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THE SOLUTION OF DISPLACEMENT EQUATION OF
CONICAL SHELL
Huang-Yih

ABSTRACT

In this paper, the displacement differential equations of conical shell can be changed into the eight-order soluble
differential equation by introducing a displacement function. The general solutions of the equations are given by
using the generalized hvpergeometric function and applying the Bessel-Function for the axisymmtric problems.
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1. INTRODUCTION

Conical shell is widely used in engineering construction. For example ,designing vessel deals with the calculated
theory of conical shell. Because of the complexity of the equation of conical shell, however, the research of the
axisymmtric problems is more than that of the general bending problems of conical shell up to date. For the soluble
differential equations of conical shell, the extant documents are expressed by the deflection function and stress
function of shell (called the mixed solution) .Analyzing the combined structure, the author finds it difficulty to treat
the boundary condition of elasticity with the extant mixed solution of conical shell. Gained by contrast, taking the
displacement method has some advantages. Moreover, for the characteristic problem of shell as welle as the problem
of shell on elastic foundation, it is more effective to use displacement method. But, the systemic research about the
displacement solution of conical shell is less at present. This paper makes some attempt in the displacement solution
of conical shell.

Starting from the general displacement differential equations of conical shell, introducing the displacement
function, the displacement equation system can be changed into a eight-order differential equation. Meantime, the
entire stress components and displacement components in shell are expressed by displacement function. The general
solutions of the partial differential equations are given by the hypergeometric function and expressed by the Bessel
function for the axisymmtric bending problems.

1. The Basic Relations of Conical Shell

Conical shell acted the surface loads satisfies the basic relations as follows:

in which, each component and its direction is shown in Fig. 1.
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the geometric relations:
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the physical relations:
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2. THE DISPLACEMENT FUNCTION AND THE BASIC EQUATIONS

Using Mushtari-Donnell simplification, we get the following displacement equations:

L11(u) + L12(v) + L13(w) + q
1
 / D = 0

L21(u) + L22(v) + L23(w) + q
2
 / D = 0 (2.1)

L31(u) + L32 (v) + L33 (w) + q
n
 / K = 0

in which
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Introducing the conversion, we assume:

s = et cos� (2-2)

in which, t is a new independent variable. Thus,the equations (2-1)becomes:
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where r is the radius of parallel circle (Fig. 1). By means of Eq. (2-2),we yield:

r = s cos � = et cos� cos �

 For the coordinate (t, �), Eqs. (2-3) a,b.are the constant coefficient equations. As a result, we can introduce the
displacement functions U(t, �) when the relations between the displacement components of conical shell and the
function U(t, �), exist, i.e.,

1 21 2sin ( ) ( ) ( )t t t
u up upu L U L L� � � � � � �

1 22 1 2sin ( ) ( ) ( )t t t
v p vpv L U L L� � � � � � � (2-4)

( )t
ww L U�

The Eqs.(2-3,a,b) satisfy naturally. Here, each differential operator is ,respectively,
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(t, �) are the functions concerned with loads q

1
, q

2
, respectively. they are the solutions of equations

as follows:
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Generally, there is no use getting the general solution of Eq. (2-6).We only obtain a arbitrary particular integral,
because the two former formulas of Eqs. (2-3)are satisfied naturally even this case. The particular solution of Eqs.
(2-6) is given behind.

Substituting the solutions (2-4) into Eq. (2-3c), we obtain the equation which is satisfied by the displacement
function U(t, �), i.e.:
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in which ,each differential operator:
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free term:
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The formulas (2-4) and Eqs. (2-7) are the basic equations expressed by the displacement function U(t, �) for the
general problem of bending conical shell. From these general relations , we can obtain, the two result in the limif:

1. if 
2

�
�� , then cos ��� 0, sin ��� 1; r � a, i.e. it coincides with cylindric shell. Noting the differential

operator of Eq. (2-5), we obtain from formulas (2-4)
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the basic equation (2-7) can be reduced to :
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When D/K = 12/h, The formular(a) and Eq.(b) are given by V. Z. Vlacov for cylindric shell. In which,a is the radius
of cylindric shell, c = h/12a.

2. if � � 0, then cos ����1, sin ����0; i.e. it coincides with circular plate. In this case, we obtain from (2-4) and
(2-7):
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We can prove that the formular (c) is the basic equation of circular plate in plane stress and the formular (d) is
the basic equation of circular plate in transverse bending.

Obviously, the displacement function and the basic equation of cylindric shell or circular plate are all directly
derived from the general relations in this paper.



Substituting the original independent variable s, formular (2-4) and Eq. (2-7) become into:
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here, we have used relation r = s cos �. Each differential operator in above formulas is

3 2 3
3 2 2

23 2 2
3 sec 1s

uL s s s
s s s

� �� � �
� � � � � �� �� �� � � ��� �

� �
2 3 2

2 2
2 3

2 sec (1 ) secs
vL s s s

s s s

� �� �� � � � � �
� � � � � � � �� � �� �� ��� � � �� � �� ��� �� �

2
1 22 1s

wL � � � � �

1

2
2

1 2

1 1 1
sec

2 2 2
s
upL

� � � � � ��
� � � � �

��

2

2 21 3
sec

2 2
s
upL s

s

� �� � � �� �
� � �� �� �� ��� �

1

21 3
sec

2 sin 2
s
vpL s
� �� � � � � �
� � �� �� � ��� �

(2-13)

2

2
2

1 2

1
sec 1

2
s
vpL

� � �
� � � � �

��

2 2

1 1 22
2 ,s s s

wL s L L
s

� �� �� �� � � � �� �� �� ��� �� �� �

2
2

3 0 0 0 2
( 1),sL s s

s s

� �
� � � � � � �

� �

2
2

1 0 2
sec

�
� � � � �

��

2
2

2 0 2
sec

�
� � � � �

��

free term is



4 4
2 3

3 2 3
3 2 2 4

2 13 2 2

2 2
2 2

2 2

sec 1
( , ) sec sin

2

1
3 1 sec sin

2

(2 ) (1 ) 1

nq s D
Q s s

K K

D
s s s s

s s s K

s s s
s s s

� ��
� � � � �

� �� �� � � ��
� � � � � � � � � � �� �� �� � � ��� �� �
� �� � ��� � � �

� � � � � � � �� �� ��� � � � ��� �� �

(2-14)

We make and vanished in formular (2-14) only when act normal load q (q
1 
= q

2 
= 0) on shell.

It is necessary to consider the boundary condition when solving the basic equation(2-11).The boundary conditions
of conical shell, generally speaking , are several types as follows , i.e. An the boundary s = s
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where the right top footnote “b”indicate the corresponding boundary value given. The combination of Eq . (2-15a),
(2-16a), (2-17a)and (2-18a) is called as (generalized) fixed boundary, and the combination of Eq. (2-15b), (2-16b),
(2-17b) and (2-18b) is called as (generalized) free boundary, and the combination of Eq. (2-16a), (2-17a), (2-15b)
and (2-18b) is called as (generalized) simply supported boundary. On the special condition, if
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s
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simply supported: v = 0, w = 0, T
1
 = 0, M

1
 = 0.

The boundary conditions of shell are also other combinations. Generally, they are not named specially.

By means of the geometric relations, the physical relations and formula (2-10) ,each component of internal
force and moment of conical shell is expressed by the displacement function U(s, �) as follows:

1 1 1 1 2

2 3 2
1 1 2

1
(1 ) sin cos ( ) cos ( ) ( )

2
S S S
T T p T pT D L U D L L

�� � �� �� � � � � � � �� �

2 2 1 2 2

2 3 2
2 1 2

1
(1 ) sin cos ( ) cos ( ) ( )

2
S S S
T T p T pT D L U D L L

�� � �� �� � � � � � � �� �

1 2

2 3 2
1 2

1
(1 ) sin cos ( ) cos ( ) ( )

2
S S S
T Tp TpT D L U D L L

�� � �� �� � � � � � � �� �

1

4
1 cos ( )S

MM K L U� � � (2-20)

4(1 ) cos ( )S
HH K L U� � �� �

1

4
1 cos ( )S

VV K L U� � �



in which, each differential operator is
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Now, we reduce the basic equations and boundary conditions to nondimensional form. Introducing the
dimensionless amount as follows:
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where the symbol “�” denotes nondimension. In this case, the basic equations (2-11) reduce the simple form:
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 In preceding formulas, the linear differential operators signal the top footnote “� ” indicate that the independent
variable s is substituted by the dimensionless independent variable � for the corresponding operators in Eq.(2-13)
and (2-21).

Now the dimensionless boundary conditions can be (written as)
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the free (generalized) boundary:
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the simply supported boundary:
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and the formulas (2-19) become naturally:

the fixed boundary: � �, , , 0wu v w � ���
�� � �

the free boundary: � �1 1 1, , , 0T T V M �� � � � (2-28)

the simply supported boundary: � �1 1, , , 0w v T M �� �� �

3. TWO KINDS OF BOUNDARY VALUE PROBLEM

The general bending problem of conical shell acted arbitrary loads can be reduced to solving Eq. (2-25) under the
boundary conditions (2-26) or (2-27).

Now, we can write the Fourier’s series for q
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Meantime, we can expand the functions
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in the following form:
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Where,
0 ( ), ( ) ( 1,2,3, ), ( )( 1,2,3, ),kc ksU U k U k� � � � �� � ��� ��  are unknown function to be determined.
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we get relations as follows, compared with the coefficient of each term of angular series:
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Substituting formula (3-6) into Eq. (2-25). formula (3-7)~(3-16), (3-2a)~(3-2h) into the boundary conditions
(2-26), formula (3-17) into Eq.(2-24), we can yield two kinds of boundary value problem through comparing with
the coefficient of each term of trigonometric series:

The basic equations about first kind of problem are
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the right side term is
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the corresponding boundary conditions are:
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simply supported (generalized) side:
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The basic equations about second kind of problem are:
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the right side term is
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the corresponding boundary conditions are
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Moreover, the functions ikc�� (i = 1, 2), iks�� (i = 1, 2) show the solution of equation
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Generally, we only obtain the particular solution of Eq.(3-39). A arbitrary solution of Eq.(3-39) can be written
as integral form as follows
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Thus, the general bending problems of conical shell are reduced to solving the basic equation (3-29.), under the
boundary condition (3-31) ~ (3-33) and the basic equation (3-39); under the boundary condition (3-36) ~ (3-38) and
equation (3-34), i.e. two kinds of boundary value problem.

4. THE GENERAL SOLUTION OF BASIC EQUATION

At first, we discussed the solution about first kind of basic equation which is a variable coefficient eight-order
differential equation. Applying interchangeability of operator �(:), Eq. (3-29) can be rewritten as more compact
form:
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The solution of Eq. (4-1) can be expressed:
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in which h
kcU�  is the homogeneous solution and p
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Eq. (4-3) can also reduced to the generalized hypergeometric equation. For this, we assume
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Where, � is a new independent variable and �h is a unknown function, � is a waiting determination constant and

1i � � . Now, we define a new operator
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and pay attention to the relations:
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because r is a positive integer, Eq. (4-3a) can be rewritten
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Thus, we can determine the constant which satisfies the equation as follows
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From this, we obtain eight values of the parameter

( 1,2, ,8)i i� � � � � (4-7)

it, can be obtained from the formula (4-2). In Eq.(a), we let the parameter be a arbitrary value given by formula
(4-7). If � = �

1
, for example, then the equation (a) reduce to the generalized hypergeometric equation
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Similarly, the equation (4-3a) reduces to nonhomogeneous generalized hypergeometric equation letting p
kcU� be

equal to 1 p�� � :
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We discuss the solution of the homogeneous equation (4-8a) at first. The solution of Eq. (4-8a) are directly
concerned with the property of the coefficient �

j
. According to the theory of the generalized hypergeometric equation,

if the difference between two arbitrary parameters, 1 7 1 2 3 8, , ( . . , , , )i e� � � � � �� � is not integer or zero, the solution of

Eq. (4-8a) is
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Here, � �4 7 1 4 1 2 7, , ; , , ;F a a� � � � � �� � is a generalized hypergeometric function and can be expressed by infinite

series as follows:
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This series is convergent for a arbitrary value of �. In which, [a]
n
 is:
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Here, �(a) is a Gamma function. If noting �
0
 = 1 and n! = [1]

n
, the solution (4-10) can be directly rewritten by

means of the formula (4-11)
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Using the formula (4-9) and noting the relation of subscript between the coefficients � and

i = j + 1

we assume v + 1 = e

From the formula, we yield
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In the exchange formula (4-4), we let � to be �
1
. Considering the formula (b), we can obtain from the formula

(4-12)
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In which, we let successively �
e
 be equal to �

1
, �

2
, ..., �

8
. Appling the formula (4-2), we know that only

�
e
 = �

1
, �

2
, �

3
, �

4
 four particular solutions in the eight particular solutions in formula (4-14) are independent each

other when m� integer or m/2�2. In this case, the four solutions of �
e
 = �

5
, �

6
, �

7
, �

8
 are not significance when

difference between �
1
 and �

5
 (�

2
 and �

6
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3
 and �

7
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4
 and �

8
) is one, therefore the solutions of 5 6 8, , ,e� � � � ��

include logarithm terms[5], which can be known from the theory of series solving for differential equation. So, we
can give the other four particular solutions as follows
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in which symbol “*” indicates that the multiplication does not include the term of e = i. If we still use the symbol
expressed by hypergeometric function, we have
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When m � integer or m/2 ��2, the solution of Eq.(4-3a) becomes
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where C
e
 and C�

e
 are all arbitrary constant which can be determined by boundary conditions.

In some case, it is possible to appear m/2 = 1. For this, we can determine the corresponding coefficient �
i
 by

getting m/2=1 in the formula (4-2)�. In order to writing compactly, we rearrange the footnote order of coefficient.
Here, we yield
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In the formula (4-13), if we let successively �
e
 be equal to the value above and then have relation of a fraction.

Thus, we known that the two particular solutions when �
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we can define that the particular solutions of �
e
 = �

2
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3
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5
 don’t include logarithm terms So we can obtain the five

particular solutions from the formula (4-13)
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Because the difference between �
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) is equal to one, the particular solutions of �
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 must include logarithm term[5]. Applying the method in bibliography[5] and letting m
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=1, we can obtain the

other three particular solutions i.e.
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Combining the formula (4-21) and (4-19), (4-23), we can obtain the general solution of Eq.(4-3a) when m/2=1:
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in which C
e1

 and C�
e1

 are arbitrary constants which are determined by boundary conditions.

Now, we derive the particular solution p
kcU� . For distributed load, function

kcQ�  is expressed by the formula, i.e
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here,
kcnQ �
�  is a known constant and N� is a arbitrary big integer. For the each term 2 n

kcnQ ��
���  in formula (4-27), Eq.(4-

3b) becomes
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Making exchange, let

� = 4�½ (4-28)

noting (:) 2 (:)r r r
� �� � � , Eq. (4-28) reduces to
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The solution of Eq. (4-29) is
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Substituting the solution (4-30) into Eq.(4-29) and comparing the same power of in both ends of Eq. (4-30), we
can obtain the relations as follows:
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From the recurrence formula (4-31) and the formula (4-30) we yield
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using the expression (4-28), the solutions of Eq. (4-29) are
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The particular solutions (4-33), generally, are all significant when m = integer. But, below two cases, the
solutions (4-33) is not suitable. Here, we have:

If �
n� = �

e� (�e� is a arbitrary value in �
1
, �

2
, ... �

8
), the particular solutions (4-33) are not significant. Thus, the

corresponding particular solutions are derived[5] Letting n e� �� � � � � , and making the linear combination, the particular

solutions are:
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in which,
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If ( 1,2, )n e m m� � � �� � � � � � �  and �
e� is a arbitrary value among 1 2 8, , ,� � �� , when
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According to the formulas (4-33), (4-35) and (4-37), if the term
kcQ�  of the right side of Eq. (4-35) is given by the

formula (4-27), the particular solution is
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Next, we discuss the solutions of basic equation (4-1) when k = 0(m = 0). In this case, the deformation of

conical shell is symmetric. Removing the common differential operator � �2 2cos 1�� � �  in the formulas (3-19a)~(3-

21a) and Eq. (3-29), the basic equation reduces:
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the free term is

� � � �4 4 2
0 30 10

1
sec tg 1

2 1
Q q �

� �
� � � � �� �� � �� �

� �� �� �
� �� (4-43)

Thus, the equation (3-39a) can be reduced

� � � �2 2 2
0 01 2 1 sec ( 1,2)i iq i�� � � � � � � �� �� � (4-44a,b)

From the formulas (3-22a) ~ (3-28a), the corresponding internal forces are expressed as follows:

� � � �10 0 10

1 1 1
sin cos

2 1
T U� �� � � � � � � � �

� �� �
� � � (4-45)

� � � �2
20 0 10

1 1 1
sin cos 1

2 1
T U� �� � � � � �� � �

� �� �
� � � (4-46)

� � � �0 20

1 1
1

2 1
T �� � � � �

�� �
� � (4-47)

� � � �2 2 2
10 02

1
cos 1 1M U� � �� �� � � � � � � � � �� ��

� � (4-48)

� � � �2 2 2
20 02

1
cos 1 1M U� � �� �� � � �� � � � � � �� ��

� � (4-49)

0 0H �� (4-50)

� �� �2 3 2 2
10 02

1
cos 2 1V U� � �� � � � � � � �

�
� � (4-51)

and from (3-31) ~ (3-33), we can obtain the corresponding boundary conditions

when � = �
1
 :

fixed (generalized) side:

0
0 0 0 0

0

, ,
b

b b w w
u u w w

� �� �
� � � � �� � � �� �

� �
� � � � (4-52)

free (generalized) side:

10 10 10 10 10 10, ,b b bT T M M V V� � �� � � � � � (4-53)

simply (generalized) side:



0 0 0 10 10 10, ,b b bw w T T M M� � �� � � �� � (4-54)

From the formulas (4-39)~(4-54), we know that there are two symmetric deformation for k = 0. One is described

by the equation (4-52)~(4-54) and the boundary conditions (4-43)~(4-54), which expresses the symmetrical bending

of conical shell. In this case, it concerns with the components of load 
10

q� and 
30

q� . The other symmetric deformation

is the pure torsion of conical shell which is expensed by Eq. (4-44b) and the boundary conditions

1 0 0 0 10, ,b bv v or T T� �� � �� �� � (4-55a,b)

In this case, it only concerns with load 
20

q� and causes the tangent internal force
0T�  and the annular displacement

0
v� in shell. The equations and boundary conditions corresponding these two symmetric of deformations are

independent each other. Here, these equations and boundary conditions may be determined, respectively.

For axial symmetric bending, the basic equation (4-42) can be rewritten

� � � � � �2 22 2 2

0 0 02 1 2U U Q� � � �� � � � � � � � � � �� � (4-56)

Introducing the variable y, we assume:

� �2 2 2

0 01 U U y� �� � � � � �� � (4-57)

hence, the equation (4-56) is equal to the system of equations as follows

� �2

02 y Q�� � � �

� �2 2 2

0 01 U U y� �� � � � � �� � (4-58a,b)

making fransformation, let

y = �2 y� (c)

the equation (4-58a) becomes

2

02

1
y Q� �� �

�
�

The preceding formula can also be written spread form, i.e:

02

1d dy
Q

d d

�
� � �

� � �
� (d)

Integrating the formula (d) and noting the formula a (c), we yield

� �2 20
1 1 23

1
,

Q
y d d f c c� � � � � �

� �� �
�

(e)

where

f
1
(c

1
, c

2
) = c

1
 In � + c

2
(4-59)

c
1
 and c

2
 are integral constants. Appling the formula (e), Eq. (4-58b) becomes:

� � � �2 2 2 2 20
0 0 1 1 23

1
1 ,

Q
U U d d f c c� �� � � � � � � � � � �

� �� �
�

� � (4-60)

Introducing the differential operator:



2

0 2

(:) (:)
(:) 2

d d
L

d d
� � �

� �
(4-61)

then, Eq. (4-60) can be reduced to the formula below

� �0
0 0 0 0 1 1 23

1
( ) ,

Q
L L U U d d f c c� � � � �

� �� �
�

� � (4-62)

The formula above can also be written

� �0 0 0 1 1 2( )( ) ( ) ,L i L i U p f c c� � � � �� (4-62)�

1i � � . and

0

3

1
( )

Q
p d d� � � �

� �� �
�

(4-63)

The solution of E q. (4-62) or (4-62)2 can be expressed:

0 01 02 03 0

h h h pU U U U U� � � �� � � � � (4-64)

Here,
01 02,h hU U� �  and

03

hU�  are homogeneous solutions, 
0

pU� is a particular solution. They satisfy the equations below

0 01( ) 0hL i U� ��

0 02( ) 0hL i U� ��

0 0 03 03 1 1 2( ) ( , )h hL L U U f c c� �� �

0 0 0( )( ) ( )hL i L i U p� � � �� (4-65a,b,c,d)

Eq. (4-65a) can be reduced to Besse equation. For this, we introduce a new variable

1 1 1
2 2 2

01 012 , hx i U y� � � �� (4-66)

noting the formula (4-61), the formula (4-65) becomes

2
2 201 01

012
( 1) 0

d y dy
x x x y

dx dx
� � � (4-67)

The equation (4-67) is a Bessel’s equation and its solution is

(1)

01 1 1 1 1( ) ( )y A J x B H x� �

Considering the formula (4-66), the solution of Eq. (4-67a) is

1 1 1 1 1 1
2 2 2 2 2 2(1)

01 1 1 1 1(2 ) (2 )hU A J i B H i� �� � � � � �� (4-68a)

In which 
1 1

2 2

1(2 )J i� , 
1 1

2 2(1)

1 (2 )H i� is Bessel and Hankel function of one order of first kind. They can be expressed

by Thomson’s function, i, e
1 1 1 1

2 2 2 2

1 1 1(2 ) (2 ) (2 )J i ber ibei� � � � � �
1 1 1 1

2 2 2 2(1)

1 1 1(2 ) (2 / )( (2 ) (2 )H i Kei iKer� � � � � � (g)

Because the equation (4-65b) conjugetes with the equation (4-65a), its solution is naturally

3 31 1 1 1
2 2 2 2 2 2(1)

02 2 1 2 1(2 ) (2 )hU A J i B H i� �� � � � � �� (4-68b)



Where A
1
, B

1
, A

2 
and B

2
 are arbitrary imaginary constants.

31
2 2

1(2 ),J i�
31

2 2(1)

1 (2 )H i�  and
31

2 2

1(2 ),J i�
1 1

2 2(1)

1 (2 )H i�
are conjugate each other.

With the method of substituting, we can prove that the solution of Eq. (4-65c) is

03 1 1 2( , )hU f c c�� (4-68c)

Combining (4-68a), (4-68b), (4-68c) and using the formula (g), either A
1
 and A

2
 or B

1
 and B

2
 are conjugate for

real function 
0

hU� . The homogeneous solution of Eg. (4-56) is

1 1 1 1
2 2 2 2

0 1 1 2 3 1 4 1 5 1 6 1( , ) (2 ) (2 ) (2 ) (2 )hU f c c c ber c bei c Ker c Kei� � � � � � � � �� (4-69)

here, c
1
, c

2
, �, c

6
 are arbitrary real constants, which are determined by the boundary condition.

We can determine the particular solution 
0

pU The formula (4-65d) can be written

1 0( ) ( )pL i y p� � �

1 0 0( ) p pL i U y� �� (4-70a,b)

The homogeneous solutions of Eq. (4-70a) and Eq. (4-70b) are given by the formulas (4-68a) and (4-68b),

respectively. Applying the method of altering coefficient and noting the relation

(1) (1)( )( ( ) / ) ( )( ( ) / ) 2 /n n n nJ x dH x dx H x dJ x dx i x� � �

We have

31 1 1 1 1
2 2 2 2 2 2

31 1 1 1 1
2 2 2 2 2 2

(1)

0 1 1

(1)

1 1

( (2 ) (2 ) ( )

    (2 ) (2 ) ( ) )

py i J i x H x i p x dx

H i x J x i p x dx

�

�

�

�

� � � �

�� �

�
� (4-71a)

3 3 31 1 1
2 2 2 2 2 2

3 3 31 1 1
2 2 2 2 2 2

(1)

0 1 1 0

(1)

1 1 0

( (2 ) (2 )

    (2 ) (2 ) )

p p

p

U i J i x H x i y dx

H i x J x i y dx

�

�

�

� � � �

�� �

�
�

�

(4-71b)

Substituting the formula (4-71a) into (4-71b) and exchanging integral variable, the particular solution of

Eq. (4-56) is

3 3 31 1 1 1 1
2 2 2 2 2 2 2 2

1

3 3 31 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2

1

3 31 1 1 1 1
2 2 2 2 2 2 2

2 (1)

0 1 1 1 1 2 1 2 2 2 1

2 (1) (1)

1 1 1 1 1 1 2 1 2 2 2 1

2 (1)

1 1 1 1 1 1

(2 ) (2 ) (2 ) ( )

(2 ) (2 ) (2 ) (2 ) ( )

(2 ) (2 ) (2 )

p

x

x

U J i x H x i x J x i p x dx dx

J i x H x i J x i x H x i p x dx dx

H i x J x i J x i

�

�

�

�

�

� � � �

�� � �

�� � �

� �
� �

�

3 1 1
2 2 2

1

3 3 31 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2

1

(1)

2 1 2 2 2 1

2 (1) (1)

1 1 1 1 1 1 2 1 2 2 2 1

(2 ) ( )

(2 ) (2 ) (2 ) (2 ) ( )

x

x

x H x i p x dx dx

H i x J x i H x i x J x i p x dx dx

�

�

�
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� �
� �

(4-72)

For the deformation of pure torsion, the corresponding basic equation can to obtained from Eq. (4-44b)

2 2 2

20 20( 1) 2(1 )sec q�� � � � � �� � �� � (4-73)

 The solution of Eq. (4-73) can be solved easily. If we introduce a unknown variable 
1y , the equation (4-73) is

equal to equation system as follows, i.e

2 2

1 20( 1) 2(1 )secy q�� � � � �� � � � (4-74a)



20 1( 1) y�� � � �� (4-74b)

let

2 1

1 20 20y y �� �� � � � � �� � (h)

Then, Eq. (4-74) becomes integrable ferm

2

1 20 20 1/ 2(1 )sec /dy d q d d y� �� � � �� � � � ��� (i)

Considering the formula (h), we yield

2

1 20 12(1 )secy q d c� �� � � � � � � � �� � (4-75a)

20 1 2(1/ ) ( / )y d c� �� � � � � ��� (4-75b)

Substituting the formula (4-75a) into (4-75b) and exchange integral variable properly, we can get the general

solution of Eq. (4-73):

1

2

20 1 20 2 1 1 22(1 )sec (1/ ) ( / 2) ( / )
x

x q dx dx c c
�

� �� � � �� � � � � � �� �� � (4-76)

in which,
1

c�  and 
2

c� are integral constant which can be determined by boundary condition (4-55).

The solutions of second kind of problem, i.e., basic equation (3-34), is similar to the preceding method, which

is no need of discussion again.

When determining the displacement functions ,kc ksU U� �  and 
0U� , we can calculate the displacement and internal

force of the shell by the formulas (3-19)-(3-27), (4-39)-(4-41) and (4-45)-(4-50).
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