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Abstract

In this paper we give a rational approximation to the alternating harmonic
series, by applying a correction function to the series. The introduction of
correction function certainly improves the value of sum of the series and gives
a better approximation to it.
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INTRODUCTION

Commenting on the Lilavati rule for finding the value of circumference of a circle
from its diameter, the commentator Sankara refers to several important enunciations
from the works of earlier and contemporary mathematicians and gives a detailed
exposition of various results contained in them. Sankara also refers to various
infinite series for computing the circumference from the diameter. One such series
attributed to illustrious mathematician Madhava of 14th century is
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MADHAVA’S CORRECTION FUNCTION

For the Madhava series, rational approximation to the value of C (and hence for �)

may be obtained. The remainder term (-1)n 4d Gn where 2
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the condition Gn + Gn+1 = 
1

2 1�n
has been augmented to the series for C by Madhava

to get a better approximation. The introduction of the remainder term definitely
improves the value of C and is very effective in giving a better approximation for
it.

RATIONAL APPROXIMATION OF ALTERNATING
HARMONIC SERIES

The Alternating Harmonic Series (abbreviated as AHS) is convergent and converges
to log 2.
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Proof: We have AHS is convergent and converges to log 2.

If G
n
 denotes the correction function after n terms of A H S,

then it follows that 1
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For |r| > 1, the magnitude of the error function increases
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Hence the proof.

Remark 1

Clearly 
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Remark 2

We have
1 1 1

2 2 2 1 2
� �

� �n n n

That is
1 1 1 1

2 1 2
� �

� nG
n n

Theorem 2

The correction functions of AHS follow an infinite continued fraction
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By using the argument of minimizing error in theorem 1, it can be proved that
|E

n
| is a minimum function of n for A1 = k1 = 1

The second order correction function is Gn(2) = 
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Then it can be shown that |En| will be a minimum function of n

when 
3

3
2

36
9

4
� � �

k
A

k

The fourth order correction function is Gn(4) =

1
1

(2 1)
1

(2 1)
4

(2 1)
9

(2 1)
(2 1)

� �
� �

� �
� �

�

n
n

n
n

n

In general

The i th order correction function is
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Continuing this process we get the correction function follows an infinite
continued fraction pattern as follows.
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Corollary

The ith order correction function for AHS is the ith successive convergent of the

infinite continued fraction 
2 2 21 1 2 3

.
(2 1) (2 1) (2 1) (2 1) ...� � � � � � � �n n n n

Proof

The ith order correction function is
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Clearly Gn(i) is the ith successive convergent of the infinite continued fraction
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The correction functions and the corresponding error functions are tabulated
as follows.
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APPLICATION

If S
n
 denotes the sequence of partial sums of AHS and G

n
 denotes the correction

function after n terms of AHS, then the approximation of AHS while applying
correction function is shown in the following table.

We have ln2 = 0.6931471806 using a calculator
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Number of terms (n) S
n

S
n
 + (–1)n G

n

10 0.6456349206 0.6932530476
100 0.6881721793 0.6931473037
1000 0.6926474306 0.6931471807
10000 0.6930971831 0.6931471806
100000 0.6931421806 0.6931471806

From the table it is clear that the accuracy can be improved by using correction
function.

For n = 10, the approximation of series using successive convergents is shown
below

Correction function ln 2 Accuracy
Without correction function 0.645634920 1
G

n
(1) 0.6930033411 3

G
n
(2) 0.6934187322 5

G
n
(3) 0.6931471432 7

G
n
(4) 0.6931471806 10

The table shows that the successive convergents of the infinite continued
fraction of the correction function gives better approximation for the series.

CONCLUSION

The introduction of correction function gives better approximation for the series
and hence accuracy can be improved.
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