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ANTICIPATED BACKWARD STOCHASTIC DIFFERENTIAL
EQUATIONS WITH CONTINUOUS COEFFICIENTS

ZHE YANG AND ROBERT J. ELLIOTT*

ABSTRACT. In this paper we prove the existence of solutions to 1-dimensional
anticipated backward stochastic differential equations with continuous coef-
ficients. We also establish the existence of a minimal solution. Finally we
derive a related comparison theorem for these minimal solutions.

1. Introduction

In 2009, Peng and Yang [5] defined a new kind of backward stochastic differential
equation (BSDE for short), called an anticipated BSDE, as follows:

}/t - §T + ftT f(57Y97st}/s+§(s)v Zs-i—((s))ds - ftT stWq, te [OvT]v
Y;:ft, tG[T,T-i—K],
Zy =, te T, T+ K].

In [5] existence, uniqueness and comparison theorems were proved for solutions of
these equations with similar Lipschitz coefficients, (i.e., satisfying (H1) in Section
2). In this paper, we prove that if the similar Lipschitz assumption is relaxed, the
results of existence and comparison theorem for anticipated BSDEs still hold.

Lepeltier and Martin [2] generalized the existence theorem for solutions of BS-
DEs from Lipschitz coefficients to continuous coefficients. Based on [2], Liu and
Ren [3] proved a related comparison theorem. Consequently, a natural question
is: does there exist a solution for anticipated BSDEs with continuous coefficients?
Moreover, does the comparison theorem still hold for the case? In this paper we
provide positive answers.

To treat this problem, we shall use the comparison theorem proved in [5] for
anticipated BSDEs with similar Lipschitz coefficients. There are then no antici-
pated terms for Z in anticipated BSDEs, that is, the anticipated BSDE has to be
the following form:

Yy =&r+ [ f(5,Ye, Zo, Yars(e)ds — [} ZedWs, t € [0,T];
Y, =&, te [T, T+ K].

The paper is organized as follows. Section 2 presents some results for BSDEs
and anticipated BSDEs. In Section 3 we prove the existence theorem of solutions
to anticipated BSDEs with continuous coefficients. We also show there exists a
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minimal solution for this kind of equation. We establish the related comparison
theorem for the minimal solutions in Section 4. This paper includes a lot of detailed
analysis. It is non-trivial and, we hope, of interest.

2. Preliminaries

Let (Q, %, P, %, t > 0) be a complete stochastic basis such that %, contains
all P-null elements of % and suppose that the filtration is generated by a d-
dimensional standard Brownian motion W = (W});>o. Given T" > 0. For all
n € N, denote the Euclidean norm in R™ by | - |. Denote:

L?(Fr; R™) ={R™-valued .Fr-measurable random variable ¢ satisfying that
E[E?] < oo}
L% (0,T;R™) :{Rm;valued ZF-adapted stochastic process ¢, satisfying that
E[fy leif*dt] < oo};
SZ(0,T;R™) ={continuous process ¢_in L% (0,T;R™) satisfying that
E[ sup |pi|?] < oo}
0<t<T
If m = 1, we denote L?*(Zr,R) by L*(ZFr), L%(0,T;R) by L% (0,T) and
S%(0,T;R) by §%(0,T).
Consider the anticipated BSDE:
_dY; - f(S, szv Zsu Y9+6(s)7 Zs—&-((s))ds - stWS7 s € [OaT]a
Y =&, se[l, T+KJ]; (2.1)
Zs =1s, se [T, T+ K].
Here §(-) and ((-) are two R*-valued continuous functions defined on [0,7] such
that
(i) there exists a constant K > 0 such that for any s € [0,T7],
5+0(s) <T+ K; s+((s) <T+ K.

(ii) there exists a constant L > 0 such that for any s € [0, 7] and nonnegative and
integrable g(-),

T T+K T T+K
/ g(r+6(r))dr < L/ g(r)dr; / glr 4+ ¢(r))dr < L/ g(r)dr.

Assume that for any s € [0,T], f(s,w,y,2,&,1): QxR™ x R™¥4 x L2(%,;R™) x
L2(Fp; RM*d) — [2(F,,R™), where r,7’ € [s,T + K], and f satisfies the
following conditions:
(H1) similar Lipschitz condition: there exists a constant C' > 0, such that for
any s € [0,T], y,y € R™, 2,2/ € R™* ¢£.¢& € L% (s, T + K;R™), n.,n/ €
L% (s, T+ K; R™*4) r.t € [s,T + K|, we have

|f(37317 Zag’!‘a 77t) - f(sa y/a Z/ag’:'a 772)‘

<Cly -y +1z =21+ BZl& — &1 + Ine — mi)).

(H2) E[[] /(s,0,0,0,0)[2ds] < co.

The following three lemmas give the existence and uniqueness results for adapted
solutions of anticipated BSDEs with similar Lipschitz coefficients, the estimate
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of the solutions and the comparison result for 1-dimensional related anticipated
BSDES, respectively. (See [5]).

Lemma 2.1. Suppose that [ satisfies (H1) and (H2), §,¢ satisfy (i) and (ii). Then
for arbitrary given terminal conditions £&. € S% (T, T+ K;R™), n. € L% (T, T+ K;
R™*4) the anticipated BSDE (2.1) has a unique solution, i.e., there exists a unique
pair of Fy-adapted processes (Y., Z.) € S%(0,T + K;R™) xL%(0,T + K;R™*4)
satisfying equation (2.1).

Lemma 2.2. Assume that f satisfies (H1) and (H2), 6 and ¢ satisfy (i) and (it).
Then there exists a positive constant Cqy only depending on C in (H1), L in (i)
and T such that for any £ € SL(T,T + K;R™), n. € L% (T, T + K;R™*4), the
solution (Y., Z.) to anticipated BSDE (2.1) satisfies

t

E7[ sup |Ys|> + ftT |Z,|%ds)
<s<T
< CoEZ [ |er|? + [ (€2 + Ins|®ds + ([ |£(5,0,0,0,0)|ds)?],

(2.2)

for any t € [0,T].

Lemma 2.3. Let (Y.(l), Z.(l)) and (Y.(2),Z.(2)) be respectively the solutions of the
following two 1-dimensional anticipated BSDFEs:

VO =+ [1 10, v, 20 v yds = [Tz aw,, o<t <y

v =, T<t<T+K,
where j = 1,2. Assume that {.(1),5.(2) € SL(T, T+K), d satisfies (i), (ii) and f1, f2
satisfy (H1), (H2), furthermore, for anyt € [0,T), y € R, z € RY, fo(t,y,z,-) is
’iTLCT@CLSZ"I’Lg, that iS, f2(tay7230r) > f2(tay72307/”)7 Zf 01" > 0;, 979/ € L?Q(t’T + K)v
ret,T+K]. Ife) > s e [T+ K], and fi(t,y,z,0,) > falt.y, 2,0,), t €
0,T],yeR, zeR4, 0. € L% (t, T+ K), r € [t,T + K], then

Yt(l) > Y;(Q), a.e., a.s.

For completeness we quote the following four lemmas from Peng [4]. Lemma
2.4 gives two estimates for the solution to a simple BSDE. Lemma 2.5 is an exis-
tence and uniqueness theorem for BSDEs. Both Lemma 2.6 and Lemma 2.7 are
comparison theorems for solutions of BSDEs. Lemma 2.6 can also be found in El
Karoui, Peng and Quenez [1]. Lemma 2.7 can be easily obtained from Lemma 2.6.

Lemma 2.4. For a fized ¢ € L*(Fr) and go(-) which is an F;-adapted process
satisfying E[(fOT lgo(t)|dt)?] < oo, there exists a unique pair of processes (y.,z.) €
L% (0, T; RY™ ) satisfying the following BSDE:

T T
yr=2¢& +/ go(s)ds — / zsdWs, t€[0,T].
t t
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If go(-) € L%(0,T), then (y.,2.) € S%(0,T) x L% (0, T;RY). We have the following
basic estimate:
e + BTl + )]

Fu 112 8(T—1)] L 2 e (T 2 B(s—t) (2:3)
SE f”§| € }+BE t[ft |gO(S)| € dSL

where § > 0 is an arbitrary constant.

Lemma 2.5. Assume that g = g(w,t,y,2) : Q x [0,T] x R™ x Rm*d — R™
satisfies the following conditions:

(a) g(-,y, 2) is an R™-valued and F;-adapted process satisfying Lipschitz condition
in (y, 2), i.e., there exists p > 0 such that for any y,y' € R™, 2z, 2 € R™*4,

lg(t,y,2) — gty 2 ) < p(ly —y'| + |2 = 2']).

(b) g(-,0,0) € L% (0, T; R™).
Then for any given terminal condition ¢ € L*(%r;R™), BSDE

T T
Y, =¢ +/ 9(s,Y,, Zs)ds — / Z dWs, 0<t<T (2.4)
t t

has a unique solution, i.e., there exists a unique pair of Fi-adapted processes
(Y, Z) € S%(0,T;R™) x L%(0,T; R™*4) satisfying equation (2.4).

Lemma 2.6. Assume g;(w,t,y,2) : Q x [0,7] x R x R — R satisfies (a) and

(b), €9 € L*(Fr), j = 1,2. Let (Y.(l),Z.(l)) and (Y.(2),Z.(2)) be respectively the
solutions of BSDEs as follows:

Y@ Z W) +/ gj(s,ysm,zgn)ds_/ Z9Daw,, 0<t<T,
t t
where j = 1,2. If €D > ¢® and (1, ), ZV) > gao(t, ;' 21Y), ace., as.,
then
Yt(l) > Yt@)7 a.e., a.s.

Lemma 2.7. We make the same assumption as in Lemma 2.6. If €1 > ¢2)
gl(tvyaz) > 92(t7y72)7 te [OaT]a Yy e Ra z € Rdv then
Yim > Yt(2), a.e., a.s.

Lemma 2.8 and Lemma 2.9 can also be found in Lepeltier and Martin [2].

Lemma 2.8 is one of the basic lemmas required to prove both Lemma 2.9 in [2],

and Theorem 3.2 in Section 3. Lemma 2.9 is the existence theorem for BSDEs
with continuous coefficients.

Lemma 2.8. Assume f: R™ — R is a continuous function with linear growth,
that is, there exists a constant K < oo such that for any x € R™, |f(z)] <
K(1+ |z|). Then the sequence of functions

fol@) = inf {f(y)+nle—yl} (2.5)

is well defined for any n € Nyn > K and it satisfies:
(1) linear growth: for any v € R™, |f,(x)] < K(1+ |z|);
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(II) monotonicity in n : for any x € R™, f.(x) 7 ;
(I11I) Lipschitz continuous condition: for any x,y € R™, |fn(z)— fn(y)| < nlz—yl;
(IV) strong convergence: if x, — x, n — oo, then fn(z,) — f(z), n — oco.

Lemma 2.9. Let & is the predictable o-field and
T
H?*RP)={X.:[0,T] xQ —RP; X. € Z and | X.|* = E[/ | X4|?ds] < oo}.
0

Assume g : [0,T] x QxR x RY — R is & x B(R'*?) measurable function, which
satisfies

(H3) linear growth: there exists K' < oo such that for any t € [0,T], y € R,
z€RY, Jg(t,y,2)| < K'(1+ |yl + |z]).

(H4) for fixed t,w, f(t,w,-,") is continuous.

I[f€ € L*(Fr), then the BSDE

T T
Y,—¢+ / o(s,Ya, Z2)ds — / Z.dW.,  te[0.T] (2.6)
t t

has an adapted solution (Y., Z.) € H?(R*9), where Y. is a continuous process and
Z. is predictable. Also, there is a minimal solution (Y., Z.) of equation (2.6), in
the sense that for any other solution (Y., Z.) of equation (2.6), we have Y; < Y,
a.e., a.s.

Lemma 2.10 is the comparison theorem for the minimal solutions of BSDEs
with continuous coefficients (see Liu and Ren [2]).

Lemma 2.10. Let (Y(i), ZA.(i)), 1 = 1,2 be the minimal solutions to the following
equations, respectively,

; . T . . T .
YO =0t [ oils, v, 20 s - [ Z0aw., teo.1),

t t
where for i = 1,2, €9 € L?>(Fr), for any y € R, z € R, g;(-,y,2) € H*(R),
moreover, g; satisfies (H3) and (H4). If g1(t,y,2) > g2(t,y,2), t € [0,T], y € R,
ze R and €V > ) q.e., then

Yt(l) > Yt@), a.e., a.s.

Remark 2.11. The results of Lemma 2.9 and Lemma 2.10 will hold for adapted
processes if we change the conditions 'predictable’ into ‘adapted’ in the above two
lemmas.

3. Existence Theorem of Multiple Solutions to Anticipated
BSDEs With Continuous Coefficients

From now on, we only consider 1-dimensional solutions Y. of anticipated BS-
DEs. We introduce a new definition:

Definition 3.1. Let s < t be two fixed times. The functional ¢ : L?(%;) —
L?(Z,) is continuous in L%(.%;) if for any &,,n € L*(%;) satisfying &, — 7 in
L2(F), then ¢(&,) — ¢(n) in L?(%,) holds.
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Consider the anticipated BSDE:

{ Yo=&r+ [} [(5.Ye 2o Yorsio)ds = [ ZdW., €[0T 51)

Y, =&, te|l, T+ K].

Here §(-) is an RT-valued continuous function defined on [0, T satisfying (i) and
(i4). Assume that for any s € [0,7T], f(s,w,y,2,€) : @ x R x R? x L}(F,) —
L?(Z,), where r € [s,T + K], and f satisfies the following conditions:

(H5) linear growth: there exists a constant C' > 0, such that for any s € [0,7],
yeR, zeRY 0. € L% (s,T+ K), r € [s,T + K], we have

1f(s,y,2,0:) < C(L+ |yl + 2| + EZ*[|6,]]).

(H6) for fixed s € [0,T], f(s,-,-,) is continuous, and for any ¢ € [0,7T], y € R,
z € R f(t,y,2,-) is increasing, moreover, for any ¢ € L*(%,), r € [t,T + K],
[y, 2z, EZ[E]) = f(t,y,2,€) holds.

Assumption 1: % contains all subsets of €.

The following result is the existence theorem for a solution to an anticipated
BSDE with continuous coefficients.

Theorem 3.2. Suppose Assumption 1 holds, [ satisfies (H5) and (H6), and
0 satisfies (i) and (i1). Then for an arbitrary given terminal condition & €
SZ(T, T+ K) with & € L*(Fr), there exists a pair of adapted processes (Y., Z.) €
SZ(0,T + K) x L%(0,T; RY) satisfying equation (3.1). Also, there is a minimal
solution Y. of equation (3.1), in the sense that for any other solution Y. of equation
(5.1), we have Y, < Y;, a.e., a.s.

Before proving Theorem 3.2, we give some lemmas. Lemma 3.3 shows a limit of a
sequence of solutions for anticipated BSDEs with similar Lipschitz and monotonic
coefficients is still a solution of an anticipated BSDE. Similarly to Lemma 2.8,
Lemma 3.5 shows that a continuous functional can be a limit of a sequence of
similar Lipschitz functionals. Lemma 3.6 shows that the sequence of functionals
defined in Lemma 3.5 inherits the monotony of the variable from the continuous
functional which is the limit of the above sequence.

Lemma 3.3. Consider the following anticipated BSDEs:

s+0

Y =g+ [ Sl v, 200 Y s = [T Z80aws, e [0,T);
v =g, te [T, T+ K],

where n € N. Assume § satisfies (i) and (it), and for any n € N, f.(n) € S%L(T, T+
K) with f(Tl) € L?(Fr), fn satisfies (H1) and

(H2) for anyn € N, t € [0,T], y € R, z € RY, fu(t,y,2,-) is increasing, and
there exists a constant p > 0 such that

T
E[(/0 | fn(5,0,0,0)|ds)?] <,  for any n € N.
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If for any t € [0,T), y € R, z € R4, 0. € LL(t, T+ K), r € [t,T + K|,
Fat:y,2,00) 7 f(ty,2,0,), n— 00, and for any s € [T, T+ K], & /&, n—
o0, moreover, &. € SL(T,T + K) with & € L*(Fr), then the anticipated BSDE

Yi=&r+ [} f(s,Ye, Ze,Yors(s))ds — [, ZdW,, t€[0,T); (3.2)
X/t:é-fm tE[T7T+K]

has a solution (Y., Z.) € 5% (0,T + K) x L%(0,T;R?) and

Y, = sup Yt(n), a.e., @.S.
neN
Proof. Since for any s € [T,T + K], fsn) N &, n — oo, we have for any s €
[T, T + K], & — ™\, 0, n — 0o. Because &, £, € L% (T, T+ K), by
Levi’s lemma we know £ — &, in L%(T,T + K). Hence, {¢.,£&.M £2)  }is
bounded in L% (T, T+ K). Denote its bounded by A. By Lemma 2.1 we know for
any n € N, the anticipated BSDE

v = [T fa(s Y 20 Y ) ds — [T Z8aw, te (0, T);
Km—ﬁw te[T,T+ K]
has a unique solution (Y.(")7 Z.(")). From Lemma 2.2 there exists a positive con-

stant Cp only depending on C in (H1), L in (i) and T such that for any n € N,
we have

T n
E[Ozup |Y By 12

< CoBll&r” 2 + J7 I Pds + (g 1£a(2,0,0,0)]dt)?).
By (H2)', we know
Elfy \Y M2 4 |Z<">| )] .
< (T + DCE(E" P + A+ pl < (T+ DCEER P + e + A+ .
Because fT J&r € L2(Fr), we deduce that {(Y.("), Z.("); n € N} is bounded in

L% (0,T; R**?). Denote its bounded by B. By Lemma 2.3, {Y.("} is increasing
in n, then for any w € €2, set

. sup Yt(n)(w), te0,T7;
Yi(w) = { neN
& (w) te[T, T+ K].
Since for any ¢ € [0, T,
H{w: f@(w)zo}‘Yt(n)(W)‘ /‘ H{w: f’t(w)ZO}DN/t(w)‘? n — oo,
and
P fvt(w)<o}\yt(n)(w)\ N L, v <o Vi)l n— oo,
by Levi’s lemma,

T T
E[/ |Yt(”)|2dt}—>E[/ Ti2dt],  n— oo
0 0
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So E[fOT |Y;|2dt] < B, moreover, |Y.| € L% (0, T). Therefore,

Q((w,t) € 2 x [0,T]; Vi(w) < o0) =1,
where @ is a probability on Q x [0, T| with Q|q = P. Thus, also by Levi’s lemma we
deduce E[[) |V, — Y™ |2dt] = 0, n — oo. That is, Y. — Y. in L%(0,T). Hence
Y () converges uniformly to Y. As for any n € N, y (™)
is also continuous in [0,7]. Because f(T”) S ér, n — oo, and f(Tl),fT € L*(Zr),
by Levi’s lemma we see f(Tn) — & in L2(&r). For any n,m € N, applying Itd’s
formula to |Ys(n) - Y;(m)\Q on [0, T,

B =Yg + [y 127 = 2 Pds]
Bllg” - &P

+2 J‘OT(Y*S(") _ Y;(m))(fn( Y(”L) Z(") Ys(fz)i(s ) _ fm(s Y(m) Z(m) Y(r?(s)))ds]

is continuous in [0, 7], Y.

Using the Holder inequality and Schwarz inequality, we have

T n m
fo |Z( )_Z( )|2d]

< 2E(( fo | fn(s Y(n) Z(n) Ys(l)i( )) fm(S Y, (m) Z(m) Y(-Zts(s )|2ds)%
(Jy 1V — Y 2ds) ) + B[lef) — i)
T n n n m m m 1
<2{B[fy |fals, Y, 280 ¥ ) - fm( Y( L2 Y ) Pds]y
LB 1V — Y™ 2ds)y s + E[lef — 602
T n n n m m m 1
< 2V2{ B[y (| fu(s, ", 2V 1’,5(+§(5)\2+\fm(8 v,z v ) P)ds]
LB 1Y = ™ 2ds)ys + E[ef) — 602
< UEy (fals, Y, 280,70 ) - fn(s 0,0,0)[? + | u(5,0,0,0)[?
s, Y 20 Y0 ) fm(s 0.0 o>|2+ [Fin(.0,0,0)*)ds]}

{B[f) I = v{™ Pds]} s + Bller — e
< Bllgf — P+ (B[, v Y(’”)Pds]}
AB[fy 3C2 (I + 12812 + v )
+2u}?
< Ellgf) — &™)
+4(2p + 6BC? + 6LAC? + 6LBC)F {E[f, [V — Y™ 2ds]} 5.

]

|2 + \Y m)|2 + |Z(m)|2+ |YS(:;(S I )ds]

Thus (Z.(")) is a Cauchy sequence in L2 (0,T;R?). We denote the limit by Z. €
L%(0,T;R%). Since f, /7 f, n — oo,

|fn(57?sa stf/er&(s)) - f(saf/svzsafferé(s))' \l 0, n — 0.

Hence by Dominated convergence theorem, for any ¢ € [0, T,

T
E[/ |fn(S7YS7ZS7)/s+5(s))_f(sax/vS7ZSa}/s+5(s))|2d8] _>O7 n — oo.
t
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Therefore

ElfT 1 fuls, Y, 280 v ™ ) = f(s, Ve, Z, Y 24

[ft |fn > S+5(S)) f(S 51455 Ys46(s) )| 3]

< 2B[ [ | fuls, Y 280V ) = Fals, Ve, 2, Vaso(o)|Pds]

+2Ej; Ifn 87stzs,Ys+5(s)) _f(s Y57Z87YS+5(S))| dS]

<6C2 B[ (Y = Vo2 + 1287 = Zo2 + Y3 ) — Vars(o)?)ds]

+2E[ftT|fn(SaY97Zsa?s+5(s)) 7f(57Y€aZS7Ys+6(s))| dS] —0, n— oo
Taking limits of the following anticipated BSDE

{ §T + [ (s Y, 280 Y yds — [T Z8dw, e (0,1,
zft , te[T, T+ K],
we obtain
{ Vi=&r+ [] f(s.Ys, 2o, Yaps())ds — [; ZadW,,  te[0,T];
Y, =&, te|l.T+K).

That is, (Y.,Z.) € L%(0,T + K) x L%(0,T;R?) is the solution to anticipated
BSDE (3.2). By the Burkholder-Davis-Gundy inequality, we have

El sup [\ — ¥,

te[0,T
< 315“5];”’ — &P+ 38 sup (28 = Z)aw,[?]
+3E[ sup | S s, v, Z““ Y ) = £ (5. Ve, Za, Vays())ds ]
< 3E[ley ~ §T|]+6Etes[up]|f0 (28" — Z)aw,?)
#TE s 15l (0 YA, Z0 YO ) (s, For 2o Yoy

< 3E[|eX) — 72 + B[] |2 — Z,|*ds]

i S
+3TE[fy | fuls, Y™, 28 Y ) = F(5, Ve, Zo, V() ).

So

E[ sup |Yt(n)f}~/t\2]%0, n — oo.
t€[0,T]

Hence Y. = V. in SZ.(0,T). Because S%(0,T) is a Banach space, we know
{Yt}teOT € S%(0,T). Noting &. € S%Z(T,T + K), we obtain {Yitiep,r+k] €
S52.(0,T + K). O

Remark 3.4. We can see from the above lemma that (H1) is not a necessary
condition for the existence of a solution to an anticipated BSDE because f may
not satisfy (H1).

Lemma 3.5. Lett, s € [0,T] be two fized times witht > s. Assume f : L*(F;) —
L3(Zy) is continuous in L?(.%,), and there exists a constant C < oo such that for

161



ZHE YANG AND ROBERT J. ELLIOTT

anyn € L*(F), |f(n)] < CA+E7
holds, then the sequence of functions

— s ; Fs
faln) =E [&ng(f%){f(é)JrnE [

nl)). If for any & € L*(F), f(E7*[€]) = f(€)

n =&} (3-3)

is well defined for n > C and also fn satisfies
(a) for any n € L*(F), |fu(n)| < C(1+ E7+[
(b) for any n € L*(F), fa(n) /5

(c) for any 0, & € L*(F), |fu(n) = fu(€)] < nET
(d) for any n € L*(F), fu(n) — f(n), a.e.

Proof. Tt is obvious that f,, is well defined when n € N,n > C and that f, < f.

Since .# contains all subsets of €2, we conclude every function defined on €2 and

valued in R is .#-measurable, in particularly, ¢ [{I;(fy ){f(g) +nE7[|n—¢[]} is an
S t

Z-measurable random variable. Thus f,(n) is .Zs-measurable. (b) holds from the
definition of f,, directly.

(a) For any n € L?(#;), we have f,(n) < f(n) < C(1+ EZ+[[n|]) and

Jn) 2 B7[_inf {=C = CEZ*|lgll +nB7[lg — €}}] > ~C(1+ B

nl);

n =&l

1ll)-

That is, (a) holds.
(c) for any n, & € L?(%,), for any € > 0, there exists a £, € L?(.%;) such that

Fo(n) = f(&) +nE7 [l — &) — =
= f(&) + nEZ[I€ — &[] + nET|
> f(&) + nET[|§ — &[] — nE7|
> fn(€) —nE7[ln &[] <.
Thus, interchanging the roles of n and £, and noting € > 0 is an arbitrary constant
we obtain | f,.(n) — fu(€)| < nE7+[|n —¢|].
(d) For any 1 € L?(.%,), there exists a &, € L?(.%;) such that for any n € N,n > C,

F0) > faln) > F(€2) +nEZ [l — &[] — ~.

n

77755” 7nE95[
n—¢&l—e

gfgsH*g

Hence f(&,) +nE7¢]

1
n—E&ul] < f(n) + =. Since f has linear growth, we have
n

f(&n) +nE7+[|n — &)

> —C(14 EZ<[|&]]) + nEZ[In — &)
> —C(1+ EZ[|&]) + nEZ=[|&,] — |n]]
> —C+ (n—C)EZ+[|&,]] — nET<[|n]].

So when n € N,n > C, we derive,

Z, 1 n Z, nC +1
B7 el < =g/ )+ =SB ]+ E
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As for any n € N,n > C,

1 n Z, nC +1 9
Bll—gf )+ Bl + o= o) )
1 2 1 FRTIIY + 3
§3E[m|f(n)\ + (17%)2@ [n1]) ané) ]
<BE[f()? + 1+ C)2EZ[In*] + (1+ C)?]

<BE[f(m)*+ 1+ C)2?nl* + (1 + €)% < o0,

we know {EZ+[|€,]]; n € N,n > C} is bounded in L?(.%,), hence also in L3( ).
Because f has linear growth we obtain {f(£,); n € Nyn > C} is bounded in
L?(.Z,). Therefore

S — 1

T BB Iy - &) < T E((f(n) - f(6) + )] < oc.

Thus lim E[(E7+[ln — &.0))%] = 0. So lim E[[E7+[n — &,]*] = 0. That is,
EZ:[¢,] — EZ+[n] in L?(%). Since f is continuous in L?(.%;), we have f(EZ+[£,])
— f(EZ<[n]) in L?(Z,). Note that for any ¢ € L?(%), f(EZ*[¢]) = f(¢) holds,
we deduce f(£,) — f(n) in L?(.Z,). Therefore, there exists a subsequence {&,,; | €
N} C {&,; n € N} such that llim f(&n,) = f(n), a.e. Since for any n € N,n > C,
f(n) > fa(n) > f(&,) — £ holds, we derive llim fru(n) = f(n), a.e. On the other

hand, since f,  and f, < f, for any ¢ € L?(.%;), we can define a function
f(¢) = lim f,(¢). Because {f,,; | € N} is a subsequence of {f,; n € N}, we
n—oo

know for above ¢, lim f,, (¢) = f(C). Thus f'(n) = f(n), a.c., L.e, fu(n) = f(n),
a.e. O

Lemma 3.6. We make the same assumptions as in Lemma 3.5. Suppose f is in-
creasing in . Then for anyn € N, n > C, fn defined in Lemma 3.5 are increasing
mn.

Proof. Suppose  and 1’ are two arbitrary elements in L?(.%;) satisfying n < 7'
For any € € L%(%,), set & = Tgesny (20 — &) + e & Then & € L2(F), & — €=
Liesny(2n —26) <0, 8 —n=Tenyy(n = &) + Leany (§— 1) <0, f(§) < f(§) and
EZ ¢ —nl] = E7:[n—¢&]. So f(&) +nEZ[ln— €] = f(&') +nEF[n —€']. Thus
by equation (3.3) we have

Fuln) = BZ[_int (1) +nE[n — &)}

_ s : Fs[n —
=E [5€L2(1;f)£gn{f(€)+nE [n — €]}

Similarly f.(1') = B £ {f(&) +nEZ [y — ]}]. For any € € L*(F)

5€L2(§t)£ﬁ7l’

satisfying £ < 1/, set ¢ = Ijy<e<py (n4+E—1")+Iie<yp €. Then we obtain ¢ € L* (%),
¢ =& = Ip<e<ny(n = 1) <0, ¢ —n = Tp<ecyy (€ = 1) + Lieany(§ —n) <0,
F(¢) < f(8), and BZ: [n—(] = EZ [Iy<e<yy (' =€) +jecny (1= 8)] < BZ[f —¢].

Therefore
£ +nEZ [ — € > f(¢) +nE7[n—(].
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Hence

fan) =E7[ _inf {f(&) +nET[n —€]}]

§EL?(F4),6<n’
F

: . Fsly
2B [5€L2(9t) E<n’ (= H{ngglin’}(77+§—TI')+H{§<v:}f{f(C) kb [77 C]H
> B {F(O) +nEZ[n—C}] = faln).

CeLz(?z C<n
(I

Proof of Theorem 3.2. Denote, for any fixed t € [0, T, n € L*(Z,), r € [t, T+ K],
the sequence associated with f(¢,-,-,n) in Lemma 2.8 by {g.(¢,-,-,n); n € N,
n > O}, where C is given in (H5), that is, for any y,z € Q9

gn(tayazvn) = inf {f(t7uvvvn)+n|y_u‘ +’I’L|Z—’U|}
u,veQ+d

Also, denote for any n € N, n > C’, for fixed t € [0,7], y € R, z € RY, the sequence
associated with g, (¢,y, 2, ) in Lemma 3.5 by {gnm(t,v, 2,:); m € N, m > C}, that
is, for any n € L3(Z,), r € [t,T + K|,

Gnm (8,9, 2,1) = E‘g‘[gegf {gn(t.y. 2.€) + mEZ {|n — €[1}].

For any n € N, n > C, define f,(t,y,2,1) = gan(t,y,2,n), t € [0,T], y € R,
z € RY ne L3(Z,), r € [t,T + K|. Then by Lemma 2.8 and Lemma 3.5 for
neN, n>C, fu(t,y, z,n) is F-measurable and it satisfies:

(1) for any t € [0,T], y €R, z € RY ne L2(F,), r € [t,T + K],
|fa(tys2,m)| < C(L+ |yl + |2| + EZ*[|n]));
(2) forany t € [0,T], y € R, z e R%, pe L*(F,), re [t, T+ K], fu(t,y,2,m) 7;
(3) for any t € [0,T], y,y' €R, 2,2/ €RY, 0,0 € L*(F,), r € [t,T + K],
|fn(tayazan) - fn(taylazlan/” S Tl(‘y - y/| + ‘Z - Z/| + E%HU - 77/”)a

(4) for any t € [0,T], y € R, z € RY, n € L3(Z,), r € [t,T + K|, fu(t,y,2z,1) —
f(t’yﬂz777)’ a.e

We prove the above four statements first. In fact, it is obvious that f, is well
defined when n € N, n > C and that fn<gn</f.
Proof of (2): For any n,m € N, n > m > C, we have f, = gnn > gnm by Lemma
3.5 and g, > g, by Lemma 2.8, hence gnm > Gmm = fm- Then f, > fi,.
Proof of (1): For any t € [0,T], y € R, 2z € RY, n € L3(%,), r € [t,T + K], we
have

On the other hand, for any ¢ € L*(%,), r € [t,T + K],
ity €)= | i (ftu.€) +nly —ul 4l o)
> inf  {=C(L+ |u| + o] + EZ[|€]]) + Cly — u| + C|z — o[}

u,vEQIH

> —C(1+ |y +[z] + EZ¢[I€]]).
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Similarly, we obtain

Ialtyy,zm) = EZ[_inf {ga(t,y,2,6) +nE7{ln - €[]

Fi 1 7A Fi A Fi —
> E [&ngl(f%){ CA+ ly[ + [z + E7[[E]]) + CEZ*[|n — £[]}]

> —C(1+yl + |2| + EZ[|n]]).
Proof of (3): forany ¢t € [0,7], y,9 €R, 2,2/ € RY n,n' € L2(F,),r € [t,T+K],
[fatsy, 2,m) — falt, 9 25 0)| = |gnn(t, Y5 2,m) — gun(t, ', 2/ 1'))
S |gnn(t7 Y, 2, 77) - gnn(tv Y, =, 77/)‘ + |gnn(t7 Y, 2, 77/) - gnn(tv ylv Z/’ 77/)|'
By Lemma 3.5 (¢) we derive
faltoy, 2m) = fu(t ), 250 < nEZ =1/ | 4 |gan (v, 2,0) = gnn (8,4, 20
For any y' € Q, 2’ € Q4, for any & > 0, there exists £, € L?(.%,.) such that
gnn(tvyla Z/JI/) Z gn(tvylv ZI7£€) + nEytHnl - 58” —¢&.
So
gnn(ta Y, z, 77/) - gnn(ta y/a Z/, 77/)
S g’n(t7y7 Z?&E) + nEyt“U/ - §€H - gn(tvy/7zl7£€) - nEgtHnl - §E|] +e
<n(ly—y'|+|z—2|) +e
Noting ¢ is arbitrary, gn,(t,y,2,7") — gnn(t, ¥/, 2", 7") < n(ly —¢/| + |z — 2/|) holds.
Similarly we know gnn(t,y',2",7") — gan(t,y, 2,m") < n(ly — ¥'| + |z — 2’|), hence
‘g7zn(t7ya 2'777,) - g7zn(t7yl7 2/777/)| S ’I’L(‘y - yl| + ‘Z - Z/I) Therefore,
|fn(t; Y, z, 77) - fn(t7y/> 21777/)| S n(‘y - y/| + ‘Z - Z/| + E%HU - 77/”)

Proof of (4): For any n € N, n > C,te 0,T],y € R, z € RY 5 € L2(.F,),
r € [t,T 4+ K], denote the set {w € Q; m gnm(t,y,2,m) = gn(t,y,2,m)} by
m—r00

A,. Then by Lemma 3.5 (d) we know P(A,) =1 and P(A4%) = 0. By Lemma
2.8 (d) we have for any w € €, li_>m gn(t,y,z,m)(w) = f(t,y,2,m)(w). Denote
n [ee]

A= ] A, So
nEN,nZC’
P(A)=1-PA)=1-P( |J 45)>1-) PA)=1
neNn>C n=C

Thus, for any w € A, for any € > 0, there exists an N € N such that for any
n > N V C, the following inequality holds:

0 < f(t.y.2m) () = gulty,2m)(w) < 5.

For above w and ¢, for any n € N,n > C’, there exists an M € N such that for any
m > M Vv C, the following inequality holds:
€
0< gn(ta Y, =, 77)((“)) - gnm(ta Y, 2, 77)(0‘)) < 5
Then for any n > N V M Vv C, we derive

0 < f(t,y,2,m) (W) = gnn(t,y, z,m) (W) < €.
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Hence P(w € 1Lm Inn(t,y, 2, (W) = f(ty,z,n)(w)) = P(A) = 1, ie.,
gnn(tsy,2,m) = f(t,y,2,m)), ae

Let us return again to the proof of Theorem 3.2. By Lemma 3.6 for any n € N,
n>C,tel0,T],y €R, zeR? f,(ty,z-) is increasing. Thus for any n € N,
n > C, f, satisfies (H1) and (H2). Hence for any n € N, n > C, we deduce that
the BSDE

s+0(s)

Y =&+ [ s, Y, 200 Y, yds — [F 2aw,, ¢ e [0,1);
v =g, tel+ K]

has a unique adapted solution (Y.("), Z.(")) in S2.(0,T + K) x L%(0,T;R%). By
Lemma 3.3, equation (3.1) has a solution (Y, Z) € S%(0,T + K) x L% (0,T;R%)
and

Y; = sup Y,;(n)7 a.e., a.s.
neN,n>C

We now prove the existence of a minimal solution. Suppose (Y, Z!) is an another

solution of equation (3.1). For any n > C, n € N, we shall compare Y/ and VARE

Set

VO =er+ [ fals, VY, 280, v1 5 )ds — [T Z80dw,, 10,17,

v =g, te T, T+ K.
By Lemma 2.5, we deduce there exists a unique pair of .#;-adapted processes

(}7.(1),2(1)) € 5%.(0,T) x L%(0,T;R?) satisfying the above BSDE. Because for
any s € [0,T], y € R, z € R, f(s,y,z,Ys’+6(s)) > fu(s,y,2,Y! ), by Lemma

’ T s+6(s)/)
2.10 we obtain Yy > 57;(1), a.e., a.s. Set

VO = er [ a7, 28,7 s — [ 28w, te 0.1
Yt(4):§ta te [T, T+ K].

Since for any t € [0,T], y € R, z € R, f,(t,y,2,-) is increasing and Y, > )_Q(l),
a.e., a.s., by Lemma 2.7 we know ¥, > V2 ae. as. Form = 3,4, - -, we
consider the following classical BSDE:

Vi = ep 4 [1 fuls, Y™, Z(m>,)g<jg(j) ds — [F Z{™aw,, t e [0,T];
% :ft) te[T’T—"_K]'
Similarly we have }7t(2) > 5_/15(3) > > ﬁ(m) > .-+, ae,as Set = 18C2L +

18C2 + 3, where €' and L are two constants given in (H5) and (i), respectively.
For any p > 0, I € N, we introduce a norm in the Banach space L?g (0,p; RY) -

1) o= (B[ b ebeas)?.
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Clearly it is equivalent to the original norm of L% (0,p;R"). For m > 2, by the
basic estimate (2.3) we have

[ ( |Y(m) (m—1)|2 + |Z(m) _ Z(m—l)‘Q)eﬁst]

m m m—1 m—1 m—1 m—2) s

ng fo (s, ¥, 28 Y 05 D) = fuls, YD, 2070y s B [2ePods)

662 m o(m—1 > m—1 m—2
< TS Bl (T - B 4 2 - 2R 4 R Y )

-eP3ds]

662 o (m o (m— ~ m (T —
< S5 EUS (7 = RO 127 = 2O

6C%L me1)  o(m—

5 E[fT+K |Y( 1) Ys( 2)|26[3st]

60 m (M — ~ m 7\ —

5 o (I =702 4120 — Z{m D 2)ebds]

6C2L me1)  o(m
o T Al W L B

B

Noting 8 = 18C2L + 18C? + 3, we deduce

By (7™ = YD 2 4|28 = 20 Reds)

IA Ll

E| T( |Y(m) YS(W—U|2 + |Z§m) B Zém_1)|2)655d8]
EB[fy |Ys<’“ v ey

IN

1 o (m— < (m— =(m— =(m—
,EUOT“YS( D _ 2)|2 n |Z§ N _ 7 2)|2)eﬁsds].

IN

Hence

BT [T - 7D ReBsds + [T 124 — 28 Pesdy]

EUTOK(m) _ y(mfl)lz + |Zs(m) _ Z(gm—1)|2)e,8sd8]
1

m— 2 (1 (2 (1 s
< (B (V2 = VPR 4122 - 23V P)ePds)
1o, THK o(2)  o(1 s T 52 50 s
= (2Bl T =V PePds + 122 — 28 P)eds).

It follows that (Y(m)) en and (Z.(m))meN are respectively Cauchy sequences in
L%(0, T + K) and in L%(0,T;R?). Denote their limits by Y. and Z., respec-
tively. Because L% (0, T+K) and L% (0,T;R?) are both Banach spaces, we obtain
(Y.,Z) € L%(0,T + K) xL%(0,T;R?). Note for any ¢ € [0, 7],

m m m—1 s
U;g Ifn( ) Z( ) Y5(+5(3)) fn(s Y;7Z57Ys+6(s )|266 ds]

< 3C?E[f, <|m,<m>—y;\2+\zs — Z2+ LYY Y ?)etrds] — 0
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if n — co. Therefore (Y., Z.) satisfies the following anticipated BSDE

T T
Y, = ET + ft fn(sa}/S7ZsaYs+5(s))dS - ft stWSa 0<t< Ta
Y, =&, T<t<T+K.

By Lemma 2.5 we know the above equation has a unique solution. Noting (Y.("),

)

Z.(")) also satisfies this equation, we conclude V; = Y;(" , a.e., a.s. Since Y/ >

}7;(1) > }_/1:(2) > ... > Y,, we derive for any n € N,n > C, Y, > Yt(n)a a.e.,
a.s. Because Y; = sup Yt(n)7 a.e., a.s., we have Y/ > Y}, ae., a.s. That is,
nGN,nZé
Y; = sup Yt(n) is just the minimal solution of the anticipated BSDE (3.1). O
nEN,nZC

4. Comparison Theorem for the Minimal Solutions of Anticipated
BSDEs With Continuous Coefficients

Theorem 4.1. [Comparison Theorem] Let VY and v be respectively the min-
imal solutions of the following two anticipated BSDEs:

{ Y;(j) — 55{) + ftT f(j)(s’yg(j)’Z‘gj)7Ys(i)(5(s))dS . ftT Zﬁj)dWs, te [O,T];

v =, te(T,T+K),

where j = 1,2. Suppose 5.(1),5.(2) € S%L(T,T + K) with E(Tl), (TZ) € L*(Fr),
fD) @ satisfies (H5), (H6) and § satisfy (i), (i4). If ¢V >e? se 7,7+ K],
and fO(t,y,2,0,) > f@(t,y,2,0,),t € [0,T], yeR, z€ R, 0. € L% (¢, T+ K),
re[t,T + K], then

Yt(l) > Yt(2)7 a.e., a.s.

Proof. Denote, for fixed t, the sequence associated with f(!) and f®) in the proof
of Theorem 3.2 by {fr(ll), n > C~'} and {fr(Lz)7 n > C~'}, respectively, where C' =
CO v @ with ¢, ¢ given in (H.5). Then by Lemma 3.6 for any n > C, t €
[0,7T], y € R, z € RY, ,gl)(t,y,z,~) and f,(LQ) (t,y, z,-) are both increasing. Thus
for any n > C, fle) and f,(f) satisfy (H1) and (H2)'. Since fM(t,y,z,6,) >
fAt,y,2,60.),te 0T, yec R ze R 0 € LLt,T+K), r € [t,T + K],
also from the proof of Theorem 3.2, we derive f,gl)(t,y,zﬁr) > f,SQ)(t,y,z,Gr),
t e[0T, ye R 2z€RY 0 € LT+ K), r € [t, T+ K]. Hence for
neNn> C‘, we deduce that each of the following BSDEs has a unique adapted
solution (}Q(n’i),Zt(”’i)) in 5%.(0,T + K) x L%(0,T) :

Y0 = e 4 [T (s, v, 2000 v ) yds

s+6(s)
— [Pz aw,, te0,T];
Y, = ¢, te[l+ K],
where 7 = 1,2. Then by lemma 2.3, we obtain for n € N,n > C’, Yt(n’z) < Yt(n’l),

a.e., a.s. Again from the proof of Theorem 3.2, we have
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