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Solution of Linear Diophantine Equation

Rajesh Kumar

Abstract: In this paper, we have discussed the Linear Diophantine Equation ax +
by = c, where a, b, c are integers and a, b are not both zero. Some of the tools
introduced, however, will be useful in many other parts of the subject.
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1. LINEAR DIOPHANTINE EQUATION

An equation in one or more unknowns which is to be solved in integers is called
Diophantine Equation, named after the Greek Mathematician Diophantus. See ([2])

A linear Diophantine equation of the form ax + by = ¢ may have many
solutions in integers or may not have even a single solution.

2. NECESSARY AND SUFFICIENT CONDITION FOR EXISTENCE
OF LINEAR DIOPHANTINE EQUATION

If a, b, c aeintegersand a, b are not both zero, then the linear diophantine equation
ax + by = ¢ hasan integral solution if and only if gcd(a, b) isadivisor of c.

Proof. Let one integral solution of the equation ax + by = c be (x4, y,). Then
ax; + by, = ¢, where (x4, y,) areintegers. Let gcd(a, b) = d andsod|a and d|b
whichimplies d|(ax, + by,), i.e, d|c.

Conversly, let gcd(a, b) beadivisor of c. Let gcd(a,b) =d andsoa = dm,b =
dn wherem, n areintegers primeto each other. Let ¢ = dp wherep is an integer.
Now since m,n are prime to each other, there exist integers u, v such that mu +
nv = 1.Then

dmup + dnvp = dp
= a(up) + b(vp) =c

Thisimplies that (up, vp) isasolution of the equation ax + by = ¢ where up
and vp areintegers. Hence the equation ax + by = ¢ hasan integral solution.
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Theorem 2.1. Thelinear Diophantine Equation ax + by = ¢ has a solution if and
only if d|c, where d = gcd(a, b) and if (x,, yo) by any particular solution of the
equation, then all other solutions will be

b a
x=x0+(a>t y=y0—(5)t
Where t isan arbitrary integer.

Proof. To prove the second part of the theorem, let us suppose that (x4, y,) be
aknown solution of the given equation. Now if x’,y" is any other solution, then

axg + byy = ¢ = ax' + by’
Which is equivalent to
a(x"—=x0) =b(yo—y")
So there exist relatively prime integers r and s such that a = dr, b = ds.
Substituting these value into the last equation and canceling the common factor d,

we get r(x" —xg) = s(yo — y'). Then r|s (yo —y'), with ged(r,s) = 1. Using
Euclid's lemma, we get r|(y, — y'); or in other words (y, — y') = rt for some

integer t and so (x' — x,) = st. formthiswe get x’ = xy + st = xy + (g) t,y' =
Yo — 1t = Yo — (%) t which satisfy the Diophantine equation
ax' +by' =a [xo + (é> t] + by, — (2) t]
d d
= (ax, + by,) + (% - %) t
=c+o.t
=c

Hencethereareinfinite number of solutions of the given equation, onefor each
value of t.

Example 2.2. Let ustake the linear Diophantine equation
172r + 20s = 1000
Solution 2.3. First applying the Euclidean's Algorithm we find that
172 =8.20 + 12
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20=1.12+8
12=18+4
8=24

Therefore gcd(172,20) = 4. Now, Since 4]|1000, a solution to this equation
exists. To obtain the integer 4 as a linear combination of 172 and 20, we work
backward through the previous calculations, as follows:

4=12-8
=12-(20-12)
=212-12

=2(172 —8.20) — 20
=2.172 + (—17)20
Multiplying this relation by 250, we get
1000 = 250.4 = 250[2.172 + (—17)20] = 500.172 + (—4250)20

so r = 500 and s = 4250 provide one solution to the Diophantine equation.
All other Solutions are

r =500+ (20) t =500 +5t s=—4250— (”2

4 4

)t = —4250 — 43¢
for someinteger t and for positive integers solutions, if exist, t must be chosen
to satisfy simultaneously the inequalities
5t+500>0, —43t—4250>0
or,

98 36 >t>-100
43

Next, we are looking for the non-trivial solution of the nonlinear Diophantine
equation.

3. FERMAT'SLAST THEOREM
The equation
x™ 4+ yt=z" (2.1
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wheren isan integer greater than 2, has no integral solutions, except the trivial
solutions in which one of the variablesis 0.Seg([3])

The theorem had never been proved for all n. Later this has been resolved and
proved for all n. In this chapter we are giving the solution of Fermat's last theorem

i.e. the equation (2.1) is soluble for n = 2 and also the equation (2.1) has no
integral solution for n = 3 and 4.

Theorem 3.1. The general solution of the equation

x? + y?=z2 (2.2)
Satisfying the conditions
x>0,y>0,2z>0,(xy) =1.2|x, (2.3)
5
x = 2ab,y = a? — b%,z = a® + b?, (2.9)
where a, b areinteger's and
(a,b)=1,a>b >0, (2.5)

There is a one to one correspondence between different values of a,b and
different values of x, y, z.

Proof. First, we assume that x? + y2 = z2andx > 0,y > 0,Z > 0,(x,y) =
1,2| x. Now since 2|x and (x,y) = 1,y and z areodd and (y, z) = 1. So%(z—y)
and%(z + y) areintegral and

(z—y z+y>_1
2 2 )

Thenby (2.2),
X2 _ (ZZY ZHY)
(2) _( 27 2 )_ 1
and the two factors on the right, being coprime, must both be squares. So
z+y o,z
=a

L= p?
2 2

where

a>0,b>0,a>b(ab)=1
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Also
a+b = (a? + b?) =z = 1(mod2)

Wherea and b areof opposite parity. Thereforeany solution of (2.2), satisfying
(2.3), isof theform (2.4); and a and b are of opposite parity and satisfy (2.5).

Next, we assumethat a and b are of opposite parity and satisfy (2.5). Then
x% +vy? = 4a?b? + (a® — b?)? =(a? + b?)% = 22,
x>0,Y>0,z>0,2|x
If (x,y) = d,thend| z,and so
dly = (a? — b?),d|z = (a? + b?)

Therefore d|2a?,d|2b?. Since (a,b) = 1,d must be 1 or 2, and the second
alternative is excluded because y is odd. Hence (x, y) = 1 andif y and z are given,
a? and b? areuniquely determined, so that different values of x, y and z correspond
to different values of a and b.

Theorem 3.2. There are no positive integral solutions of the equation
x* +yt =22 (2.6)
Proof. Let u be the least number for which
x*+y*=u?(x >0,y >0,u>0) (2.7

has a solution. Then (x,y) = 1, otherwise we can divide through by (x,y)*
and so replace u by a smaller number. Therefore at least one of x and y is odd, and
u? = x* + y* =1 or 2 (mod4).

Since u? = 2(mod4) is impossible, so u is odd, and one of x and y is even.
Now if x is even, then by (2.3.1),

x% =2ab,y? = a® — b%,u = a? + b?,

a>0,b>0,(a.b) =1anda and b are of opposite parity. Againif a is even
and b is odd. then

y? = (—1)(mod4) whichisimpossible; so a isodd and b iseven, say b = 2c.
Next we get
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(%x)2 =ac(a,c) =1

and so
a=d%c=f%d>0,f>0,(df)=1
and d isodd. Therefore
y2=a2—b2=d4’—4f2
2f*)? +y? = (d*)?
and no two 22, y, d? have a common factor.
Now by applying theorem (2.3.1) again, we obtain

2f2=2lm,d*=124+m%1>0,m>0,(l,Lm) =1.

Since
f2=Im,(,m)=1
we get
l=r>m=s%(r>0,5s>0)
and so
rt+s* =d2
But

d<d?’=a<a’<ad’+b?>=u

and u is not the least number for which the equation (2.7) is possible. Thisisa
contradiction which proves the theorem.

4. PYTHAGOREAN TRIPLESAND THE UNIT CIRCLES
We have already described all the solutions to
X2+ y? = 72 (2.8)
in whole numbers x, y and z. Now if we divide this equation by z?2, we obtain

QP+ =1 (29)
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and so the pair of rational numbers (Z,%)is a solution to the equation

u?+v?2 =1 (2.10)

Thereforetherearefour rational solutionsto the equation u? + v = 1 see([4])
These are (£1,0) and (O, £1). Now if (xq, o) isapoint on the circle with rational
coordinates, then the dlope of the line joining (ug, vo)to (-1,0) is rational.
Conversdly, if alinethrough (-1,0) with rational slopeintersectsthecircleat another
point (ug, vy), then uy and v, arerational.

Let t bearational number. Let us consider the line with slopet through (-1,0)
and it has the equation Z;Jr;) =t or v =t(u+ 1). Substituting this in (2.10) we

obtainu? + t2(u + 1) = 1or u?(1 + t?) + 2t%u + t2 — 1 = 0. Now wecan use
the quadratic formulato solvefor u, or we observe that oneroot is —1 and the sum

of the roots of the equation au? + bu + ¢ = 0 is— g, hence

L 2t2
u—1=-
1+ t2
or
1—t?
u =
1+ t2
Lett=§with(s,r)=1andso
2
S
X 1_r_2 r2 —s2
u=;= s2 12 4 52
1+

Since (x,z) = 1 andif (r? — s%,72 + s?) = 1, then
x=1r>—s5%z=r2+5%y=2rs
But (r? — s2,7% + s2) # 1, we cannot takex = r? — s2,z = r? + s2, because
(r,s) = 1impliesthat (r? — s2,72 + s2) = 1,2. Againif (r2 — s2,r2 + s2) = 2,
—s? r? 4+ s2
x = ,Z = Y =TS
2 Pt Y

This equation can be written as the from stated in the theorem. Here both  and
s must be odd, so we can transform
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r+s r—s

_ 2 2
z= () + ()
r+s r—s

2 _ 2
2= 7 )

—S

Now letting m = sz and n = == and adding switching x and y, we see that
the solution is again of theform

x =m?—n?y=2mn,z=m?+n?

Conversely, we can easily verify that for any(m,n) = 1, theseformulasyield a
Pythagorean Triple.

REFERENCES

[1] Apostol T.M., "Introduction to Analytic Number Theory", Spinger International Student
Edition, Narosa Publishing House (1989)
[2] Burton D.M. "Elementary Number Theory", TataMcGraw-Hill Edition, Sixth Edition (2006)

[3] Hardy G.H., Wright EM. "An Introduction to the Theory of Numbers" Oxford Science
Publications, Fifth Edition (1979)

[4 Kumundury R, Romero C., "Number Theory with Computer Application” Prentice hall (1998)
[5] MapaSK. "Higher Algebra’, Milinda De for Levant Books, Sixth Revised Edition (2004)

Rajesh Kumar
Research Scholar Deptt. of Mathematics,
V.K.S. University, Ara (Bihar)





