cl- and Ca2+ ions through the membrane from
outside or inside the neural cell (Kandel, et al.,
2000). An important number of proteins in the
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membrane are also called ion channels because
they are in charge of the transport of ions.

The channel proteins disseminated in the
outer cell membrane have a likely structure of
pores through which flow sodium ions inward
and potassium ions outward. There are many ions
current taking place in a neural cell. However,
Hodgkin – Huxley model highlights three kinds
of currents of ions responsible of the dynamics
effect of the neuronal cells these are sodium
current, potassium current and leak current. The
last one is due to the effect of other ions among
which abound Cl- ions (Appali et al., 2014).

Initially, we assume, under certain
circumstances, the rest potential across the
membrane can be stimulated to cause a rapid rise
in equilibrium potential of the cell, followed by a
sudden drop below the equilibrium voltage and
then terminated by a slow increase back up to rest
potential (Noble, et al., 2012). The response curve
thus generated is called an action potential and it
is a fundamental characteristic of excitable cells.

Speaking of which, the true cause of the action
potential in neuron is closely connected to the
opening and closing of the ion channel proteins
(or gates). The action potential starts when the
sodium channels open and switch on a high
inward flow of sodium into cell (Keynes, et al.,
2001); this raises a depolarization of the
membrane which on the turn increases the action
potential up to its peak. Later on, the potassium
channels also open and allow the potassium ions
to flow outside of the cell (Hill, 1992). This current
of potassium ions decreases the depolarization of
the cell which results in the decrease of the action
potential below the normal resting potential. The
process ends when sodium and potassium
channels remained closed.

The Underlying dynamics

Our focus is on dynamic processes – nice little
phrase to describe the constant movement of ions
inside and outside of the membrane. We represent
dynamics processes as equations of chemical
kinetics and diffusion, membrane as electric
circuits and molecule as charges, dipoles and
dielectrics. We introduce a voltage clamp to
measure the action potential locally across the

membrane. As the title suggests the impetus is
primarily on the modeling of the excitation effects
across the cell! The standard Hodgkin-Huxley
model of an excitatory neuron consists of the total
membrane current which can be obtained from
Ohm’s law. It is convenient to measure the
membrane voltage, potassium current, sodium
current and the leakage current carried by other
ions moving passively through the membrane.
The equation is derived by modeling the
potassium, sodium and leakage currents using a
simple electrical circuit model of the membrane.
Assume a gate in the membrane as having an
intrinsic resistance and the cell membrane itself
as having an intrinsic capacitance. The driving
electromotive force (EMF) is the difference
between the ion equilibrium potential and the
voltage across the membrane itself. The next step
is to measure the voltage across the space. The
voltage is assumed to be both time and space
dependent. In the assumed model, the membrane
is considered as a parallel circuit with four main
branches of current:  sodium, potassium,
membrane capacitance and leakage current. We
endeavor to link the inside current with the
outside current through our model. We run a set
of simulation experiments describing behavioral
patterns in sodium and potassium conductances
against time. A general inference about the cell
behavior under the assumptions of our model is
then deduced. The model is built around the
following standard set up of cable model:

1. The cell membrane is a cylindrical
boundary separating two conductors of
current called the intracellular and
extracellular solutions. We assume these
solutions are homogeneous and obey
Ohm’s law;

2. All electrical variables have cylindrical
symmetry which means they are
independent of the position variable;

3. A circuit theory description of currents
and voltages would suffice;

4. Inner and outer currents are axial or
longitudinal only and membrane currents
are radial;

5. At any position along the cylinder the
inner and outer conductors are equi-
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potential. Hence, radial potential in the
outer and inner are constant.

The important parameters are the rest value
of the membrane potential, rest value of the
membrane current per length density, rest value
of the inner current, rest value of the outer current,
rest value of the inner voltage, rest value of the
outer voltage, resistance of the inner fluid of the
cable, resistance of the outer fluid surrounding
the cable, membrane conductance per unit length
and membrane capacitance per unit length.

membrane of width z� .  According to our
standard cable model assumptions the membrane
has a constant resistance and capacitance. So, in
the circuit model, one branch contains a capacitor
and the other, the conductance element. Let cm
denote the membrane capacitance density per
unit length measured in farad/cm. The value of
capacitance should be cm�z since the box is �z
wide. Similarly, we let gm be the conductance per

unit length measured in 
1

Ohm cm�
 for the

membrane. The value of conductance for the box
element is thus gm�z.

Figure 2 describes the new membrane model.
This is a resistance – capacitance parallel circuit
and it is called an RC membrane model.

Figure 1: Equivalent electrical network

Derivation of the Model

The Basic Hodgkin – Huxley model

The standard Hodgkin-Huxley model of an
excitatory neuron satisfies the following partial
differential Equation:

� �
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Where
• 0

mV  is the rest value of the membrane
potential;

• o
mK  is the rest value of the membrane current

per length density;

• o
eK  is the rest value of the externally applied

current per length density;
• ri is the resistance of the inner fluid of the cable;
• ro is the resistance of the outer fluid

surrounding the cable.
We will create a parallel circuit analog of the

above block diagram where the box is a chunk of

Figure 2: The RC membrane model

In Figure 2, the incoming current is � �,mK z t z�

and the rest voltage for the membrane as a battery
of value o

mV . The membrane current, Km, satisfies
Equation (2).
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V
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t

�
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If we interpret the equation in terms of
membrane current densities, it looks like

m c ionK K K� � (3)

Where Km is the membrane current density, Kc
is the current through the capacitance element
and Kion is the current flowing through the side of
the circuit that is modeled by the conductance
term, gm. This model satisfies the following
equations:



136 Journal of Proteins and Proteomics

m
c m

V
K c

t

�
�

� (4)
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However, there are practical difficulties in
implementing this model and coming up with
subsequent inferences. It is imperative to know
the relationship between different membrane
activities and the membrane voltage by adding
models of ion flow controlled by gates in the
membranes. We are going to study the diffusion
processes inside the cell that contribute to ion flow
across the membrane. Our work will be based on
the Hodgkin and Huxley model. Initially, the
membrane model focuses on potassium, sodium
and leakage current. The leakage current is
thought of as an all purpose current. The gate in
the membrane is modeled to have an intrinsic
resistance and the cell membrane to have an
intrinsic capacitance as shown in Fig. 3.

that other ions move across membrane due to
pumps, other gates and so forth. We will
temporarily model this additional ion current as
a leakage current with its own resistance. In the
standard Hodgkin-Huxley model of an excitatory
neuron the new equation for the total membrane
current is KM and it is obtained from Ohm’s law:
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The new equation for the membrane voltage
is now
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This can be simplified in the form of the
following Equation:
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The voltage clamped protocol

Under certain experimental conditions, we can
think of the membrane voltage to be independent
of space. That is

2

2
0mV

z

�
�

�

Equation (8) assumes to the form as follows:

0m o
m K Na L e

i o

dV r
c K K K K

dt r r
� � � � �

� (9)

Since, in the voltage clamped protocol the
membrane voltage is assumed to depend only on
time variable t, partial derivatives are replaced
with a normal derivative. The above equation can
also be interpreted in terms of capacitance, cm, and
currents, IK, INa, IL and an external type current Ie
(since cm is capacitance par unit length). So, the

Figure 3: Membrane and gate circuit model

Thus, our new model consists of multiple
branches – one for each ion flow. There are
potassium, Kk current, sodium, KNa current and
leakage KL current. The leakage current takes care
of all other sources of ion flow across the
membrane and which are not explained by the
model. For example, ion pumps; gates for other
ions such as Calcium, Chlorine etc are captured
by this definition of leakage current. The leakage
current is assumed to nullify any excitable neural
activity at equilibrium. Here we show an
idealized cell with a small portion of the
membrane blown up into an idealized circuit. We
see a small piece of the lipid membrane with an
inserted gate. We think of the gate as having some
intrinsic resistance and capacitance. Now for our
simple Hodgkin-Huxley model here, we want to
model a sodium and potassium gate as the cell
capacitance. So we will have a resistance for both
the sodium and potassium. In addition, we know
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new equation, in terms of capacitance and
sodium, potassium and leakage currents should
be written as follows:

0m o
m K Na L e

i o

dV r
c I I I I

dt r r
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� (10)

Finally, if we label as external current, IE, the
term

o
E e

i o

r
I I

r r
�

� ,

The equation to be solved under the voltage
clamped protocol becomes is:
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m

dV
I I I I

dt c
� � � � (11)

The Hodgkin – Huxley gate model

In our idealized circuit model, the driving
electromotive force or driving emf is the
difference between the ion equilibrium potential
and the voltage across the membrane itself. The
equilibrium potential of each ion is computed by
using Nernst equation. Let Ec be the equilibrium
potential due to ion c  and Vm be the membrane
potential. The driving force is Vc–Vm.

Figure 4 summarizes the above proposition.
The parallel circuit model with a branch for the
sodium and potassium ion, a branch for the
leakage current and a branch for the membrane
capacitance describes the idea.

The charge q across a capacitor is q = CE,
where C is the capacitance and E is the voltage
across the capacitor. Hence, if the capacitance C

is a constant, the current flowing through the
capacitor is given by the rate of change of the
charge with the time.

dq dE
C

dt dt
�

If the voltage E was also space dependent,
then the normal derivative becomes a partial
derivative as E is now a function of both time and
space variables. The capacitive current would be

dq E
C

dt t

�
�

�

Ohm’s law tell us that voltage is current times
resistance; hence for each ion c,

c c cV I R�

where we label the voltage, current and resistance
due to this ion with the subscript c. This means

1
c c

c

I V
R

�

c c cI G V�

Where the leakage battery voltage, Gc is the
conductance of ion c. This is a general scheme of
modeling all the ionic currents using a
conductance equation of the form above. The
potassium and sodium conductance’s are
nonlinear functions of the membrane voltage V
and time t. This implies that the amount of current
that flows through the membrane for these ions
is dependent on the voltage differential across the
membrane which is also time dependent. The
general functional form for an ion c can thus be
written as

� � � �, ( ) ( )c c cI G V t V t E t� � (12)

The force driving, V–Ec, is the difference
between the voltage across the membrane and the
equilibrium value for the specific ion, Ec. The ion
battery voltage Ec itself might also change in time.
Hence, the driving force can also be time
dependent. The conductance is modeled as the
product of an activation m, and an inactivation h,
variable that are nonlinear. The activation and
inactivation are functions of V and t also. The
conductance functional now looks like

� � � � � �0, , ,p p
cG V t G m V t h V t� (13)Figure 4: The simple Hodgkin – Huxley membrane circuit

model
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where suitable values of p and q are found to
match known data for a given ion conductance.
The leakage current, IL, is expressed as,

� �( )L L LI g V t E� � (14)

Where the leakage battery voltage, EL, and the
conductance gL are constants specific to data. Let
gK, gNa and gL respectively denote the potassium,
sodium and leakage ion conductance’s per length.

� �K K KI g V E� � (15)

� �Na Na NaI g V E� � (16)

� �L L LI g V E� � (17)

Rewriting the membrane voltage equation, we
obtain:
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Activation and inactivation variables

The voltage dependence of the activation and
inactivation variables has been fitted from data.
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Letting
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The rate equation becomes a first order
ordinary differential equation:
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The solution is:
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The Hodgkin – Huxley sodium and potassium
model

According to Hodgkin and Huxley the sodium
and potassium gates can be modeled as

3( , ) ( , ) ( , )Na
Na og V t g m V t h V t� (27)

4( , ) ( , )K
K og V t g n V t� (28)

where the activation variables, m and n, and the
inactivation variable satisfy first order kinetics as
discussed. Hence, if the parameters �m and m� and
so forth were constants,
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with parameters defined as:
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However, every coefficient �� and � is a
function of voltage. These were determined from
data fits as:
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These data fits were obtained at a certain
temperature and all the other constants need to
have assumed values as well. Those are given in
the units below:

Voltage mV milli volts 10-3 Volts
Current na nano amps 10-9 Amps
Time ms milli second 10-3 Seconds
Concentration mM milli moles 10-3 moles
Conductance µS micro Siemens 10-6 ohms-1

Capacitance nF nano Farads 10-9 Farades

The approximate model assumes the
differential form:
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At equilibrium, there is no current across the
membrane. Hence, the sodium and potassium
currents are zero and the activation and
inactivation variables are at their steady state
values which would be m�, h� and n� computed
at the equilibrium membrane potential which is
denoted by V0.

The Hodgkin – Huxley model solution under the
voltage clamp protocol

The solution to the equation 11,

� �1m
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dV
I I I I
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Using the equations 15, 16 and 17 yield:
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And by using equations (27) and (28) the
above reduces to
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Which has to be solved under the specification
of activation / inactivation variables as it is the
way by which the cell dynamics is encoded.

We assume a solution to the model in a four
dimensional vector form y depending on four
independent variables V, m, h and n written as:
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The form which allows expressing the model
in form of a system of ordinary differential
equations of the form:
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Where f is the Hodgkin - Huxley dynamics
force depending on the time t and y defined by
equation (50). For this reason, f is expressed in
components as follows:
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with IM an the external current to apply to the
system.

Introducing the components of the vector y
as it is given by the equation (50), we obtain:
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A scheme to solve the dynamics

The sequential multistep algorithm comprises the
following parts:

1) Computation the activation and inactivation
variable.

Given the time t and the voltage V, different
values of the activation and inactivation variables

, , , ,m m h h n� � � � �  and n�  are computed using the
equations (38) up to (43).

2) Computation of the steady state activation and
inactivation variables.

The steady state values of the activation and
inactivation variables are based on the equations
(32) to (37)

3) Computation of the sodium and potassium
potentials

These potentials are evaluated by using
Nernst’s equation and the standard
concentrations are temperature dependent. At 6.3
degrees Celsius they are approximately:

� �0 491.0Na �

� � 50.0
i

Na �

� �0 20.11K �

� � 400.0
i

K �

4) Computation of the sodium and potassium
conductances.

These values are obtained from the equations (27)
and (28), the model assume the values 0

Nag  and

0
Kg  not time dependent and given by:

0 120.0Nag �

0 36.0Kg �

5) Computation of the ionic currents

The computations are performed using the
equations (15), (16) and (17) with data on gL and
EL are given by: gL = 0.3 and EL = –49.0

6) Computation of the total current

The total current TI  is obtained from the equation

T Na K LI I I I� � � (52)

7) Computation of the dynamics of our system at time
t and voltage V:

M T

M

I IdV

dt c
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� (53)
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m mdm
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h

h hdh

dt �
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n

n ndn

dt �
� �� (56)

where cM = 1.0 and IM being an external current
supplied to the system.

Numerical solver for H-H excitable cell models

To guarantee the accuracy in the solution of the
IVP of the system (51), we shall use a pair of
explicit Runge – Kutta methods of fourth and fifth
order, implemented by Fehlberge denoted RKF45.
To apply this numerical method, the solution
domain is subdivided into a collection of discrete
points and by RKF45 an approximate solution in
vector form yn is generated. The process starts
with the initial data y0 at time t0 = 0 and use an
estimation formula to generate a new
approximation solution yi at time

, 1, 2, ,it ih i n� � �  for a suitable step size h.

At each step i, two different approximate
solutions are generated by RK4 and RK5 and then
compared. The approximation is accepted as long
as the difference between the two approximate
solutions met some specified accuracy, otherwise
the step size h is reduced. But, if the two
approximate answers agree to more significant
digits than required, the step size is increased.
Numerical methods being based on
approximation, it is very important to denote the
following:

1. The usual way to approximate the
function f is to use Taylor’s series
expansion of f around the iteration point
at each iteration. This truncation gives rise
to an error as expected. The error term can
be large or small depending on how amny
terms used in the expansion. If hn denotes
the difference between n+1th and nth time
step, then a fourth order method gives rise
to an error of the form Ch5 for some
constant C. This means that taking a step

size of magnitude 
2
nh

 will decrease the

error by a factor of 25 = 32.

2. For a 5th order Runge-Kutta method, to
have a local truncation error of order 5, it
requires to carry 4 function evaluations;

this error is purely local. This is why the
global error can significantly grow as long
as the computation is performed over a
very large time step. So, the numerical
solution to the ordinary differential
equation can be 5th order accurate locally
but still the issue of the global
convergence remains to be solved.

3. Round – off error always occurs. It is for
this reason exact precision can never be
achieved on computer system.

4. The standard assumption about the model
certainly does not match the exact
biological phenomena because of the
truncation and round-off errors.

Typical numerical algorithm opted for the
solution to the mathematical model is of Runge-
Kutta-fehlberg 45 (RKF45) characterized by the
following specifications:

1. Four functions evaluations are required to
perform the fourth order Runge-Kutta
method which generates a local error
proportional to h5;

2. One more function evaluation is necessary
to achieve the Runge-Kutta method of
order 5. The local error generated by this
method is obvious of order h6.

Note that this algorithm uses six function
evaluations per time step which really need
considerable amount of memory. Any change in
the step size h results in a return back to the
computation of all solutions. Using this technique
for the simulation of the model based on a
complex biological system, hampers the computer
efficiency.

Calculation of initial conditions

The initial conditions for the activation and
inactivation variables for this model should be
calculated carefully. When the excitable nerve cell
is at equilibrium, with no external current
applied, there is no net current flow across the
membrane. At this point, the voltage across the
membrane should be the applied voltage EM. This
is why IT = 0

That yields the following equation:
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0Na K LI I I� � � (57)

� �� � � �� �3 4

M NA M KNA Kg E E m h g E E n� � �� � �

� � 0M LLg E E� � � (58)

The two parameters, gL and EL are used to
compute the leakage ionic currents. Assuming
that there is no external pumping of current and
knowing there should be no activity at
equilibrium in the absence of an external current.
Finally, endeavor to solve to the leakage
parameters in terms of the rest of the variables.

Thus, 
Lg  and EK must be chosen for the solution

to the leakage conductance.

Compute the Sodium equilibrium current:

� �(1) (2) (2) (2) (3)NA NANAI g y E y y y y� � � � � � �

Compute the Potassium equilibrium current:

� �(1) (4) (4) (4) (4)K KKI g y E y y y y� � � � � � �

Compute the leakage conductance:

� �(1)L L LI g y E� � � ;

Compute initial variables:

(1) Ry V�

(2) NAy m��

(3) NAy h��

(4) Ky m��

Generate several conductance inside the
function itself and setup a parametric study. The
graphics is managed within the main simulation
code.

g-NA (1) =0;
gnanonminal =120.0;
gnastart =60.0;
gnafreq =9;
gnaloopsize =10;
gnadelta =gnanominal /gnafreq;
g-NA-bar (1)= gnastart;

I -NA(1)=g-NA-bar(1)*(V-R-E-NA)*m-NA-
infinity*m-NA-infinity *m-NA-infinity*h-NA-
infinity;
h=gnadelta;

for i=1: gnaloopsize-1
g-NA-bar(i+1)=g-NA-bar(i)+h;
I-NA(i+1)=g-NA-bar(i+1)*( V-R-E-NA)* m-

NA-infinity*m-NA-infinity *m-NA-infinity*h-
NA-infinity;
End
g-K(1)= 0;
gknominal=36.0;
gkstart = 18.0;
gkfreq = 9;
gkloopsize = 10;
gkdelta = gknominal / gkfreq;
g-K-bar (1)= gkstart;
I-K(1)=g-K-bar(1)*(V-R-E-K)*m-K-infinity*m-K-
infinity * m-K-infinity*m-K-infinity;
end

for i= 1: gnaloopsize;
for j=1: gkloopsize;

numerator =-I-NA(i)-I-K(j);
denominator V-R-E-L;
g-L(i, j)= -(I-NA(i) + I-K(j))/(V-R – E-L);

end
end

end

For Sodium conductance calculations, the
range is set from 60 to 180 with the nominal value
being at 120. Then we set up an array having
dimensions of the loop- size and we calculate
Sodium conductance and Sodium ionic current
using the equations. The step-size of our
simulation run equals the nominal value of
Sodium conductance divided by the frequency of
the run which equals the loopsize-1. We thus
generate 100 different values of Sodium
conductance and Sodium ionic currents.

For Potassium conductance calculations, the
range is set from 18 to 54 with the nominal value
being at 36. Then we set up an array having
dimensions of the loop-size and we calculate
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Potassium conductance and Potassium ionic
current using equations. The step-size of our
simulation run equals the nominal value of
Potassium conductance divided by the frequency
of the run which equals the loopsize-1. We thus
generate 100 different values of Potassium
conductance and Potassium ionic currents.

Once the values of Sodium and Potassium
conductance are computed, leakage conductance
values are computed using the equation
mentioned earlier and are stored in an array
having the size of our simulation. We obtain 100
different values and they are all reasonably low.

Setting up the parametric study

In rest calculation: parameters are
g-leak-bar = 0.0306363.
Initial activation and inactivation are

m- NA(0) = 0.0258481
h-NA(0) = 0.777813
m-K1(0) = 0.232349
E-NA      =55.54
E-K       = -72.7004
E-M       = -65.9
E-L       = -49
g-leak-bar  = 0.0306363
//we use the nominal leakage conductance
//of 0.0306, then recalculate the leakage
conductance
//with a call to the rest function.
//the other numbers are the battery voltages.
//we then recalculate the leakage conductance
//to be
g-leak-bar = 0.0153182
//we find the initial values for the state vector
Initial activation and inactivations are
m-NA(0) = 0.0258481

h-NA(0) = 0.777813
m-K1(0) = 0.232349
//this gives us the initial state
yinit = -65.9 0.258481 0.777813 0.232349
//we now print out some of simulation results
Tspan= 25

NUMBER-PLOT-POINTS= 1000

The rest of the parameters are set inside the rest.m
function

Options=odeset (’RelTol’, 1.0e-6)
T = 6.3000
E-NA= 54.9850
E-K = -71.9739
m-NA-infinity = 0.0258
h-NA-infinity = 0.7778
m-K-infinity = 0.2323

entery y0: [-65.9, 0.0258481, 0.777813, 0.232349]

Leakage conductance =

Columns 1 through 5

0.0131 0.0173 0.0215 0.0257 0.0298

0.0118 0.0160 0.0202 0.0244 0.0286

0.0105 0.0147 0.0189 0.0231 0.0273

0.0092 0.0134 0.0176 0.0218 0.0260

0.0080 0.0122 0.0163 0.0205 0.0247

0.0067 0.0109 0.0151 0.0193 0.0234

0.0054 0.0096 0.0138 0.0180 0.0222

0.0041 0.0083 0.0125 0.0167 0.0209

0.0028 0.0070 0.0112 0.0154 0.0192

0.0016 0.0057 0.0099 0.0141 0.0183

Columns 6 through 10

0.0340 0.0382 0.0424 0.0466 0.0508

0.0328 0.0369 0.0411 0.0453 0.0495

0.0315 0.0357 0.0399 0.0440 0.0482

0.0302 0.0344 0.0386 0.0428 0.0470

0.0289 0.0331 0.0373 0.0415 0.0457

0.0276 0.0318 0.0360 0.0402 0.0444

0.0264 0.0305 0.0347 0.0389 0.0431

0.0251 0.0293 0.0335 0.0376 0.0418

0.0238 0.0280 0.0322 0.0364 0.0405

0.0225 0.0267 0.0309 0.0351 0.0393

// Different values of leakage conductance are
obtained

// from different choice of maxim sodium and
potassium

// conductance such that at equilibrium potential
there is no

// flow of current across the membrane.
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Setting up a parametric study which
computes 100 different data runs for different
values of the maximum sodium and potassium
conductance. For each of these last values, a new
value of the leakage conductance is computed to
ensure that there will be no current across the
membrane at equilibrium potential. These values
are listed above in the array. All of these are
handled by the rest.m code. The graphical results
are organized in a series of arrays. The injection
current is simulated in the simple HH.m code.

Matlab session

//set the path as U: /working directory/working
folder

//set variables

% voltage mV

% current na

% time ms

% concentration mM

% conductance micro Siemens

% capacitance nF

% Rydberg’s Constant

R = 8.31;

% Kelvin Temperature; use 6.3 degrees celcius

T = 6.3;

% Faraday’s Constant

F = 9.649e+4;

% Reference Voltage

V-R = -65.9;

% Leakage Voltage

E-L = -49.0;

% Sodium Parameters; inside and outside concentrations

%

NA-0 = 491.0;

NA-I = 50.0;

E-NA = Nernst(1 , T , NA-I , NA-0 )

%
% Potassium Parameters; inside and outside concentrations
%

K-0 = 20.11;
K-1 = 400.0;
E-K = Nernst(1, T , K-I , K-0);

//run the simulation
Run the main simulation code rest .m……
% y1 = input (’enter y0: ’);
% y0=y1;
% enter y0: [-65.9, 0.0258481, 0.777813, 0.232349]; correct
values of
% Reference Voltage , m-NA-infinity, g-L and m-K infinity.

Runtime results: Discussion

Figure 5 shows that voltage dynamics are being
nicely clustered in time steps.

The action potentials were generated for
potassium and sodium conductance in the ranges
from 60 to 180 and 18 to 54, respectively. In the
first 10 times steps between 0 to 5 milliseconds,
the voltage response of the cell model grows and
then stops down. Further, between 5 to 15
milliseconds, the response kind of “flattens out”.

In figure 7, we observe the trend of the sodium
currents with to tspan which is 25 milliseconds.
Due to insufficient cell membrane depolarization
sodium conductance parameter does not generate
response within the time frame of 10 to 15
milliseconds.

Figure 6 illustrates the leakage conductance
and the steadily increasing pattern that is
generated.

In figure 8, we see the trend of the sodium
currents with respect to tspan which is 25
milliseconds. Due to insufficient cell membrane
depolarization sodium conductance parameter
does not generate response within the time frame
of 10 to 15 milliseconds.

The above descriptions have a very important
underlying lesson. We have to be careful about
the leakage values. In all of the above described
pictures a secondary pulse is observed which is
due to the fact that leakage values are not set right
i.e.; the way leakage conductance was computed
was wrong. Setting things straight, we observe
the expected pattern- the insufficient cell
membrane depolarization effect. The response
dies out after a certain amount of time.

Figure 9, Figure 10, Figure 11, Figure 12, all
bear testimony to this simple but crucial fact of
setting leakage values right. We don’t see any
secondary pulse here because the low values of
the leakage conductance don’t allow them to
trigger.

The cell dynamics inside of the neuron results
from the rise in differential potential between the
two sides of the lipid membranes and current
starts to flow through as it is happening in
electrical circuit. This arose current, resultant of
the three types of currents mentioned in this
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paper (Na+, K+ and Cl-) is voltage-time dependent
and it is largely regulated by the conditions of
the state in which the lipids and ion channel
proteins are. The concentration in Na+ ,in K+ and
in Cl- ions changes according to the nature of the
ion within time for a specific a voltage differential
across the membrane. This model brings forth an
interaction relationship between lipid membranes
and protein membranes in case of transmission
of information to the brain via nerves.

Figure 5: Voltage dynamics with time; faulty values of leakage

Figure 6: Sodium conductance with time; faulty values of
leakage

Figure7: Leakage conductance variance with time; faulty
values of leakage

Figure 8: Potassium conductance variance with time; faulty
values of leakage

Figure 9: Voltage dynamics with time
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Figure 10: Sodium Conductance variance with time

Figure 12: Potassium conductance variance with time

Figure 11: Leakage conductance variance with time

References
Appali, R., Rienen, U. V. and Heimburg, T., (2012).

Acomparison of the Hodgkin – Huxley Model and the
Soliton Theory for the Action Potential in Nerves.
Advances in Planar Lipid Bilayers and Liposomes 16,
275 – 299.

Chan, X.J, Cox, C.L, Rienzel, J., and Sherman, S.M., (1999)
Current clamp and modeling studies of low-threshold
calcium spikes in cells of the cat’s lateral geniculate
nucleus. J. Neurophysiol. 81, 2360.

Ermentrout, G.B., and Terman, D.H., (2010). The Hodgkin
– Huxley Equations. Mathematical Foundations of
Neuroscience, Interdisciplinary Applied Mathematics
35, 1 – 28.

Hill, B., (1992). Ionic Channels of Excitable Membranes,
Sinauer Associates Inc.

Hodgkin A. L. and Huxley A.F, (1952). A quantitative
description of membrane current and its application
to conduction and excitation in nerve. J Physiol 117,
500 -544)

Hodgkin, A. L. and Katz, B., (1949). The effect of sodium
ions on the electrical activity of the giant axon of the
squid, J Physiol. 108, 37 – 77.

Johnston, D and S. Miao – Sin, (1995). Foundations of
Cellular Neurophysiology, MIT Press.

Kandel, E.R, Schwartz, J.H, and Jessell, TM, eds (2000).
Principles of Neural Science, 4th ed., McGraw-Hill.

Kynes, R.D, Aidley, D.J, and Huary, C.L – H, (2001). Nerve
and Muscle, 4th ed., Cambridge University Press.

Koch, C. and I. Segev. Editors, (1992). Methods in Neuronal
Modeling, A Bradford Book. MIT Press.

Noble, D., Gerny, A. and Noble P. J, (2012). How the
Hodgkin – Huxley equations inspired the Cardiac
Physiome Project. JPhysiol 590:11, 2613 – 2628.

Segel, Lee A., Leah Edelstein – Keshet, (2013). A Primer on
Mathematical Models in Biology. USA.

Varghese, A., (2000). “Membrane Models”, in The
Biomedical Engineering Handbook 2nd Ed. Boca Raton:
CRC Press LLC.

Weiss, T., (1996). Cellular Biophysics: Vol. 1, Transport. MIT
Press.

Weiss, T., (1996). Cellular Biophysics : Vol. 2, Electrical
Properties, MIT Press.





���������������������������������������������������������������������������
���������������������������������������������������������������������������������
�����������������������������������������������������


