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ABSTRACT

The present work deals with the van der Waals interaction between a graded film and a rigid contactor and the
resultant surface instability the film may undergo. Using integral approach, the interaction between the graded film
and the contactor (treated as a homogeneous half space) has been obtained explicitly by assuming the exponential
dependence of the compositions on the depth. It has been shown that when the distance between the contactor and
the film is small as compared to the thickness of the film, the van der Waals interaction is weakly dependent on the
gradient of the compositions. The stability of the graded film has then been investigated by linear stability analysis.
Numerical results indicate that gradient of the film’s elastic properties only influences the critical loads for the
onset of bifurcation modes. The effect of the film’s elastic anisotropy has also been illustrated. The results may
have implications for the control of the patterns of surface morphology.
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1. INTRODUCTION

Graded materials, with the volume fractions of the constituents varying spatially have been a useful concept in
many areas. As shown by Suresh et al. [28], if the elastic properties at the contact surfaces were tailored appropriately,
they can be used as protective coatings to enhance contact-damage resistance. Another paradigm for the concept is
the fabrication of hetero-structures in semiconductor industry where graded thin film layers have been introduced
to suppress the development of detrimental surface roughness (Samavedam and Fitzgerald, [25]; Yoon et al. [36].
Consequently research on the effect of gradation in composites has been intensive but mainly focused
oncharacterization of their mechanical properties such as description of elastic moduli (for example, Zuiker, [37]
and Pindera and Dunn, [22], fracture analysis (see Erdogan and Delale, [5]; Erdogan, [9]; Gu and Asaro, [12]; Choi
[3],; Rousseau and Tippur [24]; Dolbow and Gosz, [6]; Walters et al. [32] and contact mechanics analysis as done
by Linss et al. [21]; Guler and Erdogan [13]; El-Borgi et al. [8] and Ke and Wang [20]. However, from the perspective
of applications whether in coating systems or fabrication of hetero-structures, it may be significant to study surface
morphology development and evolution in graded materials involved systems, since it has long been recognized
that the surface morphology of coatings influences their tribological performance and failure behavior whilst graded
buffer layers has been found to produce certain cross hatches that may be controlled through optimized design
(Radu et al., [23] and Yoon et al., [36]. The surface morphology of homogeneous films has been well studied due to
their fundamental significance in many technological applications, for example, in adhesion and friction, and in the
growth of self-assembled nanostructures. According to the extensive experiments and theoretical simulations, the
study of surface morphology can be reduced to stability problems and the various surface morphologies can be
triggered or modified by many factors such as electric field ( Du and Srolovitz, [7]; Huang, [14] and Chiu et al., [2],
applied mechanical force (Huang and Suo, [15]; Decuzzi and Demelio [4] and Trofimov [30], van der Waals force
(Sarkar et al. [26]; Yoon et al. [36] and Gonuguntla et al. [11] and lattice mismatch (Jonsdottir and Freund, [17]).
Since the graded materials are frequently used as coatings to their advantages in which context, the van der Waals



interaction between the graded materials and contactors may be important, the present work, as a preliminary step,
is to consider stability of a graded film due to such surface force. The effect of van der Waals force on the surface
instability of liquid films has been well documented (see Kao et al. [18]; Tomar et al. [29] and Buxton and Clarke
[1]). And for homogenous elastic solid films as analyzed by Shenoy and Sharma [27] and many others mentioned
above, such interaction can also induce surface instability, especially for soft films. Thus the present work will
focus on the effect of gradient in the films. Attention will also be paid to the effect of anisotropy.

Briefly, to consider the surface instability of graded films induced by van der Waals force, the present paper is
organized as follows. The van der Waals interaction between a graded medium and a rigid half space will be derived
in Section 2. In section 3, the surface instability will be analyzed and numerical results will be given in section 4.

2. VAN DER WAALS INTERACTION BETWEEN A HOMOGENEOUS HALF PLANE AND A GRADED
MEDIUM

To study the problem as shown in Figure 1 where a graded film is perfectly bonded to a rigid substrate and interacts
with a rigid contactor, we would like first to find out the van der Waal interaction between the contactor and the
graded film. The contactor will be considered as a homogeneous half space and the contribution of the rigid substrate
will be neglected. The presence of the gradation of constituents in the film may render the van der Waal interaction
with other medium different from the homogeneous materials. In fact, the van der Waal interaction between
nonhomogeneous media has been the focus of several recent studies, see for example, Kaya [19], van Benthem et
al. [31]) and Genchev [10]. Here we would like to consider the volume of constituents vary along the thickness
direction in a specific functional form, say, exponential function as frequently used to describe the modulus in
functionally graded materials by Erdogan and Delale [5] and many other authors (e.g., Choi, [3]). More specifically,
we assume the graded material is composed of two phases with each phase represented by one type of atom. The
number density of the total atoms, i.e., the number of particles in a unit volume, is regarded as constant. Thus we
can write the number density for the two types of atoms as

1 1 10 2 0 1exp( )y�� � � � � � � � � � � , (2.1)

with �
0
 being the total particle number density, ��

1
 and �

10
 being constants that are related to the number density of

phase 1 and � a parameter characterizing the gradation of phase 1.

Figure 1: Schematic Illustration of a Graded film Bonded to a Rigid Substrate and in Proximity to a Contactor



If the van der Waals interaction between the atoms in the graded material and those in the homogeneous space
can be described by the attractive Lennard-Jones potential

V
j
 = C

j
 / r6  j = 1, 2, (2.2)

then the interaction between the graded material of thickness h and the homogeneous half space that are separated
by d can be obtained through integral approach
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where �
h
 is the number density of particles in the homogeneous half space and H
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2( , , ) 2( ) exp( )[ ( 2, ) ( 2, ( ))]f d h d d d d h� � � � � � � �� � � �  with �(a, z) being the incomplete Gamma function that

reads  
1( , ) exp( )a

z

a z t t dt
�
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It can be seen from Eq. (3) that the van der Waals interaction between a homogenous half space and a graded
medium can be considered as that due to two homogenous materials superimposed by a perturbed one that depends

on the gradation. Specially, when h ���, one may further find that 2( , , ) 1 ( ) exp( ) (0, )f d h d d d d� � �� � � � � � . In

Figure 2, the variation of f(d, h, �) with �h has been graphically shown for different values of d / h. From the figure,
one can find when d / h is small, f(d, h, �) is very close to 1 as far as the range of �h in the graph is concerned. That
is, the van der Waal interaction is almost independent of the gradient of compositions in the film. Since the van
der Waals interaction generally plays a role when distance d is in the range of tens of nanometers, we may use
f(d, h, �) � 1 for the graded film’s thickness in the range of microns. Thus, equation (3) can be reduced to
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with H
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] and �

10
 is the fraction of particle 1 at y = 0. It should be noted that if d is

comparable to h, the above approximation is no longer valid.

3. STABILITY ANALYSIS OF A GRADED FILM INTERACTING WITH A RIGID CONTACTOR

In this section, we will consider the stability of a graded film due to the interaction with a rigid contactor that is
dominated by van der Waals potential. As mentioned previously, similar analysis has been conducted on the
homogeneous film by Shenoy and Sharma (2002). Here we would like to focus on the effect of gradation in a graded
film.

3.1. Basic Assumptions and Equations

Due to the gradation of the constituents in such a film, the physical properties in general also vary spatially. Although
one may approximate the physical properties by multilayered medium in a piecewise homogeneous manner as done



by Wang et al (2000) or in a linear manner by Wang and Gross (2000), as a preliminary investigation on the effect
of the gradients of material properties, the exponential functions will be yielded to describe the properties if equation
(1) and the mixture rule like Q

eff
 = Q

1
�

1
 + Q

2
 (1 – �

1
) are taken into account. To make the subsequent analysis

tractable, the relevant material properties are assumed to have the following forms
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if the graded film is orthotropic. The prefactors in the above expressions are the moduli at y = 0. The stress and
strain can be correlated through the moduli as
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with  �
jl
 = 1/2(u

l,j
 + u

j,l
),  (l, j = 1,2).

For the system shown in Figure 1, one may put the total potential as
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in which W(�) is the bulk strain energy density that relates stress components to strain as 
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surface energy and the van der Waals potential is dependent on the displacement of the graded film such that
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with n being the direction normal to the surface of the graded film. If infinitesimal deformation and d >>||u|| are
assumed, then as approximations, one may make use of the following expressions

Figure 2: Graphical Illustration of f(d, h, ) as a Function of h for Different Values of d/h
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3, 3,1 1 / 2y yu u� � � , (3.5)
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0 (0),   (0),   (0)vdw vdw vdwF Y� ��� � � �� �� , (3.7)

The prime in the above equations denotes partial differential with respect to u n. With the approximations, we
may obtain the related equations for the present problem by setting the variational �� = 0 and they read

����  = 0, (3.8)

2, ( )xxu F Y� � � � � �σ n n n u n n  at y = 0, (3.9)

u(x, –h) = 0  at y = –h. (3.10)

3.2. Linear Stability Analysis

The present stability problem formulated by equations (3.8)-(3.10) can be solved by linear stability analysis in
which the solution is the superposition of a homogenous one and a perturbed one. Since the homogenous solution
in essence is one dimensional, it can be easily sought as
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with Y
m
 = c

220
 �/(exp(�h) – 1). It should be noted that Y is smaller than Y

m
, or else approximations in equations (9)

and (10) will be invalid. For the perturbed solution, it can be found that it should satisfy the equilibrium equation
(3.8) together with the following boundary conditions
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at y = –h. (3.13)

Assuming the displacement components have the following forms
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with k being the perturbed wave number and 1i � � , we can obtain the general solutions for f
1
 and f

2
 from the

equilibrium equations (3.7) as
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Substituting equation (3.15) into (3.14) and then into the boundary conditions (3.12) and (3.13), one has a set of
linear equations with respect to A

j
 as
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and  2
120 220( )j j jikc X c k Y� � � � � � � . Since A
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 should be nontrivial, it is required that
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from which the relationship between the van der Waals force related parameter Y and wave number k can be
obtained as
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From equation (3.20), one may expect the relationship between k and Y will be influenced by the gradient
parameter �. It is worth pointing out that Y in equation (3.21) only represents the loads required for the instability
to occur and is different from that in equation (3.7). Generally, one can determine the occurrence of instability if the
value calculated by equation (3.7) is larger than that by equation (3.21).

4. NUMERICAL RESULTS AND DISCUSSION

In this section, we will attempt to illustrate quantitatively the effect of gradation on the stability of a graded film.
Attention will also be paid to the anisotropy of the film. During all the calculation, the surface energy�  will be set
to zero. Since the expressions in section 3 can be readily used for an isotropic graded film, we would like to
consider the effect of gradient first. In this case, c

11
 – c

12
 = c

22
 – c

12
 = 2c

44
 and one can use shear modulus µ and

Poisson’s ratio � as the basic elastic parameters. By taking ��= 0.4 and 0.25 with �h = –0.005 and 0.005 respectively,
the wave number k (normalized by 1/h) as a function of Y(normalized by µ

0 
/ h with µ

0
 being the shear modulus at

y = 0) has been calculated and results are presented in Figure 3 by discrete symbols. The results for a homogeneous
film with the same Poisson’s ratio are also given in the figure by solid lines. It can be seen that the results for a
graded film are identical to those for a homogeneous one, as one can expect since the selected values of the gradient
parameter are very small. It is worth mentioning that the results for the homogeneous film are almost the same as



those obtained by Shenoy and Sharma [27] and Huang et al. [14] for similar problems. So we take respectively,
�h = –1.0, -0.5, 0.5 and 1.0 with Poisson’s ratio being 0.4 and again calculated the wave number k as a function of
Y. The results are plotted in Figure 4. From the figure it can be found that for different values of �h, the critical loads
Y

c
 at which bifurcation modes begin to occur are different decrease with the increase of �h. That is, graded films

with larger values of �h would bifurcate more easily. It is reasonable because larger value of �h means that the
graded film is softer as a whole given the coordinate system used in the present work. It should be pointed out that
in a homogeneous film the occurrence of bifurcation mode is mainly governed by Poisson’s ratio, as is shown by
Shenoy and Sharma [27]. The similar conclusion holds true for a graded film as can be seen from Figure 5 where
wave number k as a function of Y is demonstrated for selected values of Poisson’s ratio and �h = 1.0. So the gradient
in the nonhomogeneous film only influences the magnitude of the critical Y

c
. Due to the difficulty in obtaining a

simple analytical expression for Y
c
 that can be calculated by solving dY / dk = 0, we have numerically computed the

dependence of Y
c
 on �h for � = 0.4. The results are given in Figure 6. Numerical values of Y

m
 as a function of �h

have also been given in the figure by dash line. Evidently the condition for the approximations (3.5) and (3.6) to be
valid is satisfied since Y

c
 is less than Y

m
. If H

e
 is known, one may use equations (3.4) and (3.7) to find the real Y of

the graded film and thus can determine whether bifurcation mode occurs or not. According to equation (8), Y should
be independent of �h. Consequently, the graded film can be designed to avoid or cater for the bifurcation instability
which depends on the specific background of usage.

Now we come to find out the effect of anisotropy of the film. Since in an isotropic film, the occurrence of
bifurcation modes is determined by Poisson’s ratio, one may expect c

120
 / c

110
 will govern the existence of bifurcation

modes in an orthotropic film. To check this point, we take �h = 1.0 and c
110

 / c
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 = c
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 = 5.0, and calculate k
as a function of Y (normalized by c
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 / h in this case) for different values of c

120
. Results are presented in Figure 7

which shows that only the value of c
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 amounts to a certain critical value does the bifurcation mode occur. Figure
8 demonstrates the wave number k as a function of  Y for c
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 / c
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 = 3.0, �h = 1.0, c
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 = 5.0 and different values

of c
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 / c
440

. It can be seen that for selected values of the parameters, the critical load Y
c
 for bifurcation mode

increases with c
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, which again can be understood that larger value of c
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 means stiffer film as whole.
Just as has been done for the isotropic case, we have also calculated the critical Y

c
 as a function of �h and c

220
 for

c
120

 / c
440

 = 4.0 and c
110

 / c
440

 = 6.0. Results are plotted in Figure 9. It can be seen that dependence of Y
c
 on �h behaves

Figure 3: Bifurcation Modes k as a Function of Y in an Isotropic Graded film for Selected Values of
Values of h and Poisson’s Ratio



Figure 4: Bifurcation Modes k as a function of Y in an Isotropic Graded film for Selected Values of h with
Poisson’s Ratio = 0.4

Figure 5: Bifurcation Modes k as a Function of Y in an Isotropic Graded film for Selected Values of Poisson’s
Ratio with = 1.0



Figure 6: Y
c
 and Y

m
 as a Function of h  in an Isotropic Graded Film with Poisson’s Ratio = 0.4

Figure 7: Bifurcation Modes k as a Function of  Y in an Orthotropic Graded film for Selected Values of
c
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Figure 8: Bifurcation Modes k as a Function of  Y in an Orthotropic Graded film for Selected
Values of c
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similarly to that for isotropic case. And Y
c
 increases linearly with the increase of c

220
. From this, one may also make

use of anisotropy to control the patterns of surface instability.



5. CONCLUDING REMARKS

In this work, the van der Waals interaction between a graded film and a rigid contactor has been studied and the
resultant surface instability of the graded film has been analyzed. Exponential form of gradation and elastic moduli
has been assumed, based on which the solution can be obtained relatively easily. Through quantitative illustration
of the effect of gradient, we have found that when the distance between the contactor and the graded film is small as
compared with the thickness of the film, the van der Waals interaction is almost independent of the gradient in the
film. Since according to the numerical results, the existence of bifurcation modes is independent of the gradient in
elastic moduli but solely on Poisson’s ratio for an isotropic film and c

120
 / c

110
 (also Poisson’s ratio in essence) for an

orthotropic film and the gradient only influences the critical load for bifurcation mode if it exists, we expect he
patterns of the surface morphology may be controlled through the design of the gradation of the compositions in the
film and its anisotropy. It is worth mentioning that all the elastic moduli have been assumed to possess the same
exponential form and in the case of isotropic films, the Poisson’s ratio has been taken to be constant. It is unclear
how the different forms of elastic moduli or variable Poisson’s ratio would influence the surface instability of
graded films, which may remain for future study.
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