

International Journal of Control Theory and Applications

ISSN: 0974-5572

© International Science Press

Volume 10 • Number 24 • 2017

Generation of Galileo 'E1 Signals' at Ground Station for Acquisition and Tracking

S. Thananjaya Chakravarthy^a and M. Sangeetha^b

^aDepartment of ECE, SRM University. Email: thananjaya_chakravarthy@srmuniv.edu.in ^bDepartment of ECE, SRM University, Email: sangeetha.m@ktr.srmuniv.ac.in

Abstract: Galileo is the European global navigation satellite systems, providing a highly accurate position service under civilian control. It is inter-operable with Global Positioning systems (GPS) and Global Navigation Satellite Systems (GLONASS), the two other global satellite navigation systems. The design of the Galileo receiver depends on stimulation of Galileo signals. It is preferred to use stimulated signals than real signals to control the properties of Galileo receiver. Three independent satellite signals E5, E6 and E1 are transmitted by Galileo satellites. E1signals supports Open Service and hence, importance is given to generate these E1 signals using Simulink. Generation of E1 signals is necessary for the purpose of Acquisition and Tracking.

Keywords: BOC Modulation, E1 Signals, Galileo System, Ranging Codes.

1. INTRODUCTION

Galileo navigation systems consists of 30 satellites (27 operational + 3 spares), positioned in three circular Medium Earth Orbits (MEO) at an nominal average of about 29,601.297 km and at an inclination of about 56 degrees with respect to equatorial plane. The main aim of Galileo navigation systems is to provide a high precision positioning and improved provision for search and rescue services^[1]. One of the biggest advantages of Galileo is that any satellite failures can be notified to the users within seconds, making the systems a reliable one. The services offered by Galileo navigation systems are Open Service (OS), Galileo Safety of Life (SoL), Commercial Service (CS), Public Related Service (PRS), Support to Search and Rescue Service (SAR). The European navigation satellite system Galileo is moving ahead. The open service signal L1 OS transmitted from the satellites is described^[2]. Compared to GPS some new features are introduced: Binary offset carrier modulation, coherent adaptive sub-carrier modulation, pilot signals, and tiered codes. These features make the GPS and Galileo signals live together on the same frequencies, and they make Galileo signals in general more robust. The irony of BOC modulation is that it comes with two different variants Sine BOC modulation and Cosine BOC modulation. ^[3]aims to specify the differences between these two variants of BOC modulation by analyzing them over their spectral characteristics for different orders of BOC modulated signals which are traditionally

S. Thananjaya Chakravarthy and M. Sangeetha

used in the Civil Navigation and are still in use in many navigation systems. All the BOC variants taken are the actual ones used in navigation systems. Techniques for enhancing GNSS signal acquisition and tracking sensitivity and increasing the robustness and availability of position fixes are described in^[4]. Specifically, a technique called Staggered Coherent Integration is proposed which enables up to 1 dB improvement in sensitivity compared to conventional techniques. Also discussed are challenges in tracking the weak signals seen in indoor conditions and techniques to improve sustained tracking under these conditions. Closed form expressions for GNSS-R waveform simulation using the composite GPS L1 and L5 and Galileo E1, E5, and E6 signals as function of the receiver bandwidth is given in^[5]. Simulation of E1 and E6 signal using Simulink is shown in^[6].

Composite Binary Offset Carrier (CBOC) modulation has been selected for the future Galileo signals to be used in mass-market applications. CBOC signals can be processed with a sine BOC (1,1) receiver, with lower bandwidth and sampling frequency needs. ^[7] Analyzes how much deterioration (if any) in terms of tracking accuracy (i.e., code tracking error variance and robustness to multipath) occurs when we process a CBOC signal with a reference sine BOC (1, 1) receiver (instead of processing it with a CBOC receiver). Software - Defined GPS and Galileo Receiver is provided in^[8]. Galileo E5 and E6 signals are used for Commercial Service and Public Related Service whereas Galileo E1 signals used for Open Service and Safety of Life service and so, care is given to generate these E1 signals using Simulink.

2. CHARACTERISTICS OF E1 SIGNALS

In this paper, E1 signals are generated using Simulink. E1 signals is an open access signals E1 signals has unencrypted navigation data and ranging codes accessible to all users and also contains unencrypted integrity messages and encrypted commercial data. The Galileo E1-signal comprises of signal components E1-B and E1-C which is transmitted in the frequency band 1559 - 1610 MHz allocated to Radio Navigation Satellite Service (RNSS) on a worldwide co-primary basis (ITU-R Radio Regulations). The signal components E1-B and E1-C are data channel and pilot channel respectively. Data channel is the result of modulating ranging codes, sub carrier and secondary code along with a navigation data stream. A pilot channel is made of ranging code, sub carrier and secondary code only, but not modulated by a navigation data stream. The attributes of E1 signals are given in Table 1. Within 4ms period the signal to noise ratio (SNR) prevents the downloading of data for signals weaker than 25dB/Hz. The 4ms repetition rate is ideal because there is one symbol per code epoch. E1 signals are transmitted in right hand circular polarization with different ranging codes per signal component, per signal, per frequency and per Galileo satellites.

Signal Attributes	[E1-B]	[E1-C]			
Carrier Frequency	1575.4	1575.42 MHz			
Bandwidth	24.552 MHz				
Sub Carrier Frequency	1.024 MHz 6.138 MHz				
Primary code length	4092	4092 chips			
Secondary PRN code length	N/A	25 Chips			
Code period	4 ms	100 ms			
Symbol rate	250 sps	N/A			
Modulation	Binary Offset	Binary Offset Carrier (BOC)			

Table 1: Galileo E1 signal characteristics

3. E1 SIGNAL GENERATION

A. Block Diagram for Generating E1 Signals

The block diagram of E1 signal generation is shown in Figure 1. The E1 signal is simply the product of carrier, spreading code, BOC and Data Components. Navigation data (i.e) data components are applicable only for E1-B.

ED	DITOR		PUBLISH	VIEW								· · · · · · · · · · · · · · · · · · ·
6	5		G Find Files	Insert 💂	∫ fx 🛱 💌	Q Q	0.0				No	
215	-		E Compare V	Comment %	- % % -	Go To 👻			(Or	EY.	Run Section	
New	Oper	n Save	Print ¥	Indent 5		C Find ¥	Breakpoints	Run F	Run and I	Run and	Real Advance	
		EUI				NAVIGATE	BREAKPOINTS		11110 7	DUN		
2 com	nc m	×	-		DII	NAVIOATE	BREAKFOINTS			NUN		
1 -	pe	1.0.										
2 -	-۲ د	lear										^
3 -	-	lose	all;									
4 -	e	:(1,:)	=hexToBinaryV	ector('B39	340CA1C817	D81EF4FAE4	E95BF3504#	A770908	89FB485	60E9E3	EF802180E85	EB2194E05902C6C4C52021FEB7EC64FD416BCEBC8E39D64A4B5EE345
5 -	e	(2,:)	- hexToBinaryV	ector('A64	F94BB47BD4	033C76D492	4305907EC1	1F618B4	43C7535	F3CFC0	93E5AF5DDD5	C4339F3BB6D835B5C2C2053CD3D5693368D4E1A7CAC59425D1FD9680
6 -	e	:(3,:)	hexToBinaryV	ector ('FD1	F6976002C3	9C87187C44	E3D224ED4I	DF0B677	7501059	44C651	LA5E57798F16	58A136AC0FB5979C4E847A82B20A2E6C45DB42EF2B930A80D3257BCCC
7 -	e	:(4,:)	=hexToBinaryV	ector('EE3	8BAF6F6170	4B01509B52	10A0534E47	702F931	190C392	E74986	59B5572BB7AC	C4D7120E2BECD6618CD376C4C1B4965F7D9D73400824E88A5C7B5B66B
8 -	e	:(5,:)	=hexToBinaryV	ector('CD3	7D0FB00431	03444A939E	93676B9DA	F5F2D19	9A2615E	3D97D6	524E62ACAC80	98099FDB9A5A2F4B3ACF20F75B6807A5A3F157C2C0F479158F4A10FB
9 -	e	:(6,:)	=hexToBinaryV	ector('CAA	02DD19DB90	721EB35AB7	D64B8A3877	7964272	242698A	47D832	C3F1AD4DDA0	B5926FFCE9319EEEDA1565ECB0FA1EEDB424414120AAE8CFD0BE88D4
10 -	e	:(7,:)	=hexToBinaryV	ector ('FB2	27530F82BI	527E648619	E532D76462	A5ABBD1	15DB91A	6E7033	DFECCC65D09	5A3D83AB77EDD2F3FEC52659CB3AD1BEB009D7A1C9BFB544291EC1C6
11 -	e	:(8,:)	=hexToBinaryV	ector('9E5	DA18A19514	CCC849E969	7AE4BD1B31	17BB349	927D046	1A96A7	/AF4A5D6C131	07FFB9DE38C5E8CB7C5682827F57D94ED2E77D36F9F1CB05E4C2C62B
12 -	e	:(9,:)	=hexToBinaryV	ector('858	9F8396F5B1	C54CAF2B17	D4C152CEF3	347E66E	EC7903C	878F28	23D4ADB9E7C	CFAFEBB926B7EEB4AE1BECA339A027CE8EF997957532FA871F356E03
13 -	e	(10,:	=hexToBinary	Vector('A3	E17A4CAD2A	BE76E32D18	501899F8D6	60D293E	BB1AC3A	DB64F8	31148AF56741	1790F87F8B7A2D9A6E7645EA50B75514C394508884CBF9E320B24D41D
14 -	e	:(11,:	=hexToBinary	Vector('9D	7B1CF00292	61D65AE1F0	21DAFA81CH	F1673C9	9E0B47F	F2C37D	01B1AF46E7A9	1BC5E529C8F93EE3BC74E92B2743AAB1EDE16A6523B5B8A591C617C1
15 -	e	:(12,:	=hexToBinary	Vector('F2	3088E3EAA0	A6BA04D063	3AAFE85203	3E8B182	29223FA	6B730F	F6DEE6799B52	21F2E8323B8793D0F7F2BB9305B3EF4F5B4F1CB822836E4D92C8E4928
16 -	e	:(13,:	=hexToBinary	Vector('EB	07F9EDF035	96ADC2A3B7	EB6DB1CFC9	911E9A4	4C42336	A57309	F7B6C338928	22E557D94BCC71827D7C5737B1C530D2A087E3F507242F3DA5BD1BBCA
17 -	e	:(14,:	=hexToBinary	Vector('E9	D537A821DE	DE526B441B	A425278571	79B54DE	E76F827	47F860	7B8952DF990)F268C039CC792883B1C76C297D81C6C0CF17DA8BA2C71110B1674172
18 -	e	:(15,:	=hexToBinary	Vector('D7	9D916241BE	E52B61BE82	10A02543F	75A4703	32E9C0C	C12852	24A675E94D8F	79A69B6842B0C5CFF5C1AC98D2085299BDBAEA67A41C724CA36B6275
19 -	e	:(16,:	=hexToBinary	Vector('F8	E2DACDD882	77D4829515	55C657B3E3	BC5DB79	9E5A435	00F7A2	C8B30C854DB	3E611FAC1087FA03D439AC4635D39211E234B82A91248DEE5D4FE67A0
20 -	e	:(17,:	=hexToBinary	Vector('94	741D7F05B0	CA50908E6B	C14801A28E	2353551	1F01769	451B14	182FAD0043D5	5C72331246D9AC3344F0FA2E28FD00E86B38F5E0452F46CA111E92D01
21 -	e	:(18,:	=hexToBinary	Vector('83	9A01464B47	3A64A3D1EA	24EB363EA	AA590F4	4BD0E44	92FEC4	E3D4DB5883E	14873BBA17595FF48134893F16F5C4A43659C46484A268C3303B2DC34
22 -	e	:(19,:	=hexToBinary	Vector('BD	A2B72F0BB0	265269F198	207FB061D2	A29DE43	3E308471	E7C062	A581A7EB534	91EA51B51EDD36F991D15AF89AB53198537988350FD5FDF8E003019B
23 -	e	:(20,:	=hexToBinary	Vector('D2	40216C5C4A	170742CAA03	AE910E8859	9C92E57	A90A352	CB8B45	5847BAC7793E	C1F75720D44919E896AD4581E1FD83986FF235C9834BEECAA1556794B
24 -	e	:(21,:	=hexToBinary	Vector('8E	7752C52805	DD0A723D61	FOBBE0122I	DF576A4	42B5AFD	F9F196	5A766C9B3BFE	296DC16A892FAECEEDD8256D2B1AE6BFE5437D4A2691803043B59862
25 -	e	:(22,:	=hexToBinary	Vector('E6	82E9D8E927	17837823C9B	7714D267F9	9CE290E	E9FA6CC	OA8432	2D3F7507DAF6	5CF681246AA4C2323C6B53BCC6E53B31F49742EE5F4E6F79DC36727E9
26 -	e	:(23,:	=hexToBinary	Vector('F6	BD42042430	BA14DAA15A	256FBCD138	BB5D875	5E28BCC	0BA368	355E648434CD	004F49935C3D074DD5BA2EB82AB14E82C30991A1159E990D1D36DAF79
27 -	e	:(24,:	=hexToBinary	Vector('A9	3663084758	2D8D0C2D45	1C4A65A01E	EE58A07	AF19B79	1D9738	32EC59A52616	5C7480B86EB1D0A83E93224B0DF73DE1D7EE6D51088F3B20B7937E6C0
28 -	e	:(25,:	=hexToBinary	Vector('92	D87BF3F54E	0445C05E50	8E80F9CBC0	0502F08	897D7170	CA2320	004362F394A0	23BFBFE3322C1D331AFC6454FC756FB48768693FD5C46DDB40DCBF14
29 -	e	(26,:)=hexToBinary	Vector('BA	A2716F115I	072D2037841	EF9138D198	333C7C5	SFF40F0	58A960	0826E6903155	577710EFE64BB37691564B3B0B6C577DA603CC3ACDFE1785541AAD239
30 -	e	(27,:	=hexToBinary	Vector('98	CDFCBAD056	240E180F34	7C00912F2I	D9ABEBO	CF5464D	410BE6	5A50404B830F	F744D78F7D97180404FB3BCCC2288B7991810B2562C4D509200CE1F9C
31 -	e	:(28,:	=hexToBinary	Vector('90	6F6C5A1D3E	5D03A03802E	EF5937E214	4E87B5E	E2F01821	BA2C25	8F44B516EC6	56EACB705E06EA6DFDB56600B8463A421DB03A51460091D7FE889E6DA
32 -	e	:(29,:	=hexToBinary	Vector('C6	D5046A5000	ECDB54C872	F2DC494F2I	DEB8843	30007C9	BESEC3	9FFB148F00F	F7861D8277589AC839AAD30AF7D7A2E0F9EE8217A39C521311E9BD59A
33 -	e	:(30,:	=hexToBinary	Vector('FD	CF36E6C842	D2ABCCE9D8	/83D0D7A7E	SB74992	ZEACEEF	6C618A	AC7DED4E457B	31A708BE2C82B28A9563F4A088FF7DB146B16B47A900DF49A4F3FA8ED
34 -	e	:(31,:	=hexToBinarv	Vector('94	964FC9F663	89FE388028	3C4250E6E1	19F195I	DFEBD21	04FC 09	359£084308BC	C9CFDC6E5ED1C4B48B4ECAEB4FDE5F215FBED85A6CD4D1C1466E68A4C
												3

Figure 3: Simulink model for generating ranging codes for E1-B

B. Ranging Codes for E1-B

Ranging codes are used to generate Code division Multiple Access codification for all Galileo signals. Each signal will be assigned to one ranging code with different parameters which depends on their length, chip rate and symbol rate. Ranging codes can be implemented either by 'memory codes' or 'register based codes'. Memory Codes are also called ' pseudo noise sequences ' which are pre-defined codes. These codes are constructed to have very good characteristics on correlation. There are about fifty memory codes in hexadecimal notations. These memory codes are converted in to binary bits using Matlab language. A special function 'hexToBinaryVector' is used to convert these hexadecimal notations in to binary form. Conversion of single memory codes from hexadecimal to binary results in generation of 4092 chips. The converted memory codes are stored in 'look-up' table. 'For loop' is used since fifty codes are needed to be processed. 'Unit delay' is been implemented in order to avoid unwanted noise in the output. Generated ranging codes are visualized using 'scope'. The generated ranging codes of E1-B is shown in Figure 4.

Figure 4: Generated Ranging codes of E1-B

C. Data Components for E1-B

The random values are generated by using "randn" function which is used to generated normally distributed Pseudo random (PN) numbers. 'Sign' conversion block generates output 1 for positive input and output 1 for negative input. Then the bits are converted in to frame using 'frame conversion' block. The converted bits must be over sampled for 368280 times using ' Repeat 'block. Transpose block is introduced to transpose an input vector signals. The generated output is displayed in ' Time vs Amplitude'. The Simulink model of E1-B is shown in Figure 5 and the generated data component is shown in Figure 6.

Figure 5: Simulink model for generating data components for E1-B

Figure 6: Generated Data components

D. Ranging Codes for E1-C

For E1-C, ranging codes has both primary codes and secondary codes. Both these codes are in hexadecimal notations. Primary codes have 4092 chips with the duration of 4ms and secondary codes have 25 chips with the duration of 100 ms. Thus, generating ranging codes of E1-C is as similar to the code generation of E1-B. Fifty memory codes along with one secondary code are converted in binary using 'hexToBinaryVector' as shown in Figure 2. Converted codes are assigned to a variable and stored in '.mat' format. Thus ranging codes are generated by providing assigned variable as table contents in 'look-up' table. Thus ranging codes of E1-C is visualized as in Figure 7.

E. Sub Carrier Modulation

A sub-carrier is a sideband of radio carrier wave which is modulated to send additional information. BOC modulation is used to modulate Sub-carrier. BOC Modulation is used to add additional signals that have the same carrier frequency in to the radio frequency band without interfering with other signals. BOC Modulation is identified as BOC(m, n). The two independent parameters m and n are used to concentrate the signal power in to specific parts of the system to reduce interference with other signals. The parameter m stands for the ratio of the sub-carrier frequency (f_s) and reference frequency ($f_o = 1.023$ MHz), n stands for ratio of the code rate (f_c) and reference frequency. Thus m and n are identified as:

5

S. Thananjaya Chakravarthy and M. Sangeetha

Figure 7: Generated Ranging Codes of E1-C

$$m = \frac{f_s}{f_o}, \quad n = \frac{f_c}{f_o} \tag{1}$$

The Galileo E1 signals has two sub-carrier frequencies which is 1.023 MHz and 6.138 MHz. Thus, BOC(1, 1) has sub-carrier frequency of 1.023 MHz and chipping rate of 1.023 Mcps, and BOC(6, 1) has sub-carrier frequency of 6.138 MHz and chipping rate of 1.023 Mcps.

BOC(1, 1) and BOC(6, 1) is given as

BOC sin(1, 1) = sin(2 ×
$$pi$$
 × f_{sa} × t), (2)

BOC
$$\sin(6, 1) = \sin(2 \times pi \times f_{sb} \times t),$$
 (3)

where, $f_{sa} = 1.023 \times 10^6$ and $f_{sb} = 6 \times 1.023 \times 10^6$.

The sub carrier parameter is defined as sc_a and sc_b which is given as

$$sc_a = \operatorname{sign}(\operatorname{BOC}\,\sin(1,\,1)),$$
 (4)

$$sc_b = \operatorname{sign}(\operatorname{BOC}\,\sin(6,\,1)),$$
(5)

The sub carrier channel for E1-B and E1-C component is defined as

$$scB = (alfa \times sc_a) + (beta \times sc_b), \tag{6}$$

$$scC = (alfa \times sc_a) - (beta \times sc_b), \tag{7}$$

where, alfa = $\sqrt{\frac{10}{11}}$ and beta = $\sqrt{\frac{1}{11}}$

International Journal of Control Theory and Applications

6

From the equation (6) and (7), *sc*B and *sc*C are implemented in Simulink and shown in Figure 8. The Simulink model of the subcarrier components of E1-C is shown in Figure 9 and the generated BOC subcarrier scB and scC is shown in Figure 10 and Figure 11.

S. Thananjaya Chakravarthy and M. Sangeetha

Figure 10: Generated output of Sub-Carrier (scB)

Figure 11: Generated output of Sub-Carrier (scC)

F. Galileo E1 Signal

Ranging codes of E1-B, Data components of E1-B, Sub-carrier modulation and ranging codes of E1-C are processed to generate E1 signals. These locally generated signals are used for the purpose of acquisition and tracking. Ranging codes of E1-B, data components of E1-B are multiplied. The resulting output is been multiplied with Sub Carrier component of E1-B. On the other side, Ranging codes of E1-C and the Sub Carrier of component E1-C are multiplied. These two outputs are subtracted and then multiplied with the constant value of about 0.7071. The resulting output would be E1 signals. The minimum bandwidth is generally twice the chipping rate for simple codes, while for BOC codes it's twice the sum of chipping rate and code rate. Thus the minimum practical bandwidth is 8MHz. Higher chipping rate provide more accuracy. E1 signal is expected to guarantee a horizontal accuracy better than 50 cm/s and a timing accuracy better than 100ns. BOC modulation splits the spectrum in to two main lobes centered at sub carrier frequency around the carrier frequency. Center peaks are located at ± 1.023 MHz and the side peaks are located on ± 6.138 MHz. The simulink model for the generation of E1 signal is shown in Figure 12 and the generated Galileo E1 signal is shown in Figure 13.

International Journal of Control Theory and Applications

Figure 12: Simulink model for generation of E1 signals

Figure 13: Generated Galileo E1 Signals

4. CONCLUSION

In this paper,

9

- Ranging code of both E1-B and E1-C are generated by means of memory codes.
- The data components are generated by normally distrubuted Pseudo random (PN) numbers .
- BOC modulation is the result of multiplexing narrowband signals BOC (1, 1) with wide band signals BOC (6, 1).

These process are combined together in order to generate E1 signals for Galileo Navigation systems. The whole process is carried out with the help of Simulink.

REFERENCES

- [1] European Space Agency /European GNSS Supervisory Authority. *Galileo Open Service Signal In Space Interface Control Document*. OS SIS ICD, Issue 1.1, 2010.
- [2] Kai Borre, "The Galileo Signals with Emphasis on L1 OS," *Proceedings of 12th International Conference on Power Electronics and Motion Control*, Portoroz, Aug. 30-Sep. 1, 2013, pp. 2015-2030.
- [3] Saxena T, Jadon J.S, "Spectral analysis of sine and cosine BOC modulated signals," Proc. Of International conference on Signal Processing and Integrated Networks, Noida, Feb. 20-22, 2014, pp. 734-738.
- [4] Tangadu J, Ramasubramanian K, Subburaj K, Khanna S, Chomal S, "Techniques to enhance signal acquisition and tracking sensitivity," *Proc. of International conference on Indoor Positioning and Indoor Navigation*, Montbeliard-Belfort, 28-31 Oct. 2013, pp. 1-10.
- [5] Pascual D, Hyuk Park, Camps A, "Simulation and analysis of GNSS-R composite waveform using GPS and Galileo Signals," *IEEE journal of selected topics in Applied earth observation and remote sensing*, 2014 April, 7(5), pp. 1461-1468.
- [6] Elhawary M, G. GomahA. ZekryI. Hafez, "E1 and E6 signals," *International Journal of Computer Applications*, 2014 Feb., 88(15), pp. 41-48.
- [7] Lohan E.S, Analytical performance of CBOC Modulated Galileo E1 Signals using sine BOC (1, 1) receiver for mass market applications", *Proc. Of Position Location and Navigation Symposium*, Indian Wells, CA, May 4-6, 2010, pp. 245-253.
- [8] Borre, K., Akos, D.M., Bertelsen, N., Rinder, P., Jensen, S.H. "A Software Defined GPS and Galileo Receiver," 1st ed., Springer, pp. 31-52, 2007.