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THE SOLUTION OF DISPLACEMENT EQUATION OF
CONICAL SHELL

Huang-Yih

ABSTRACT

In this paper, the displacement differential equations of conical shell can be changed into the eight-order soluble
differential equation by introducing a displacement function. The general solutions of the equations are given by
using the generalized hvpergeometric function and applying the Bessel-Function for the axisymmtric problems.
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1. INTRODUCTION

Conical shell is widely used in engineering construction. For example ,designing vessel deals with the calculated
theory of conical shell. Because of the complexity of the equation of conical shell, however, the research of the
axisymmtric problems is more than that of the general bending problems of conical shell up to date. For the soluble
differential equations of conical shell, the extant documents are expressed by the deflection function and stress
function of shell (called the mixed solution) .Analyzing the combined structure, the author finds it difficulty to treat
the boundary condition of elasticity with the extant mixed solution of conical shell. Gained by contrast, taking the
displacement method has some advantages. Moreover, for the characteristic problem of shell as welle as the problem
of shell on elastic foundation, it is more effective to use displacement method. But, the systemic research about the
displacement solution of conical shell is less at present. This paper makes some attempt in the displacement solution
of conical shell.

Starting from the general displacement differential equations of conical shell, introducing the displacement
function, the displacement equation system can be changed into a eight-order differential equation. Meantime, the
entire stress components and displacement components in shell are expressed by displacement function. The general
solutions of the partial differential equations are given by the hypergeometric function and expressed by the Bessel
function for the axisymmtric bending problems.

1. The Basic Relations of Conical Shell

Conical shell acted the surface loads satisfies the basic relations as follows:
in which, each component and its direction is shown in Fig. 1.

the equilibrium defferential:
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H=(1-pKr

=y K= )

2. THEDISPLACEMENT FUNCTIONAND THE BASIC EQUATIONS

Using Mushtari-Donnell simplification, we get the following displacement equations:
L'"(u) + L*(v) + L*(w)+q,/D=0
L*'(w) + L2V + L*(w) +qg,/D=0
LP'w+L2 v+ w+qg,/K=0

in which

I_n:82 10 1 1-p 1 &

0 xo0s & 2 Scos’dhao’

2 Scospdsd® 2 S cosdh o

L3 _ sin ¢ a_ sin ¢ 'L21_1+p. 1 0’ +3—u 1 i

" scos s Scosd 2 scos¢ 0s00 2 s'cosdp oo’
n o 1 o 1 1 0 5 sing 0
L~ = —— ;L7 = —
2 632 sos & T S cosh cosd 90?” s’ cos ¢ 00

10 1 » D 1 0
gd{ W os S4j K g¢s4 cos¢ 00

o 10 1 &Y D, 1

¥ =| 4 ——F——— | +—1g%—.
(832 sos s cos2¢aezj K909

Introducing the conversion, we assume:
— gcosh

in which, t is a new independent variable. Thus,the equations (2-1)becomes:

2 2 2 _
6—2 1= ué2—uc0s2<1>+l+u+av—3 M@cosd)
ot 2 00 2 otod 2 00

ow , qr’
+Hp—-w =
[u P cosd)jsmd) 5
2 _ 2 2
1+u6u+3 ua—ucosd)+1 u@;/ 6_2_1 Hycos? ¢
2 0too 2 06 2 ot 00 2
2
+a—Wsin<1)=—q2r
o0 D

00> | at* 00°) K ot

2 2 2 2 4
{(%—2cos¢} +8_}[6 W+6 WJ+2r2sin¢[u@+ucos¢+%+Wsin¢}= q;i/

(2.1)

(2-2)

(2-3)
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where r is the radius of parallel circle (Fig. 1). By means of Eq. (2-2),we yield:
r=scos ¢ =€%cos ¢

For the coordinate (t, ¢), Egs. (2-3) a,b.are the constant coefficient equations. As a result, we can introduce the
displacement functions U(t, 8) when the relations between the displacement components of conical shell and the
function U(t, 0), exist, i.e.,

u=—sin gL, (U) - Ly () + Ly (v)
v=—singl(U) + L, (w,) - Ly (v) (2-4)
w=L,U)

The Egs.(2-3,a,b) satisfy naturally. Here, each differential operator is ,respectively,

3 3 2 2
L 0 0 (a——a—jcoscb—u%coszdﬁcosgd)

3 3 2
+(1- u)a—cose + icos2 )

t:2-|— —+_
L= o 2100 20

e Y (&8 &
Ltv:(ﬁ-’-WJ —2[¥—w](:052¢+c054¢

e Y (&8 &
Ltv:(ﬁ-’-WJ —2[¥—w](:052¢+c054¢

l-pno® & 1-p
b= w2 o 25)

¢ l+p & +3—u8

w = e 2 oo

¢ _l+p & 3-p o

Y = aee 2 oo st
¢ 1-p o’

et

and y (t, 0), y,(t, 0) are the functions concerned with loads ¢, q,, respectively. they are the solutions of equations
as follows:

(i=12) (2-6)

Generally, there is no use getting the general solution of Eq. (2-6). We only obtain a arbitrary particular integral,
because the two former formulas of Eqgs. (2-3)are satisfied naturally even this case. The particular solution of Egs.
(2-6) is given behind.

Substituting the solutions (2-4) into Eq. (2-3c), we obtain the equation which is satisfied by the displacement
function U(t, 0), i.e.:

LILL(U) +(1-u?)(D/K)r sin L4 (U) = Q(t,0) (2-7)
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in which ,each differential operator:

5 2 Py o o? o o2
- ZME‘“"“’J ELTEJ b LG 9

free term:

4 3 3 2 2
Q(t,0) =" +1_—HBrzsin¢{ o __0 +(a —a—jcosd)

K ' 2 K Mot oo Lo o0
5 o o o P
—HECOSZ ¢ —cos’ ¢}W1 J{(Z+ 1) 5100 +%— 1-p) 5100 COS¢+%COSZ ¢:|\V2} (2-9)

The formulas (2-4) and Egs. (2-7) are the basic equations expressed by the displacement function U(t, 0) for the
general problem of bending conical shell. From these general relations , we can obtain, the two result in the limif:

b
1. if (I)—)E, then cos ¢ —> 0, sin ¢ — 1; r —> @, i.e. it coincides with cylindric shell. Noting the differential

operator of Eq. (2-5), we obtain from formulas (2-4)

A R
Wor " aoe?
ou  ou
v=—(2+ -
e~ @
2 2 \?
W= 6_2+8_2 U
ot° 00
the basic equation (2-7) can be reduced to :
1-p? o'u
VVU + Cz“ i =Qo) (b)

When D/K = 12/h, The formular(a) and Eq.(b) are given by V. Z. Vlacov for cylindric shell. In which,a is the radius
of cylindric shell, c = h/12a.

2. if ¢ > 0, then cos ¢ — 1, sin ¢ — 0; i.e. it coincides with circular plate. In this case, we obtain from (2-4) and
(2-7):

u=-L, (w)+ L, (v,)

V= Ltvp, (\Vl)_l—t\/p2 (Wz) (C)
L(w) = _%
Li(w)=q,r‘/K (d)

We can prove that the formular (c) is the basic equation of circular plate in plane stress and the formular (d) is
the basic equation of circular plate in transverse bending.

Obviously, the displacement function and the basic equation of cylindric shell or circular plate are all directly
derived from the general relations in this paper.
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Substituting the original independent variable s, formular (2-4) and Eq. (2-7) become into:
U =—singcos’ oL5(U) - cos” oL, (w,) +cos® L, (v,)

V= —singeos’ §L3U) +cos® oL, () — cos” oL, (v) (2-10)

ow 0
W= 4 L (U , — = dh—1S U
Cos (I) w( ) 5 Cos ¢a Lw( )

L)+ 2 g1 0) s 0) 2-11)
_2gS’sec’ ¢ .
L(v)= (1D (i1=12) (2-12)

here, we have used relation r = s cos ¢. Each differential operator in above formulas is

0’ &’ &’
L =p| 8 =—=+35 — |- A, +1
o [ os sZJ P

0 0’ 0 o’ 0’ 0
L = {(2+u) (Sa—sz S— SJ 2575 o+(1- u)Sasae 69}604)

L =A—2A, +1

s 1‘“
Lo, =—Ha + 1

s l+p o 3-p 0
b = [2 osing 2 ae}secd’ (2-13)

1+u6
S A - I
L = A= grsee ¢

. o ) & s s
L1=|:(S§—2) +£:|A1, L2=Lw

o? 0
LS =A,(A, -1, A, =sf— +s—
} » oS’ 0s

2

0
A=A, +ﬁsec2 o

2

A, =A, —;FSf:c2 o

free term is
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s*sec*¢ 1-pD .
Q(s,0)= % " ¢+ 2“ESZ sec’ ¢sin
o’ , 0 o’ l-uD 5, 4, .
{u(s 6_S3+3S ?J— gy —+A, l}wﬁrTE-S sec” ¢psind
o o 0 oy .
{§+(2+u)(§g+s%) (1- )S—S+1} 692

We make and vanished in formular (2-14) only when act normal load q (q,= g, = 0) on shell.

It is necessary to consider the boundary condition when solving the basic equation(2-11).The boundary conditions
of conical shell, generally speaking , are several types as follows , i.e. An the boundary s = s ;

u=u@®)or T, =T"(6)

v=\20) or T=TO)T =T"(0) (2-16a,b)
w=WA(0) or V, =V"(8) (2-17a,b)

ow (ow) .

g{g) () or M, =M"(6) (2-18a,b)

where the right top footnote “b”’indicate the corresponding boundary value given. The combination of Eq . (2-15a),
(2-16a), (2-17a)and (2-18a) is called as (generalized) fixed boundary, and the combination of Eq. (2-15b), (2-16b),
(2-17b) and (2-18b) is called as (generalized) free boundary, and the combination of Eq. (2-16a), (2-17a), (2-15b)
and (2-18b) is called as (generalized) simply supported boundary. On the special condition, if

b
U=V =w’ = (a%s) =0, and T]b =T" =V]b = l\/llb =0. the preceding several combinations can be reduced to the
following expressions, i.e.
Sl = — -0 oW —p.
clamped: u=0,v=0,w=0, AS 0;

free: T=0,T=0,V, =0, M, =0; (2-19)
simply supported: v=0,w=0, T, =0, M, = 0.
The boundary conditions of shell are also other combinations. Generally, they are not named specially.

By means of the geometric relations, the physical relations and formula (2-10) ,each component of internal
force and moment of conical shell is expressed by the displacement function U(s, 0) as follows:

—(1-*)Dsingoos’ ¢ LS (U)— “Dcos O L5p (W) + L3, (v) ]
—(1-p)Dsingeos’§ LS (U)—-=EDeos” [ L5, () + LS, ()]

T =(1-u*)Dsingeos’ § LS(U>——“Dcos O[5 (W) + L5, (v)]
M, =—Kcos*¢ L5 (U) (2-20)

H=-(1-wKcos'¢ L} U)
V,=-Kcos*¢ Ly (U)
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in which, each differential operator is

2

L5 = l{s—(A -+ 89 A, sec (I)}

. 1] o o’
L5, :g{sa—s(AI ~D+uA, -)+1+ “)Sasaez sec’ ¢}

Lo, = {u(A +1)—-(1+pA, +(3+u)s—}%sec¢

1
Li Zg(Aé + Ao)

5 _ 2 _ 1Y (1 63 2
Im—s{usasml D+ (8, =)= (- s sec ¢}

s 1 _d-wsl |2
Lszz_S|:(A1+l)+(l+u)A1 a u)sas}aesecd) (2-21)

s 0 0
L; = (SEAO —AO)%secd)

1
S

s _1 _a-msl |2
LTH—S[(AIHH(HH)AO a u)SaJ ~5sec

S00

| 0o o s
Ly, =?{A1 - H)(SE-F e ——sec’ ﬂ L,

2
Lo, =i{uA +(1- u)(S%-f- azsec2 ﬂLﬁv

< 1| o 0’ 5
L, =E{S£(A1—1)—(A2—l)—(1+u)sa - sec ¢}

00

L, == ! H ; —1)%5%4)}_‘”
s L2 0L g loa s
Ly, = 53{(865 lj{AlJr(l n) 7 sec ¢} AI}LW

Now, we reduce the basic equations and boundary conditions to nondimensional form. Introducing the

dimensionless amount as follows:
=Y. a=yp, v=y. w=Y],

3 2 392402
ﬂz%f tg’ ¢-|-1 v o= 3M, fzzsogég ¢-|-2’
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- sIM, = stg’d. ~ SIH
M, = , T= T, H= , .
2 K K K (2-22)
;SO L sy
V = , = , i:_lﬂ
1 K qn K qn \V f

B 4ﬁ3t 2 ] S
qizsngd’qi (i=1,2), a=4120-p?) 9o

then ,the formulas (2-10), (2-20) and (2-12) become
i=-singcos’ ¢ Li(WU)—cos’¢ Ly (§,)+cos’ ¢ L (F,)

U=—singeos’§ LiU)—cos*p L, (1) +cos’d L% (7,)
W=cos" ¢ I_?,‘V(U)

T = singeos’ 4L5.0) =086 L (90) + L (9]

T, =sinfeos oL (0) ~ 5 oseos™o L, () L5, (7))

T =—sind cos’ ¢ L7 U)- 2 i D cos’ ¢[|_$m (W) + L$p2 (\I/)] (2-23)

M, =~cos'¢ L3, (U)
M, =-cos’¢ L, (U)
H=~(1-pcos'¢ L} (WU)
Vy=—cos'¢ L)
L (F) =20+ pGosec’ ¢ (=12) (2-24)

where the symbol “o”” denotes nondimension. In this case, the basic equations (2-11) reduce the simple form:

L5 WU) +a’L5WU) = Q(ar,0) (2-25)
and from Eq.(2-14), the free term is
< o’ o’
Q(0,0) =G,a* sin* ¢+ 20 ctg’psec’ (I)sind){(x2 {u(oﬁ P 3o P J
0’ - .| 07 , 0 0
—-o——+A, -1y, +0" | —+(2+ +a—
dage? " ATl Wira {592 ( “)[a 20> ool
0 oy
—(1-woa—+1|—=2 -
( u)aaa ] P seccl)} (2-26)

In preceding formulas, the linear differential operators signal the top footnote “ ¢ ” indicate that the independent
variable s is substituted by the dimensionless independent variable « for the corresponding operators in Eq.(2-13)

and (2-21).
Now the dimensionless boundary conditions can be (written as)
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when o = o,

the fixed (generalized) boundary:

the free (generalized) boundary:
the simply supported boundary:

and the formulas (2-19) become naturally:
: 00 oW/ |
the fixed boundary: {u,v W, éa} =0
the free boundary: { [, TV, M, !=0
the simply supported boundary: {V~V,\7,-|:1, M,

3. TWO KINDSOF BOUNDARY VALUE PROBLEM

(2-27)

(2-28)

The general bending problem of conical shell acted arbitrary loads can be reduced to solving Eq. (2-25) under the

boundary conditions (2-26) or (2-27).

Now, we can write the Fourier’s series for (o, 0), g,(a, 0), g,(a, 0) and the given boundary value a°(0),

PO W), (W) 0. T°0). 7°0). M"©).

G (,0) = Go () + Y Gy (@) coskB + D Gy (a)sin kO (i =1,2,3)
k=1 k=1

[Ms

a°(0)=0,"+

=~
1l

8

Oy, coskO + > O, sin kO
k=1

7(0)=V," + >V, cosk®+ > U2 sinko
k=1

k=1

8

WP(0) =W, + > W, osk6+ZWEss1nk6
=

~\b ~ " ~\b -
(a—wj =(8—WJ b+2[a—wj cosk9+2(aw
oo, oaJ, =S\ 0o )y =\ o

coskO+ ZT sin kO

"©)=T¢ +

—h

’\TMs

b
) sin kO
ks

T (@)=T0+Y T, cosk0+> T sinko
k=1 k=1

VP (0) =V} + Z\Zic cosk6 + Z\Ztk’s sinko
k=1 k=1

(3-1a,b,c)

(3-2a)

(3-2b)

(3-2¢)

(3-2d)

(3-2¢)

(3-21)

(3-2g)
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M,°(0) =M, (9)+ZM

1ne cOs KO + i M’ sin k@
k=1
mt"—f G (0,0)d0 (i=1,2,3)
q,' = _[ G (o, 0)coskbdd (i =1,2,3)

|kc

(a) J' G (a,0)sinkodd (i =1,2,3)

[T T vlb,Mk]%j

Meantime, we can expand the functions

—h
. o
—
o
<
o
<
- o
L
w2
©,
=
=~
D
o
D

((at,0),%(at, 0), W(a1,0), T, (ct,0), T (1, 0), M, (t,0), M, (a1, 0), H (t,0),V (1, 0)
in the following form:

Uu=uU +lekccosk6+zukssink6
K=1 K=1
G=00+20kccosk9+20kssink9
K=1 K=1
V=V, + ZVKC cos ko +Z:\7ks sin ko
K=1 K=l
W=W, + Z\Tv osk6+ZW sin ko
K=1 K=l

z lkccosk€)+Z:'I:lkssink6
K=1
T,=T, + z osk6+z sin ko
K=1
T=T +Z:1:kC cosk6+2“1:ks sin kO
K=1

K=l

(3-2h)

(3-3)

(3-4)

(3-5)

(3-6)

(3-7)

(3-8)

(3-9)

(3-10)

(3-11)

(3-12)
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. l\7|10 +lekc cosk9+2l\7|lkssink6
K=1 K=1

M, coskO+ > M, sinkf
K=1

H, coskf+> H sinko
K=1

Where,U (o), U, (o) (k=1,2,3,......), U (a)(k=1,2,3,...... ),

Functions G\, G\,

(3-13)

(3-14)

(3-15)

(3-16)

(3-17)

are unknown function to be determined.

0,...,V, (o) are the derivable amount which can be obtained from functionsU(a), U, (o)

and U,_(a) . Functions ;, (), ¥, (@), () are connected with (o) by Eq.(2-24). Substituting formulas (4-6)

—(4-17) into (2-23) and introducing the operator

A (0}
8.()=a-"

we get relations as follows, compared with the coefficient of each term of angular series:

L’]kc : 3 3 2 2 2 lj(k

= —sin{cos 5, =&, +(M —w)d, — (M =1)| .

g, = Sinbeos’ g[S, 5, + (-5, (-1 7

- - J c 1 - y S

—cos’ d{l—u&i —(m° +1—H)} ‘f’lk + cos’ 4{26“ —3—“} m‘f”
2 2 1ks 2 2 Wch

Vie . 2 2 Uks
_ 2+wW)8 +(1-w)d — (M’ =1) |m ..
g +sm¢COS¢[( w3, +(1-pd, —( )] U,

3‘_“} cos’ d{Si —(1_—” m’ +1H {
2 2

o =cos* 9] 81 ~2(m +1)32 + (' -1)’ |

ks

\Vch
Wzks

I+p

+cos’ d{TS“ + m‘f’lks -

\Vlkc

U, k=12,

v —h

** =sin¢cos’ d)l[éi -m's; +(m2 —1)8&8“
o

ks

1
2(1+1)

k=0,1,2,---
k=12,

¥
Wzkc

+

}

1
2(1+u)

[—5i +(3+p)5“ —u(m2 —1)

| I—

13

2kc __ ke

3

cC G

sin ¢ cos’ d)l[f)i - Si] cos’ (I)l
o o

N

ks ks

2 1 3 2 2 2
cos ¢a{[5a+usa_(zm et +1)8, + (1))

%

U, k=0,1,2,--

(3-18)
k=0,1,2,...
K12 (3-19a,b)
k=0,1,2,...
K12 (3-20a,b)
(3-21 a,b)
\Illkc
Vi
(3-22 a,b)
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{[u8i+52 (m u 8 + :I + 2+u 52
\|/ k=0,1,2,
—(1-p)8, —(m’ 2“} (3-23 a,b)
\Vzkc
~kc . 3 1 3 2 UIG 1 > 1
L = —| 93, -0 L= —
i sin ¢pcos ¢oc[ M a] mUkc 2(1+u)cos (I)oc

{i[_uai (1), (e -1)] 5 5~ (2m st 1)5, (1)) “’} (24 ab)

\Vlkc Wzks
Mue _ ! U, k=0,1,2,
Mts——um4¢a{5i_(L105Q_an][éi—2(m2+08i (m _1)]U@|<=L2,. (325 ab)
Mac ! U, k=012,
L (82 +(1 uﬁa—m{][x—a(mknjﬁ (m _O]Umk=sz (3-26 )
Hy 1 U, k=0,1,2,
a =~ (mmeost b3 n)m] [80-2(m +1)o+(m 1) 5 7T Garan)
\71kc__COS4¢L[83 —252—(2— p) 2 a
5 = 7| 8. —28, )M, +nv (3-p) |
Iks a
J. k=012,
|:8i—2(m2+1)6§+(m2_1)2:|3~: k=12, (3-28 a,b)

Substituting formula (3-6) into Eq. (2-25). formula (3-7)~(3-16), (3-2a)~(3-2h) into the boundary conditions
(2-26), formula (3-17) into Eq.(2-24), we can yield two kinds of boundary value problem through comparing with
the coefficient of each term of trigonometric series:

The basic equations about first kind of problem are

(-o) 6. o 312 1)+ ([0

~ 3-29
a’ (8, -8, )U,, =Q, k=0,1,2, G-29)
the right side term is
(a) ~(a) Ctgzd) 24 2 3 2 > 2
=sec’ pa G + —2(1 +“) sec” ¢ sin o {[uéa +6. + (m H)Sa +(m 1)}
T+ M (24182 —(1-1)3, — (M =1)] G (3-30)
the corresponding boundary conditions are:
when o = a, :
fixed (generalized) side:
~ ~\b
U _Ult()c’ ~kC=WfC, _aWkC _(M) k=0,1,
oo o )\ (3-31)
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free (generalized) side:
¥ flicﬂ \71kc _\/lic’ Mlkczmlic k=0,1,"'
(3-32)

fks =T2 k=12,

simply supported (generalized) side:
W =W, Tie =Tiees My =Mpe k=0,1,2--
U=V k=1,2,-- (3-33)
The basic equations about second kind of problem are:
(si_mZ) (8. -2 =] [ 8t -2(m +1)87 +(m -1)" |0,
+a’ (8 =82 U, = Qe k=12, (3-34)

the right side term is

Q. =sec’ dpa ‘g + 2??iﬁ)sec3 dsin dpo’ {[u&; +35; +(m2 —u)éa +(m2 —1)]

T —m[ (2+10)82 ~(1-)3, —(m =1)] e (3-39)
the corresponding boundary conditions are
when o = a:
fixed (generalized) side:
- UIG’ Vks - Vks’ Wks Vvlk()s’
(6(0/) " k=12 (3-36)
free (generalized) side:
~1ks =-|:1isv ~lls =V~isv Mlks = Mlbls (3 37)
ke = kﬁ k=12,
simply supported side:
Wkszvvlk)s’ -I:Iksz-lzlisv Mlkszmlis 3 38
Vo= k=12, (3-38)
Moreover, the functions . (i=1, 2), y, (1= 1, 2) show the solution of equation
[6‘; —2(m2 +1)6i +(m2 —1)2}\!”“ =—2(1+p)sec’ g’ Qe
Viks Ol (3-39)
(i=12)

Generally, we only obtain the particular solution of Eq.(3-39). A arbitrary solution of Eq.(3-39) can be written

as integral form as follows

\Y'kc} —2(1+p)sec® o™ ”Ioczm 3docjoc Mg,

Viks
J‘a2m+lda.“a—m qlkc d(l (| _1 2)
q

iks

(3-40)



The Solution of Displacement Equation of Conical Shell

Thus, the general bending problems of conical shell are reduced to solving the basic equation (3-29.), under the
boundary condition (3-31) ~ (3-33) and the basic equation (3-39); under the boundary condition (3-36) ~ (3-38) and
equation (3-34), i.e. two kinds of boundary value problem.

4. THE GENERAL SOLUTION OF BASIC EQUATION

At first, we discussed the solution about first kind of basic equation which is a variable coefficient eight-order
differential equation. Applying interchangeability of operator d(:), Eq. (3-29) can be rewritten as more compact
form:

8
i=1

(6(1 _Xi pkc +OLZH(8Q +51ka :ch (k=0,1,2,"') (4-1)

Where the coefficient Xi, a Is, respectively

s=m A =-m A, =m-1 A, =-m-1 (4-2)
0

The solution of Eq. (4-1) can be expressed:
Ui =Ug +Ug; (4-32)

in whichljl'jC is the homogeneous solution andljk‘(’: is the particular solution, they satisfy the equation as follows,

respectively

T1(5.-% )00+ T[(5, +& 05 =0
i=1

i=1

8 o o - _ (4-3)
H(Sa =i )sz +a H(Sa +4a )sz = Q¢
i=1 i=1
Eq. (4-3) can also reduced to the generalized hypergeometric equation. For this, we assume
1
a=4ig2 UP =¢g'n" (4-4)

Where, & is a new independent variable and n" is a unknown function, A is a waiting determination constant and
P n g

i =+/—1 - Now, we define a new operator

64»=@%§ (4-5)

and pay attention to the relations:
5, ()=2"8,() &,(&n")=¢"(5,+1)n"
because r is a positive integer, Eq. (4-3a) can be rewritten
8 4
[1(3:+2 =2 n" €[ ](8. +2+an" =0 (@)
i=1 i=1

in which, each parameter is

3 (4-2)
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Thus, we can determine the constant which satisfies the equation as follows
8
[1(x-2)=0 (4-6)
i=1
From this, we obtain eight values of the parameter
A=, (i=1,2,---,8) (4-7)

it, can be obtained from the formula (4-2). In Eq.(a), we let the parameter be a arbitrary value given by formula
(4-7). If L = A, for example, then the equation (a) reduce to the generalized hypergeometric equation

H(Sé +B, ~1)n" _§H(5a +a/n"=0 (4-8a)

in which the coefficients 3, and &', are concerned with the coefficient

B, =1+h, A, (j=0,12,-7)

& =g+ (i=12,-,4) (4-9)

Similarly, the equation (4-3a) reduces to nonhomogeneous generalized hypergeometric equation letting Uki’: be

equal to £nP:

H(Sa +B; - 1)11p - QH(& + a()ﬂp = (%j £ Qe (4-8b)

j=0
We discuss the solution of the homogeneous equation (4-8a) at first. The solution of Eq. (4-8a) are directly
concerned with the property of the coefficient Bj. According to the theory of the generalized hypergeometric equation,
if the difference between two arbitrary parameters, B,,---,B, (i.eA,,A,,A,,---A,) is not integer or zero, the solution of
Eq. (4-8a) is

nh:4F7(a1'""vaz:; BI’BZ""B7; E.>) (4_10)

Here, ,F, (a{ oo ans BraBysBos &) is a generalized hypergeometric function and can be expressed by infinite
series as follows:

4
.. 1la]
4F7(a1"---’a‘;; BI’BZ"”B79 Z ,jl

= 4-11
n=0 |:BJ :'n ( )
j=1
This series is convergent for a arbitrary value of &. In which, [a] is:
[a] =a(a+1)(a+2)(a+ n—l):%

Here, I'(@) is a Gamma function. If noting $, = 1 and n! = [1] , the solution (4-10) can be directly rewritten by
means of the formula (4-11)

-

[a'+1-B,]
L é” v=L2,---,7)

(B +1-B,],

lﬁvw
R

(4-12)

-

Il
o

i
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Using the formula (4-9) and noting the relation of subscript between the coefficients 3 and
i=j+1
weassumeV+1=e
From the formula, we yield
B=1+1-A1-B,=k—-2 (b)

In the exchange formula (4-4), we let A to be A . Considering the formula (b), we can obtain from the formula
(4-12)

4
N © 1 n H[a'l +ﬂ‘e]n
U IEoe — azﬂez(_ l)n[_J 8|=1 azn (e: 1,2,'--,8)

" 16 [1 + ﬂ“e - ﬂ'i ]n (4_13)

In which, we let successively A, be equal to A, A, ..., A,. Appling the formula (4-2), we know that only
Ae=A,, Ay, Ay, A, four particular solutions in the eight particular solutions in formula (4-14) are independent each
other when m= integer or m/2>2. In this case, the four solutions of A_ = A,, A, A, A, are not significance when
difference between A, and A, (A, and A ; A, and A_; A, and A,) is one, therefore the solutions of A, = A, Ag, -, A
include logarithm terms®), which can be known from the theory of series solving for differential equation. So, we
can give the other four particular solutions as follows

n 4 8
: ! - ! o (e=1,2,3,4)
oo a A +r—1 T A A A+T

in which symbol “*” indicates that the multiplication does not include the term of e = i. If we still use the symbol
expressed by hypergeometric function, we have

4F7(a1 +7\.ea"'aa4 +}\‘e; 1+7\‘e_7\‘1"”’1_’_7\'9_)\'8*; (1)

4

0 n 1 n H[a1 +7\‘e]n
=2.(-1) (E) = a’ (4-152)
"= nT*[1+A. -],

i=1

4®7(a1 +7\,e’..~,a4+7\.e; 1+7\,e—}\,1,...’1+7\‘e_)\‘8*; (1)
= F (8 + g8y T hgy T4 A, =y, 144, A% o) lna
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(1+1, x]

R | o
2 (_%j CUN 1 11'[1[1_(31 ol o+ n_l(—l)n(%)

li[[a o] . ( ) s . }12 (4-15b)
] r=1

Z Zk -\ +r

|la1+7\. +r—1

When m = integer or m/2 > 2, the solution of Eq.(4-3a) becomes

4
Ugczz Coo™ L Fi(@ +hg @y g T4dg =R T+A, — Ay, 1+ Ay — Ay 00)

. 4-16
"‘Z Cla™ @ (8 + A8y +hg; T+ A=A 1+ A =Ry, 14 A —A;00) (4-16)
where C_and C'_ are all arbitrary constant which can be determined by boundary conditions.

In some case, it is possible to appear MV2 = 1. For this, we can determine the corresponding coefficient A, by
getting M/2=1 in the formula (4-2)'. In order to writing compactly, we rearrange the footnote order of coefficient.
Here, we yield

M=, =V =1,
! / ’ ‘ (4-17)

In the formula (4-13), if we let successively A be equal to the value above and then have relation of a fraction.
Thus, we known that the two particular solutions when A_= A, A, are naturally independent. For the parameters A,
A, and A, although the difference between them and 2, or A, is integer. Because

F (%) —hmH[a +h,+e] =0 (e=2,3,5) (4-18)

e—0

we can define that the particular solutions of A, = A, A,, A, don’t include logarithm terms So we can obtain the five
particular solutions from the formula (4-13)

Ul = o F, (et T4 g =R, 14+ hg =Ry, 14 Ay = Ay 14+ g = Ay, 14 4, =A%)

(e=1,2,3) (4-19)

= n " ?\‘e 2n
1Fy ZZ(_I) (E) [ ] 8 a
=0 AT+ Ao~ ] LT+ e =] (4-20)

Ul = o Fy (Lags T+ kg =R, 14 A=A, 4 A =g, 14 A, =y, 14 A — A1)

(e=4.5) (4-21)
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F =i(—1)n(i)n Ll "
S 16 H [+ -] f[*ux 4] (4-22)

i=1

Because the difference between A, and A (A, and A, A, and A,) is equal to one, the particular solutions of A, A,
and A, must include logarithm term"®.. Applying the method in bibliography!®! and letting m =1, we can obtain the
other three particular solutions i.e.

Upe =0 @, (A 1+ hg =14 h, = Ay, 1+ A=Ay, 1+ h, =2, 1 +A, — A% 0)

(e=1,2,3) (+23)
[0+ =2)] TIL1-020-2)]
1CD4("')=2 1F4("')1na+%6 = [1_}::7] o
2 " [,
2 (16) : :
L1 ST N R § G LR (424)

) 1 B 3 1 ~ 8 1 .
X;(Keﬂ—l gke—kiﬂ ;ke—xiﬂj ¢

Combining the formula (4-21) and (4-19), (4-23), we can obtain the general solution of Eq.(4-3a) when m/2=1:
3
Up =D Coo™ |F,(hes 1+ A=A 14 A=Ay 1+ A = Ay, T+ A=A 1+ A, — A %00)
=1

5
+2Ceoc“ezF (Lgs THAg =M1+ A=Ay 14 A = Ay, 1+ Ay — A, 1+ A —Ag™;01)

s/Ves

(4-25)
+ZC' e ST+ hg =M1+ g =Ry 14 A =Ry, T4+ A, — A T+ =A% )

in which C_ and C’ | are arbitrary constants which are determined by boundary conditions.

Now, we derive the particular solution Uk’;. For distributed load, function ch is expressed by the formula, i.e
v N 2
ch = szcn’a P (4-26)
n'=0

here, chn, is a known constant and N' is a arbitrary big integer. For the each term chn'azp"' in formula (4-27), Eq.(4-

3b) becomes
8 . 4 - -
H(Su — A )Jk?:n’ + OLZH(SQ +3 )JkF():n’ = Q™ (n'=0,1,2,---,N") (4-27)
i=1 i=1
Making exchange, let

o= 48" (4-28)

noting &, (:)=2"3.(:), Eq. (4-28) reduces to
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s 1 ’ N ’ ' '
| () SRS H(5 +a i —( 6) Q™ (M'=0.1,2,++,N) (4-29)
i=1
The solution of Eq. (4-29) is
< 1V« &,
U Z(RJ Q™ D b (4-30)
n=0

Substituting the solution (4-30) into Eq.(4-29) and comparing the same power of in both ends of Eq. (4-30), we
can obtain the relations as follows:

4
. [1(p. +a +n-1)
b, = , b=+ b,

ﬁ(p — ﬁ s +n

i=1 i=1

(4-31)

From the recurrence formula (4-31) and the formula (4-30) we yield

LY - 4
B A | RV
Upy =———¢&7 > (-1)' <= EP
[Tlw-4) ™ JI0+pe-4l, (4-32)
i=1

i=1

(n"=0,1,---,N’
using the expression (4-28), the solutions of Eq. (4-29) are

1 Pr+2 -
jo (mj Ot . .
Ug="5"2¢ 5Fg(a1 Py Py, L 1+pn,—7u1,~~,1+pn,—kg,oc)

(P =) (4-33)
(n'=0,1,2---,N’)

where

F(a +pysma +py, L T4py =L, 14+ py — A a)

i=1 - aZn (4_34)

The particular solutions (4-33), generally, are all significant when m = integer. But, below two cases, the
solutions (4-33) is not suitable. Here, we have:

If p, = A, (A, is a arbitrary value in A, A, ... A,), the particular solutions (4-33) are not significant. Thus, the
corresponding particular solutions are derived® Letting p,, = A, + €, and making the linear combination, the particular

solutions are:
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1 Ag+2 B
5 (16) chn’

Ul =lim—;
e [*(he — M +¢)

e—0
i=1

X[ 02D R (8 +hg + 88+ hg 8 1 T+ hg = Ayl =Ry

—0 R (@ 4 Ao @y gy I T+ Ag =y 14 kg —Ag5a) |

from the I’Hospital’s principle, we obtain

1 Ag+2 B
B (16) chn’

o)

Uy =~———a™ Dy(a +he, @ +he, L 14hg —Ap 1+ A —Aga)

[T+ 1)

in which,

Dy (@ + Ay, +hg, L T+hy Ay, 14 A —Agia)
=2 5Fg(a1 + Ay, d Ay, 1 1+ke,—k1,~--,1+ke,—lg;a)lna

4

(A [l +2],01,

i=1

A T+ e —24],
i=1
I
- |1a1+k +r—1 T hg =N+

Ifp, —hy =—M (M =1,2,---) and A, is a arbitrary value among A, A,,---,Ay, When

li[[a +A, ] =0

i=1

+

16

n=

>

the corresponding particular solutions can be obtained™,

TP
Ukc

n'

H* Pr _7\‘

1 Py +2
(16) chn
21
MO T Dy(a A dy H Ay, I 1+ Ay Al Ay —Agiat)

(4-35)

(4-36)

(4-37)

According to the formulas (4-33), (4-35) and (4-37), if the term ch of the right side of Eq. (4-35) is given by the

formula (4-27), the particular solution is

N’ -
— p
- z U ken'
n'=0

(4-38)

Next, we discuss the solutions of basic equation (4-1) when k = 0(m = 0). In this case, the deformation of

conical shell is symmetric. Removing the common differential operator cos’ ¢(5i - 1) in the formulas (3-19a)~(3-

21a) and Eq. (3-29), the basic equation reduces:
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~ 1-p.
0, = —sin¢cos(pd, —1)U, —T“\VIO

\70 =—\TI20
W, = cos’ ¢(8i — I)UO
5:(8,-2) (82 -1)U, +a’820, =Q,

the free term is

(jo =sec’ ¢| a'Gy, + tgda’ (l"l6a + 1)\1’10

_
2(1+u)

Thus, the equation (3-39a) can be reduced

(82 —1), =—2(1+p)sec po’G, (i=1,2)

(4-39)
(4-40)
(4-41)

(4-42)

(4-43)

(4-44a,b)

From the formulas (3-22a) ~ (3-28a), the corresponding internal forces are expressed as follows:

- . 1.~ 1 1 -
T = Sln¢COS¢55qu —ma(&x + 1)y
T =sin¢cos¢l82l] —;l(p@ +1)§
20 o a0 2(1+l.l) o o 10
~ 1 1
T = (5, -1)9
0 2(1_'_“)0(( o )Wzo

M,, = —cos’ (I)Lz[ué}i +(1+u)8u] (Si —I)UO
a

- 1 ~
V,, =—cos’ ¢?(5§ - 287 )(8% 1)U,
and from (3-31) ~ (3-33), we can obtain the corresponding boundary conditions
when o = a, :

fixed (generalized) side:

free (generalized) side:

simply (generalized) side:

(4-45)

(4-46)

(4-47)

(4-48)

(4-49)

(4-50)

(4-51)

(4-52)

(4-53)
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W, =\7\Ig, -|:0=-|:lg, I\7llo=|\7|1b0 (4-54)

0

From the formulas (4-39)~(4-54), we know that there are two symmetric deformation for k = 0. One is described
by the equation (4-52)~(4-54) and the boundary conditions (4-43)~(4-54), which expresses the symmetrical bending

of conical shell. In this case, it concerns with the components of load G ,and @, . The other symmetric deformation
is the pure torsion of conical shell which is expensed by Eq. (4-44b) and the boundary conditions

a=a, Y=¥%, or T,=T; (4-55a,b)

In this case, it only concerns with load @,, and causes the tangent internal force 'I:O and the annular displacement

v, in shell. The equations and boundary conditions corresponding these two symmetric of deformations are
independent each other. Here, these equations and boundary conditions may be determined, respectively.

For axial symmetric bending, the basic equation (4-42) can be rewritten

52 (8, —2) (82 -1)U, +(8, -2)" o’U, =Q, (4-56)
Introducing the variable y, we assume:
(82 -1)8:U, +a’U, =y (4-57)

hence, the equation (4-56) is equal to the system of equations as follows

(8(1 - 2)2 y = QO
(82 -1)8:U, +a’U, =y (4-58a,b)
making fransformation, let
y=ay (©
the equation (4-58a) becomes
' 1 =
8(21 =_2Qo
o

The preceding formula can also be written spread form, i.e:

d dy 1 =«
RETRE TR @

Integrating the formula (d) and noting the formula a (c), we yield

i Q
y:azjaj a—gdoc do+a’f (c,c,) (e)
where
f(c,c)=c Ina+c, (4-59)

C, and c, are integral constants. Appling the formula (e), Eq. (4-58b) becomes:
5 (52 -1)0, + o0y =[] Ddo dara’t
(82 -1)U, +a O_ajaj Sdo do+a (c.,c,) (4-60)

Introducing the differential operator:
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3o g 3O, 5,40
L) =02 (4-61)

then, Eq. (4-60) can be reduced to the formula below

LOLO(U0)+U~0=.[éJ %da da+ f,(c,c,) (4-62)

The formula above can also be written

(L, +)(Ly +J, = p(a) + f (c..c,) (4-62)
i =+/—1-and
p(a) =jlj %’da do (4-63)
o o

The solution of E q. (4-62) or (4-62)2 can be expressed:

U,=Up +U2 +U% +Up (4-64)
Here, U(')“l, ] gz andU 3‘3 are homogeneous solutions, U +is a particular solution. They satisfy the equations below
(L +) Ug =0
(L =) Ugp=0
L L, WUg)+Ug = fi(6.c,)
(L +i)(L, 1) Ug = p(e) (4-65a,b,c,d)

Eq. (4-65a) can be reduced to Besse equation. For this, we introduce a new variable
x=2 i%a”, U =a’y, (4-66)

noting the formula (4-61), the formula (4-65) becomes

o,

2
I TI TTHC I V (4-67)
X

X
dx? d

The equation (4-67) is a Bessel’s equation and its solution is
Yo =AJ () + B1H1(1)(X)
Considering the formula (4-66), the solution of Eq. (4-67a) is
Uf = Aa”J,20%1%) + Ba*H® (2a%%) (4-68a)

Inwhich J (20%i%*), H{" (2a%i*) is Bessel and Hankel function of one order of first kind. They can be expressed
by Thomson’s function, i, e

J,(2a%%1%) = —ber (20%) + ibei, (20)
H®(20%1%) = (2/m)(Kdi, (20%) +iKer, (2a7) (8)

Because the equation (4-65b) conjugetes with the equation (4-65a), its solution is naturally

Ul = AaJ,(20%%) + Ba #H Y (20/7%) (4-68b)
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Where A, B, A and B, are arbitrary imaginary constants. J1(2a%i%), Hf”(za%i%) and J1(2a%i%), H{”(za%i%)
are conjugate each other.

With the method of substituting, we can prove that the solution of Eq. (4-65c¢) is

Uy, = f,(c.c,) (4-68¢)
Combining (4-68a), (4-68b), (4-68c) and using the formula (g), either A| and A, or B, and B, are conjugate for
real function Ug‘. The homogeneous solution of Eg. (4-56) is
UM = f,(c,,c,) + c,ber, (20 + ¢, bel, (207 + ¢, Ker, (20 ) + ¢ Kei, (2a) (4-69)
here, C, C,, --+, C, are arbitrary real constants, which are determined by the boundary condition.

We can determine the particular solution U ” The formula (4-65d) can be written
(L +Dy; = p(a)
(L-DUr =y’ (4-70a,b)

The homogeneous solutions of Eq. (4-70a) and Eq. (4-70b) are given by the formulas (4-68a) and (4-68b),
respectively. Applying the method of altering coefficient and noting the relation

Jn(x)(dHrﬂ”(x)/dx) - Hr(]”(x)(d\]n(x)/dx) =2i/m X
We have

y§ =im(a 3, 20%1)[ W HP (@) p(xydx

—a FHP @A) X, (2X%) px)dx) (4-71a)
U =in(a”3,2a/ %) x*H @x%%)yPdx
(4-71b)

—aFHP QaM)[ X, (2P
Substituting the formula (4-71a) into (4-71b) and exchanging integral variable, the particular solution of
Eq. (4-56) is
U§ = o ™3,207)] xH" x5 %3, ) dx,dx
—w'o 3,20 xlH{l>(2><%i%)Jl(2xl%i%)L] X H® (2x017%) p(x, ), dx,
+mla A H{”(za%i%)L x.J,(2x417%)3, (x4 j X' H® (2x017%) p(x, )dx, dx, (4-72)
o AH 2a%) lel(2x1%i%)H{”(2x1%i%)L X' 3, (2217 p(x, )dx, dx
For the deformation of pure torsion, the corresponding basic equation can to obtained from Eq. (4-44b)
(82 =W, =—2(1+p)sec’ ¢ G,0° (4-73)

The solution of Eq. (4-73) can be solved easily. If we introduce a unknown variable Y, , the equation (4-73) is

equal to equation system as follows, i.e

(0, =Dy, ==2(1+p) sec’ 0 oquzo (4-74a)



m Journal of Mechanics and MEMS

(0, + l)fl/zo =Y (4-74b)
let
Yi= o’y Wy = OL_I\T’,zo (h)
Then, Eq. (4-74) becomes integrable ferm
dy;/do=-2(1+w)sec’¢ G, dy),/da=y, (1)
Considering the formula (h), we yield
yl =-2(1+p)sec’ ¢ o jqzodoc +Cla (4-75a)
Wi = (/)| yda+(c; /) (4-75b)

Substituting the formula (4-75a) into (4-75b) and exchange integral variable properly, we can get the general
solution of Eq. (4-73):

T =20+ wsec’ § (/o) %[ Gudx +(G/2) + (/) (4-76)

in which, ¢/ and ¢} are integral constant which can be determined by boundary condition (4-55).

The solutions of second kind of problem, i.e., basic equation (3-34), is similar to the preceding method, which
is no need of discussion again.

When determining the displacement functions Uk o Uks and UO , we can calculate the displacement and internal
force of the shell by the formulas (3-19)-(3-27), (4-39)-(4-41) and (4-45)-(4-50).
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