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Abstract. Using the Kolmogorov decomposition approach for a positive
definite kernel, we establish a unitary fractional isomorphism Uα

L
between

the Fock space Γ(Sp ⊕ L2(να)) and the fractional Lévy white noise space
L2(S′, µα

L
). As a consequence, under the second-order moment condition of

the fractional Lévy white noise measure να, we derive explicitly the general-

ized fractional Lévy white noise field operator in terms of creation, annihila-
tion and preservation operators.

1. Introduction

The development of the fractional Lévy white noise calculus is an extension of
the classical white noise theory introduced by T. Hida [17] in 1976. During the
last decade, many authors used this theory for modeling driving noises in different
applications such as mathematical finance, network traffic analysis and quantum
probability. Among them, Hu and Øksendal [18] constructed an Itô fractional
Black-Scholes model with an European option and proved that the corresponding
market is complete, Huang [19] used the characteristic functionals on Hilbertian
nuclear spaces to construct an infinitely divisible distributions on Gel’fand triple.

The present paper deals with the fractional Lévy white noise calculus. The
first natural problems arises: which Fock space structure serves for the analogs of
the Wiener-Itô-Segal isomorphism in the fractional Lévy case. The construction
presented here have the advantage to be directly connected to the fractional Lévy
distributions which enables us to prove the above mentioned results on the chaotic
representation. After having established the chaotic property, we will focus on the
expression of the generalized fractional Lévy white noise field operator.

The contents of the paper is organized as follows. In Section 2, we recall some
basic results about Kolmogrorov decomposition of a positive definite kernel and
the fractional Lévy processes on Gel’fand triple. Section 3 is devoted to the study
of the fractional Lévy white noise functionals with special emphasis on the Kol-
mogorov isomorphism associated to the fractional Lévy white noise measure µα

L
. In

particular, the Kolmogorov decomposition for the positive definite kernel Ψ
α
(η−ξ)
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play an essential role to construct an unitary isomorphism Uα
L

between the Fock

space Γ(Sp ⊕ L2(να)), where να is a Lévy measure having a finite second order
moment, and the fractional Lévy white noise space L2(S ′, µα

L
). In section 4, we

consider the generalized fractional Lévy white noise field operator Q
ξ
defined as

the image of the multiplication operator by the random variable 〈·, ξ〉 under Uα
L
.

Moreover, the action of Q
ξ
on the total set of exponential vector is used to give

explicitly this operator in terms of creation, annihilation and preservation opera-
tors.

2. Frameworks

First we review from the papers [1, 2, 19] and [28] basic concepts, notations and
some results which will be needed in the present paper.

Recall that, given a set X , a function k : (x, y) ∈ X×X −→ k(x, y) ∈ C is called
a positive definite C-valued kernel if, for every finite subset F ⊆ X the complex
square matrix

kij := k(xi, xj), xi, xj ∈ F

is positive definite, i.e. if for all d ∈ N∗, x1, · · · , xd ∈ X and λ1, · · · , λd ∈ C, one
has

d∑

i,j=1

λiλ̄jk(xi, xj) ≥ 0. (2.1)

Moreover k is called conditionally positive definite if (2.1) holds whenever the λj ’s
satisfy the additional condition

d∑

j=1

λj = 0.

Definition 2.1. A positive definite kernel k is called infinitely divisible if for each
n ∈ N there exists a positive definite kernel kn such that k = (kn)

n.

It is well known (see [28]) that a positive definite kernel k ≥ 0 on X × X is
infinitely divisible kernel k on X if and only if, for all t > 0 the kernel kt defined
by

kt(x, y) :=
(
k(x, y)

)t

is positive definite.

Proposition 2.2. (see [2]) A C–valued kernel k on a set X is positive definite if
and only if there exists an Hilbert space H and a map

e· : X ∋ x 7−→ ex ∈ H
such that the following two conditions are satisfied:

k(x, y) = 〈ex, ey〉H , ∀x, y ∈ X (2.2)

and

{ex , x ∈ X} is total in H. (2.3)

The pair (H, e·) is unique up to unitary isomorphism and is called the Kolmogorov
decomposition of kernel k.
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It is known that the bosonic Fock space Γ(H) can be represented in the form

Γ(H) :=

+∞⊕

n=0

H⊙n,

where H⊙n denotes the n–th symmetric tensor power of H. For f ∈ H, we denote
by Exp(f) the exponential vector defined on Γ(H) and given by

Exp(f) :=

∞∑

n=0

1√
n!
f⊙n. (2.4)

Theorem 2.3. (see [2]) For a kernel k on a set X the following statements are
equivalent :

(i) k is infinitely divisible positive definite.
(ii) there exists a conditionally positive definite kernel q0 such that k has the

form

k(f, g) = eq0(f,g), f, g ∈ S.

(iii) if there exists a positive definite kernel q on X and a map κ : X ∋ f 7−→
κf ∈ C such that, denoting (H, υ) = Kol(k) (resp. (K, u) = Kol(q)) the
Kolmogorov decomposition of k (resp. q), then the map

U : Exp(uf ) ∈ Γ(K) 7−→ eκfυf ∈ H (2.5)

extends to a unitary isomorphism between H and the Fock space Γ(K) over K.

For a fixed f0 ∈ S, we observe that the kernel q can be given in term of q0 by

q(f, g) = q0(f, g)− q0(f, f0)− q0(f0, g). (2.6)

Let S(R) be the space of rapidly decreasing functions equipped with the canon-
ical topology, and S ′(R) its dual space, i.e., the space of tempered distributions.
The real Gel’fand triple:

S(R) ⊂ L2
R(R, dt) ⊂ S ′(R) (2.7)

is our starting point. Since the inner product of L2
R
(R, dt) and the canonical

bilinear form on S ′(R) × S(R) are compatible, they are denoted by the same
symbol 〈·, ·〉. For simplicity, the complexification of (2.7) is denoted by

S ⊂ H := L2
C(R, dt) ⊂ S ′. (2.8)

(Throughout this paper L2(· · · ) means the complex L2-space.) The canonical C-
bilinear form on S × S′ is denoted again by 〈·, ·〉 so the norm of H, denoted by

‖ · ‖0, satisfies ‖ξ‖20 = 〈ξ, ξ〉 for ξ ∈ H.
It is well known that the topology of S is defined by means of the differential

operator A = 1+ t2−d2/dt2 acting in H. For each p ≥ 0,Sp = Dom(Ap) becomes
a Hilbert space with norm ‖ξ‖p = ‖Apξ‖0 and S−p denotes the completion of H
with respect to the norm ‖ξ‖−p = ‖A−pξ‖0. Then we obtain a chain of Hilbert
spaces:

· · · ⊂ Sp ⊂ · · · ⊂ S0 := H ⊂ · · · S−p ⊂ · · ·
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Note that S−p is identified with the strong dual space of Sp through the canonical
C-bilinear form. Finally, we have topological isomorphisms:

S ∼= proj lim
p→∞

Sp , S ′ ∼= ind lim
p→∞

S−p.

Let X = {Xt, t ≥ 0} be an S ′-valued Lévy process such that the characteristic
function of the random variable X1 ( with distribution µL) take the form

µ̂
L
(ξ) = exp

{
− 1

2
〈Bξ, ξ〉+

∫

S′

[ei〈x,ξ〉 − 1− i〈x, ξ〉]ν(dx)
}
, ∀ξ ∈ S,

where 〈·, ·〉 is the S ′−S dual pairing, B ∈ L+(S,S ′) i.e., B is a continuous positive
definite S ′-valued operator acting on the Schwartz space S and ν is a Lévy measure
on S ′ satisfying that there exists p > 0, such that ν is supported in S−p and

∫

S′

|x|2−p ν(dx) <∞. (2.9)

(for more details about Lévy processes on Gel’fand triple, see [19]).
Now, for a given infinitely divisible distribution µ

L
on S ′ we will gives the

associated fractional Lévy white noise measure µα
L
. First of all, recalling that for

0 < α < 1
2 , the Riemann-Liouville fractional integral operator Iα is defined by

(Iαf)(x) =
1

Γ(α)

∫ ∞

x

f(t)(t− x)α−1dt

if the integrals exist for almost all x ∈ R.

Proposition 2.4. (see [19]) There exists an infinitely divisible probability measure
µα

L
on (S ′,B(S ′)) such that its characteristic function is given by

µ̂α
L
(ξ) = exp

{
Ψα(ξ)

}
, (2.10)

with

Ψα(ξ) = −1

2
〈Bαξ, ξ〉+

∫

S′

[ei〈x,ξ〉 − 1− i〈x, ξ〉]να(dx), (2.11)

where Bα = ‖Iαχ[0,1]‖20B and for any A ∈ B(S ′)

να(A) =

∫

R

∫

S′

χA(Iαχ[0,1](s)x)ν(dx)ds.

The distribution µα
L

is then called the Fractional Lévy white noise measure and(
S ′,B(S ′), µα

L

)
will serve as the underlying probability space in our study.

3. The Kolmogorov Isomorphism Associated to the Fractional

Lévy White Noise Measure

In the following, we fix the measure µα
L
defined via its Fourier transform in Eq.

(2.10). By direct computation, we find that the kernel q0 on S defined by

q0(ξ, η) := Ψα(η − ξ)

is conditionally positive definite. According to the Schoenberg correspondence [6,
Theorem 1.1.13], the kernel

k(ξ, η) := eΨα(η−ξ)
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is positive definite.

Lemma 3.1. There exists an index q such that for any p ≥ q, there exists a
positive definite self-adjoint operator

√
Bα on Sp such that

〈Bαφ, ψ〉 =
〈√

Bαφ,
√
Bαψ

〉
Sp

, ∀φ, ψ ∈ Sp.

Proof. Let f(φ, ψ) = 〈Bαφ, ψ〉 for φ, ψ ∈ S. Then we can see that there exist
C > 0 and q ≥ 0 such that

f(φ, φ) ≤ C‖φ‖2q, ∀φ ∈ S.
Hence

|f(φ, ψ)| ≤ C‖φ‖q‖ψ‖q ≤ C‖φ‖p‖ψ‖p, ∀φ, ψ ∈ S, p ≥ q.

Therefore f can be extended to become a symmetric continuous bilinear form on
Sp × Sp. As f(φ, ·) ∈ S−p for any φ ∈ Sp, it follows from Riesz’s representation
theorem that there exist Bαφ ∈ Sp such that

f(φ, ψ) = 〈Bαφ, ψ〉Sp
, ∀ψ ∈ Sp.

Finally, using the fact that Bα is a positive definite self-adjoint operator on Sp

and hence
√
Bα is well-defined and we get

f(φ, ψ) =
〈√

Bαφ,
√
Bαψ

〉

Sp

, ∀φ, ψ ∈ Sp. �

Notations 3.2. Let ξ ∈ S, we shall use the following notations:

(i) eξ ∈ L2(µα
L
) is the function associated to ξ given by

eξ(x) := ei〈x,ξ〉, x ∈ S′ (3.1)

(ii) ρξ be the function defined by

ρξ(x) := ei〈x,ξ〉 − 1 (3.2)

and

K0 := closed linear span of {ρξ , ξ ∈ S} ⊆ L2(να). (3.3)

(iii) uξ the vector in Sp ⊕K0 given by:

uξ =
√
Bαξ + ρξ ∈ Sp ⊕K0. (3.4)

Theorem 3.3. The linear operator Uα such that for all ξ ∈ S,
Uα : Γ(Sp ⊕K0) ∋ eΨα(ξ)Exp(uξ) 7−→ eξ ∈ L2(µα

L
) (3.5)

is a unitary isomorphism from the Fock space Γ(Sp ⊕ K0), over Sp ⊕ K0, onto
L2(µα

L
).

Proof. In the notations of Theorem 2.3 we choose:

X = S, k(ξ, η) = eΨα(η−ξ), q0(ξ, η) = Ψα(η − ξ).

Then, using the expression (2.11) for the Lévy-Khintchine function, one has
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q0(ξ, η) = Ψα(η − ξ)

= −1

2
〈Bα(η − ξ), η − ξ〉+

∫

S′

[ei〈x,η−ξ〉 − 1− i〈x, η − ξ〉]να(dx).

Thus, using Lemma 3.1 with the above choices, the kernel q defined by (2.6) is
given by

q(ξ, η) = Ψα(η − ξ)−Ψα(−ξ)−Ψα(η)

=
1

2
〈Bαξ, η〉+

1

2
〈ξ, Bαη〉+

∫

S′

ρξ(x)ρη(x)να(dx)

=
〈√

Bαξ,
√
Bαη

〉
Sp

+

∫

S′

ρξ(x)ρη(x)να(dx), (3.6)

where ρξ(x) = ei〈x,ξ〉 − 1. The right hand side of (3.6) suggests a natural choice
for a Kolmogorov decomposition of the kernel q. On the other hand there exists
a subset S0 ⊆ S such that {ρξ, ξ ∈ S0} is a linearly independent. Then one can
see that the first term of the sum is a scalar product on Sp and the second, due
to the linear independence of the ρξ, ξ ∈ S0 extends to a scalar product on the
space K0, defined by (3.3). The complexification of the inner product (3.6) gives
a scalar product on the space

K := Sp ⊕K0 (3.7)

with inner product

〈·, ·〉K := 〈·, ·〉 := 〈·, ·〉Sp
+ 〈·, ·〉L2(να). (3.8)

From the definition of K0 it is clear that the range of the map (3.4) is total in
Sp ⊕ K0. Therefore the pair (K, u·) defined respectively by (3.7) and (3.4) is a
Kolmogorov decomposition of the kernel q. Passing to the exponential space Γ(K)
of K the exponential kernel of the scalar product (3.8) is:

〈
Exp(uξ),Exp(uη)

〉
= e〈uξ,uη〉 = eq(ξ,η).

On the other hand we have

eΨα(η−ξ) =

∫

S′

e−i〈x,ξ〉ei〈x,η〉µα
L
(dx) = µ̂α

L
(η − ξ) = 〈eξ, eη〉L2(µα

L
)

and the family {eξ, ξ ∈ S} is total in L2(µα
L
). It follows that, if we define the

linear map

Uα : Γ(K) = Γ
(
Sp ⊕K0

)
−→ L2(µα

L
)

by linear extension of

Uα

(
eΨα(ξ)Exp(uξ)

)
= eξ, ξ ∈ S,
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then we get

〈eξ, eη〉L2(µα
L

)
= µ̂α

L
(η − ξ) = eΨα(η−ξ)

= eq(ξ,η)+q0(ξ,0)+q0(0,η)

= e〈uξ,uη〉+Ψα(ξ)+Ψα(η)

=
〈
eΨα(ξ)Exp(uξ), e

Ψα(η)Exp(uη)
〉
Γ(K)

. �

Lemma 3.4. If the Lévy measure να has finite second order moment, i.e.,
∫

S′

|〈x, η〉|2να(dx) < +∞, (3.9)

then K0 = L2(να).

Proof. Let f ∈ L2(να) satisfy

〈ρξ, f〉 =
∫

S′

ρξ(x)f(x)να(dx) = 0, (3.10)

and consider the function

F (ξ) :=

∫

S′

ℓξ(x)να(dx)

where ℓξ(x) = (e−i〈x,ξ〉 − 1)f(x). For η ∈ S, one can see that the Gâteaux
derivative of F in direction η is given by

DηF (ξ) = lim
t→0

F (ξ + tη)− F (ξ)

t
:=

d

dt

∣∣∣
t=0

Gξ,η(t),

where Gξ,η(t) = F (ξ + tη). To prove that t 7−→ Gξ,η(t) is derivable it is sufficient
to check the two following conditions

(i) t 7−→ ℓξ+tη(x) is derivable on R for να-a.e. ξ, η ∈ S.
(ii) ∂

∂t
ℓξ+tη(x) exists on R for να-a.e. ξ, η ∈ S and | ∂

∂t
ℓξ+tη(x)| is dominated

by a να-integrable function ωη(x), independent of t.

Condition (i) is easily checked and we have
∣∣∣ ∂
∂t
ℓξ+tη(x)

∣∣∣ = |i〈x, η〉e−i〈x,ξ+tη〉f(x)| = |〈x, η〉f(x)| =: ωη(x).

But ∫

S′

ωη(x)να(dx) ≤
( ∫

S′

〈x, η〉2να(dx)
) 1

2
(∫

S′

|f(x)|2να(dx)
) 1

2

< +∞.

This gives (ii). Then from (3.10), we deduce that
d

dt

∣∣∣
t=0

Gξ,η(t) = 0. Hence

DηF (ξ) = −i
∫

S′

〈x, η〉e−i〈x,ξ〉f(x)να(dx) = 0

which is equivalent to σ̂ξ(x) = 0, where the the signed measure σξ is given by

σξ(dx) = 〈x, ξ〉f(x)να(dx).
This gives that σξ is the null measure which implies that f = 0. �
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4. Generalized Fractional Lévy White Noise Field Operator

Recall that the bosonic creation and annihilation operators are defined, on the
total set

{v1 ⊙ · · · ⊙ vn ∈ H⊙n, v1, . . . , vn ∈ H}
as follows: for u ∈ H,

A+(u) : v1 ⊙ · · · ⊙ vn ∈ H⊙n 7−→
√
n+ 1 u⊙ v1 ⊙ · · · ⊙ vn ∈ H⊙(n+1), (4.1)

A+(u)Φ = u,

A−(u) : v1 ⊙ · · · ⊙ vn ∈ H⊙n 7−→ 1√
n

n∑

i=1

〈u, vi〉v1 ⊙ · · · ⊙ v̂i ⊙ · · · ⊙ vn ∈ H⊙(n−1),

(4.2)

A−(u)Φ = 0,

where .̂ denotes omission of the corresponding variable and Φ is the vacuum vector.

Definition 4.1. The differential second quantized Λ(T ) of a self–adjoint operator
T acting on a Hilbert space H is defined via the Stone theorem by

Γ(eitT ) =: eitΛ(T ), t ∈ R,

where for an unitary operator X,Γ(X) is the second quantized of X .

The creation, annihilation operators and second quantized operator of T act on
the domain of the exponential vectors as follows:

A−(u)Exp(x) := 〈u, x〉Exp(x), A+(u)Exp(x) :=
d

ds

∣∣∣
s=0

Exp(x+ su) (4.3)

and

Γ(T )Exp(x) := Exp(Tx).

It follows that if x ∈ Dom(T )

Λ(T )Exp(x) = −i d
ds

∣∣∣
s=0

Exp(eisTx) = A+(Tx)Exp(x). (4.4)

Definition 4.2. For ξ ∈ S, let qξ be the multiplication operator by the random
variable 〈·, ξ〉 in L2(S ′, µα

L
), i.e.,

(qξf)(x) := 〈x, ξ〉f(x), f ∈ L2(S ′, µα
L
) , x ∈ S′.

Define the operator Qξ on Γ(Sp ⊕K0) by

Qξ := U−1
α qξUα

where Uα is the isomorphism defined by (3.5). Since µα
L
is a probability measure

on S ′, qξ is self–adjoint (see [29] Proposition 1, chapter VIII. 3) and

eitQξ = U−1
α eitqξUα, t ∈ R.

Moreover Qξ is called the generalized fractional Lévy white noise field operator.
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Lemma 4.3. The one–parameter unitary group

t 7→ eitQξ

acts on the total set
{
Exp(uη), η ∈ S

}
as follows:

eitQξExp(uη) = eΨα(η+tξ)−Ψα(η)Exp(utξ+η). (4.5)

Proof. By using the action of the isomorphism Uα on the exponential vector we
get

eitQξExp(uη) = U−1
α eitqξUαExp(uη) = U−1

α eitqξ
(
e−Ψα(η)eη

)

= e−Ψα(η)U−1
α

(
eitqξei〈·,η〉

)

= e−Ψα(η)U−1
α

(
ei〈·,tξ+η〉

)
= e−Ψα(η)U−1

α

(
etξ+η

)

= e−Ψα(η)eΨα(tξ+η)U−1
α

(
e−Ψα(tξ+η)etξ+η

)

= e−Ψα(η)eΨα(tξ+η)Exp(utξ+η)

= eΨα(η+tξ)−Ψα(η)Exp(utξ+η),

which completes the proof. �

Lemma 4.4. The following statements are equivalent:

(i) The second moment of µα
L
is finite.

(ii) The vacuum vector is in the domain D(Qξ) of Qξ.
(iii) There exists η ∈ S such that Exp(uη) is in the domain D(Qξ) of Qξ.
(iv) The total set

{
Exp(uη), η ∈ S

}
is in the domain of Qξ.

Proof. The domain D(Qξ) of the generalized fractional Lévy white noise field
operator is defined by

D(qξ) :=
{
F ∈ L2(µα

L
), 〈·, ξ〉F ∈ L2(µα

L
)
}
.

Therefore, given η ∈ S, Exp(uη) ∈ D(Qξ) if and only if

+∞ > ‖Qξ

(
Exp(uη)

)
‖2 = ‖U−1

α QξUα

(
Exp(uη)

)
‖2 = ‖qξ

(
e−Ψα(η)eη

)
‖2

= e−2ℜ(Ψα(η))〈eη, q2ξeη〉

= e−2ℜ(Ψα(η))

∫

S′

〈x, ξ〉2µα
L
(dx)

= e−2ℜ(Ψα(η))〈Φ, Q2
ξΦ〉Γ(K),

from which the lemma immediately follows. �
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Proposition 4.5. If the second moment of µα
L
is finite, the generalized fractional

Lévy white noise field operator Qξ acts on the total set {Exp(uη), η ∈ S} as
follows:

Qξ

(
Exp(uη)

)
=

(
A+(hξ,η) +A−(hξ,η) + γ(ξ, η)

)
Exp(uη),

where

hξ,η := −i
√
Bαξ + qξeη and γ(ξ, η) = −2ℜ(〈hξ,η, uη〉).

Proof. By using Eq. (2.11) we have

Ψα(η + tξ)−Ψα(η) = t2〈Bαξ, ξ〉 − t〈Bαξ, η〉
+

∫

S′

(ei〈x,η+tξ〉 − ei〈x,η〉 − it〈x, ξ〉)να(dx).

Thus one can take the derivative at t = 0 of equation (4.5) to obtain

iQξExp(uη) =
[
− 〈Bαξ, η〉+

∫

S′

(
i〈x, ξ〉ei〈x,η〉 − i〈x, ξ〉

)
να(dx)

]
Exp(uη)

+
d

dt

∣∣∣
t=0

Exp(uη+tξ). (4.6)

But with notation fξ,η(t) = uη+tξ − uη one has

d

dt

∣∣∣
t=0

Exp(uη+tξ) =

+∞∑

n=0

1√
n!

lim
t→0

(
uη+tξ

)⊗n − (uη)
⊗n

t

=

+∞∑

n=0

1√
n!

lim
t→0

n∑

k=1

(
n

k

)
fξ,η(t)

t
⊗̂(fξ,η(t))

⊗̂(k−1)⊗̂(uη)
⊗̂(n−k)

=

+∞∑

n=0

√
n√

(n− 1)!
f ′
ξ,η(0)⊗̂(uη)

⊗̂(n−1).

Note that

f ′
ξ,η(0) = lim

t→0

uη+tξ − uη
t

= lim
t→0

√
Bα(η + tξ)−

√
Bαη

t
⊕ ρη+tξ − ρη

t

=
√
Bαξ ⊕ iqξeη

= ihξ,η.

Then from (4.1) we conclude that

d

dt

∣∣∣
t=0

Exp(uη+tξ) =

+∞∑

n=0

√
n√

(n− 1)!
ihξ,η⊗̂(uη)

⊗(n−1) = iA+(hξ,η)Exp(uη).

On the other hand, using the fact that

〈uη, hξ,η〉 = −i〈Bαξ, η〉+
∫

S′

(
〈x, ξ〉 − 〈x, ξ〉ei〈x,η〉

)
να(dx),
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we get

iQξExp(uη) =
d

dt

∣∣∣
t=0

Exp(uη+tξ)− i〈uη, hξ,η〉Exp(uη)

=
[
− 2iℜ(〈hξ,η, uη〉) + i〈hξ,η, uη〉

]
Exp(uη)

+
d

dt

∣∣∣
t=0

Exp(uη+tξ)

=
(
iγ(ξ, η) + i〈hξ,η, uη〉

)
Exp(uη) +

d

dt

∣∣∣
t=0

Exp(uη+tξ).

Hence we obtain

QξExp(uη) = γ(ξ, η)Exp(uη) + 〈hξ,η, uη〉Exp(uη) +A+(hξ,η)Exp(uη)

= A+(hξ,η)Exp(uη) +A−(hξ,η)Exp(uη) + γ(ξ, η)Exp(uη).

�

Theorem 4.6. Assume that the second moment of µα
L
is finite. Then under the

identification

Γ(Sp ⊕ L2(να)) ≡ Γ(Sp)⊗ Γ(L2(να))

Exp(g ⊕ f) ≡ Exp(g)⊗ Exp(f), (4.7)

the generalized fractional Lévy white noise field operator Qξ takes the form

Qξ = Q
G,ξ,α

⊗ 1 + 1⊗Q
CP,ξ,α

,

where

Q
G,ξ,α

= A+(−i
√
Bαξ) +A−(−i

√
Bαξ)

Q
CP,ξ,α

= A+
να
(qξ · 1) +A−

να
(qξ · 1) + Λνα(qξ) (4.8)

and A+
να
, A−

να
,Λνα are respectively the creation, annihilation and preservation op-

erators in the Fock representation of L2(να).

Proof. By using Proposition 4.5 and the identification (4.7), we have

QξExp(uη) =
d

ds

∣∣∣
s=0

Exp(uη + shξ,η)

+
〈
− i

√
Bαξ + qξeη,

√
Bαη + ρη

〉
Exp

(√
Bαη + ρη

)

−2ℜ
(
〈hξ,η, uη〉

)
Exp

(√
Bαη + ρη

)

=
d

ds

∣∣∣
s=0

Exp
(
(
√
Bαη + s(−i

√
Bαξ)) + (ρη + sqξeη)

)

+
(
〈−i

√
Bαξ,

√
Bαη〉+ 〈qξeη, ρη〉

)
Exp

(√
Bαη + ρη

)

−2ℜ
(
〈hξ,η, uη〉

)
Exp

(√
Bαη + ρη

)
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=
d

ds

∣∣∣
s=0

(
Exp

(√
Bαη + s(−i

√
Bαξ)

)
⊗ Exp(ρη + sqξeη)

)

+
(
〈−i

√
Bαξ,

√
Bαη〉+ 〈qξeη, ρη〉

)
Exp

(√
Bαη + ρη

)

−2ℜ
(
〈hξ,η, uη〉

)
Exp

(√
Bαη + ρη

)

=
( d

ds

∣∣∣
s=0

Exp
(√

Bαη + s(−i
√
Bαξ)

))
⊗ Exp(ρη)

+Exp
(√

Bαη
)
⊗
( d

ds

∣∣∣
s=0

Exp(ρη + sqξeη)
)

+〈−i
√
Bαξ,

√
Bαη〉Exp(

√
Bαη)⊗ Exp(ρη)

+〈qξeη, ρη〉Exp(
√
Bαη)⊗ Exp(ρη)

−2ℜ(〈hξ,η, uη〉)Exp(
√
Bαη)⊗ Exp(ρη).

Hence by Eq. (4.3) we have

QξExp(uη) =
(
A+(−i

√
Bαξ)Exp

(√
Bαη

))
⊗ Exp(ρη)

+Exp
(√

Bαη
)
⊗
(
A+

να
(qξeη)Exp(ρη)

)

+
(
A−(−i

√
Bαξ)Exp

(√
Bαη

))
⊗ Exp(ρη)

+Exp
(√

Bαη
)
⊗
(
A−

να
(qξeη)Exp(ρη)

)

+Exp
(√

Bαη
)
⊗
(
− 2ℜ(〈hξ,η, uη〉)Exp(ρη)

)

=
[(
A+(−i

√
Bαξ) +A−(−i

√
Bαξ)

)
Exp(

√
Bαη)

]
⊗ Exp(ρη)

+Exp
(√

Bαη
)
⊗
[(
A+

να
(qξeη) +A−

να
(qξeη)

−2ℜ
(
〈hξ,η, uη〉

))
Exp(ρη)

]
. (4.9)

Notice that in general the constant function 1 /∈ L2(να). However, if the second
moment of µα

L
is finite, then qξ · 1 ∈ L2(να) and by using the fact that

−2ℜ
(
〈hξ,η, uη〉

)
= −(〈qξeη, ρη〉+ 〈ρη, qξeη〉),

qξeη = qξ · 1 + qξρη , 〈ρη, qξeη〉 = −〈qξ · 1, ρη〉

and with Eq. (4.4), we obtain

(A+
να
(qξeη) +A−

να
(qξeη) + γ(ξ, η)

)
Exp(ρη)

= A+
να
(qξ · 1 + qξρη)Exp(ρη) + 〈qξeη, ρη〉Exp(ρη)

−
(
〈qξeη, ρη〉+ 〈ρη, qξeη〉

)
Exp(ρη)

= A+
να
(qξ · 1)Exp(ρη) + Λνα(qξ)Exp(ρη) +A−

να
(qξ · 1)Exp(ρη).

188 MOUNIR DAHWATHI, SOUHEYL JENDOUBI, HABIB OUERDIANE, AND ANIS RIAHI



GENERALIZED FIELD OPERATOR ASSOCIATED TO THE FLP

Finally, the previous equation and (4.9) yields

Qξ =
(
A+(−i

√
Bαξ) +A−(−i

√
Bαξ)

)
⊗ 1

+ 1⊗
(
A+

να
(qξ · 1) +A−

να
(qξ · 1) + Λνα(qξ)

)

= Q
G,ξ,α

⊗ 1 + 1⊗Q
CP,ξ,α

. �
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espaces de fonctions holomorphes à croissance exponentielle, J. Funct. Anal. 171 (2000)
1–14.

15. Gelfand, I. M. and Vilenkin, N. Ya.: Generalized Functions, Vol. 4, Academic Press, New
York and London 1964.

16. Guichardet, A.: Symmetric Hilbert spaces and related topics, Lect. Notes Math. 261,
Springer, Berlin, 1972.

17. Hida, T.: Analysis of Brownian Functional, Carleton Math. Lecture Notes No. 13, Carleton
University, Ottawa, 1975.

18. Hu, Y. and Øksendal, B.: Fractional white noise calculus and applications to finance. Man-
uscript 1999.

19. Huang, Z., Li, P.: Generalized fractional Lévy processes: a white noise approach, Stoch Dyn,
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