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Solution of Linear Diophantine Equation 

Rajesh Kumar 

Abstract: In this paper, we have discussed the Linear Diophantine Equation ax + 
by = c, where a, b, c are integers and a, b are not both zero. Some of the tools 
introduced, however, will be useful in many other parts of the subject. 
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1. LINEAR DIOPHANTINE EQUATION 

An equation in one or more unknowns which is to be solved in integers is called 
Diophantine Equation, named after the Greek Mathematician Diophantus. See ([2]) 

A linear Diophantine equation of the form �� � �� � � may have many 
solutions in integers or may not have even a single solution. 

2. NECESSARY AND SUFFICIENT CONDITION FOR EXISTENCE  
OF LINEAR DIOPHANTINE EQUATION 

If �, �, � are integers and �, � are not both zero, then the linear diophantine equation 
�� � �� � � has an integral solution if and only if gcd ��, �� is a divisor of c. 

Proof. Let one integral solution of the equation �� � �� � � be ���, ���. Then 
��� � ��� � �, where ���, ��� are integers. Let gcd��, �� � � and so �|� and �|� 

which implies �|���� � ����, i.e., �|�.  

Conversly, let gcd��, �� be a divisor of c. Let gcd��, �� � � and so � � ��, � �

�� where �, � are integers prime to each other. Let � � �� where � is an integer. 
Now since �, � are prime to each other, there exist integers �, � such that �� �

�� � 1.Then 

���� � ���� � �� 

⇒ ����� � ����� � � 

This implies that ���, ��� is a solution of the equation �� � �� � � where �� 

and �� are integers. Hence the equation �� � �� � � has an integral solution. 
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Theorem 2.1. The linear Diophantine Equation �� � �� � � has a solution if and 
only if �|�, where � � gcd ��, �� and if ���, ��� by any particular solution of the 
equation, then all other solutions will be  

� � �� � �
�

�
� �                � � �� � �

�

�
� � 

Where � is �� arbitrary integer. 

Proof. To prove the second part of the theorem, let us suppose that ���, ��� be 
a known solution of the given equation. Now if ��, �′ is any other solution, then 

��� � ��� � � � ��� � ��′ 

Which is equivalent to 

���� � ��� � ���� � ��� 

So there exist relatively prime integers � and s such that � � ��, � � ��. 

Substituting these value into the last equation and canceling the common factor �, 
we get ���� � ��� � ���� � ���. Then �|� ��� � ���, with gcd��, �� � 1. Using 

Euclid's lemma, we get �|��� � ���; or in other words ��� � ��� � �� for some 

integer � and so ��� � ��� � ��. form this we get �� � �� � �� � �� � �
�

�
� �, �� �

�� � �� � �� � �
�

�
� � which satisfy the Diophantine equation 

��� � ��� � � ��� � �
�

�
� �� � ���� � �

�

�
� �� 

 � ���� � ���� � �
��

�
�

��

�
� � 

 � � � �. � 

 � � 

Hence there are infinite number of solutions of the given equation, one for each 
value of �. 

Example 2.2. Let us take the linear Diophantine equation 

172� � 20� � 1000 

Solution 2.3. First applying the Euclidean's Algorithm we find that 

172 � 8.20 � 12 
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20 � 1.12 � 8 

 12 � 1.8 � 4 

 8 � 2.4 

Therefore gcd�172,20� � 4. Now, Since 4|1000, � solution to this equation 
exists. To obtain the integer 4 as a linear combination of 172 and 20, we work 
backward through the previous calculations, as follows: 

 4 � 12 � 8 

 � 12 � �20 � 12� 

 � 2.12 � 12 

 � 2�172 � 8.20� � 20 

 � 2.172 � ��17�20  

Multiplying this relation by 250, we get 

 1000 � 250.4 � 250�2.172 � ��17�20� � 500.172 � ��4250�20 

so � � 500 and � � 4250 provide one solution to the Diophantine equation. 
All other Solutions are 

� � 500 � �
��

�
� � � 500 � 5�    � � �4250 � �

���

�
� � �  �4250 � 43�   

for some integer � and for positive integers solutions, if exist, � must be chosen 
to satisfy simultaneously the inequalities 

5� � 500 � 0,     � 43� � 4250 � 0 

or, 

�98
36

43
� � � �100 

Next, we are looking for the non-trivial solution of the nonlinear Diophantine 
equation. 

3. FERMAT'S LAST THEOREM 

The equation  

 �� � ��=��  (2.1) 
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where � is an integer greater than 2, has no integral solutions, except the trivial 
solutions in which one of the variables is 0.See([3]) 

The theorem had never been proved for all �. Later this has been resolved and 
proved for all �. In this chapter we are giving the solution of Fermat's last theorem 

i.e. the equation �2.1� is soluble for � � 2 and also the equation �2.1� has no 
integral solution for � � 3 and 4. 

Theorem 3.1. The general solution of the equation  

 �� � ��=�� (2.2) 

Satisfying the conditions 

 � � 0, � � 0, � � 0, ��, �� � 1,2|�, (2.3) 

is 

 � � 2��, � � �� � ��, � � �� � ��,  (2.4) 

 where a, b are integer's and  

 ��, �� � 1, � � � � 0,  (2.5) 

There is a one to one correspondence between different values of �, � and 
different values of �, �, �. 

Proof. First, we assume that �� � �� � �� and � � 0, � � 0, � � 0, ��, �� �

1,2| �. Now since 2|x and ��, �� � 1, � and � are odd and ��, �� � 1. So 
�

�
�� � �� 

and 
�

�
�� � �� are integral and 

�
� � �

2
,
� � �

2
� � 1 

Then by (2.2), 

�
�

�
�� � �

���

�
,

���

�
� � 1  

and the two factors on the right, being coprime, must both be squares. So 

� � �

2
� ��,

� � �

2
� ��  

where 

� � 0, � � 0, � � �, ��, �� � 1  
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Also 

� � � ≡ ��� � ��� � � ≡ 1����2� 

Where � and � are of opposite parity. Therefore any solution of �2.2�, satisfying 
(2.3), is of the form (2.4); and � and � are of opposite parity and satisfy (2.5). 

Next, we assume that � and � are of opposite parity and satisfy (2.5). Then 

�� � �� � 4���� � ��� � ���� ���� � ���� � ��, 

� � 0, � � 0, � � 0, 2|� 

If ��, �� � �, ���� �| �, ��� �� 

�|� � ��� � ���, �|� � ��� � ��� 

Therefore �|2��, �|2��. ����� ��, �� � 1, � must be 1 or 2, and the second 

alternative is excluded because � is odd. Hence ��, �� � 1 and if � and � are given, 

�� and �� are uniquely determined, so that different values of �, � and � correspond 

to different values of � and �. 

Theorem 3.2. There are no positive integral solutions of the equation 

 �� � �� � �� (2.6) 

 Proof. Let � be the least number for which 

 �� � �� � ���� � 0, � � 0, � � 0�  (2.7) 

has � solution. Then ��, �� � 1, otherwise we can divide through by ��, ��� 
and so replace u by a smaller number. Therefore at least one of � and y is odd, and 

�� � �� � �� ≡ 1 or 2 (mod4). 

Since �� ≡ 2����4� is impossible, so � is odd, and one of � and � is even. 

Now if � is even, then by (2.3.1),  

�� � 2��, �� � �� � ��, � � �� � ��, 

� � 0, � � 0, ��. �� � 1 and � and � are of opposite parity. Again if � is even 
and � is odd. then 

�� ≡ ��1�����4� which is impossible; so � is odd and � is even, say � � 2�. 
Next we get 
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�
1

2
��� � ����, �� � 1 

and so 

� � ��, � � ��, � � 0, � � 0, ��, �� � 1 

and � is odd. Therefore 

�� � �� � �� � �� � 4��  

�2���� � �� � �����  

and no two 2��, �, �� have a common factor. 

Now by applying theorem (2.3.1) again, we obtain 

2�� � 2��,  �� � �� � ��, � � 0, � � 0, ��, �� � 1. 

Since 

�� � ��, ��, �� � 1 

we get 

� � ��, � � ���� � 0, � � 0� 

and so 

�� � �� � ��. 

But  

� � �� � � � �� � �� � �� � � 

and � is not the least number for which the equation (2.7) is possible. This is a 
contradiction which proves the theorem. 

4. PYTHAGOREAN TRIPLES AND THE UNIT CIRCLES 

We have already described all the solutions to  

 �� � �� � �� (2.8) 

in whole numbers �, � and �. Now if we divide this equation by ��, we obtain  

 �
�

�
�� � �

�

�
�� � 1  (2.9) 
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and so the pair of rational numbers �
�

�
,

�

�
�is a solution to the equation 

 �� � �� � 1 (2.10) 

Therefore there are four rational solutions to the equation �� � �� � 1 see ([4]) 

These are (�1,0) and (0, �1). Now if (��, ��) is a point on the circle with rational 
coordinates, then the slope of the line joining (��, ��)to (-1,0) is rational. 
Conversely, if a line through (-1,0) with rational slope intersects the circle at another 
point (��, ��), then �� ��� �� are rational. 

Let � be a rational number. Let us consider the line with slope t through (-1,0) 

and it has the equation 
���

���
� � or � � ��� � 1�. Substituting this in (2.10) we 

obtain �� � ���� � 1�� � 1 or ���1 � ��� � 2��� � �� � 1 � 0. Now we can use 
the quadratic formula to solve for �, or we observe that one root is �1 and the sum 

of the roots of the equation ��� � �� � � � 0 is �
�

�
, hence 

� � 1 � �
2��

1 � ��
 

or 

� �
1 � ��

1 � ��
 

Let t �
�

�
 with ��, �� � 1 and so 

� �
�

�
�

1 �
��

��

1 �
��

��

�
�� � ��

�� � ��
  

Since ��, �� � 1 and if ��� � ��, �� � ��� � 1, then 

� � �� � ��, � � �� � ��, � � 2�� 

But ��� � ��, �� � ��� � 1, we cannot take� � �� � ��, � � �� � ��, because 
��, �� � 1 implies that ��� � ��, �� � ��� � 1, 2. Again if ��� � ��, �� � ��� � 2,  

� �
�� � ��

2
, � �

�� � ��

2
, � � ��  

This equation can be written as the from stated in the theorem. Here both � and 

� must be odd, so we can transform 
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� � �
� � �

2
�� � �

� � �

2
�� 

� � �
� � �

2
�� � �

� � �

2
�� 

� � 2 �
� � �

2
� �

� � �

2
� 

Now letting � �
���

�
 and � �

���

�
 and adding switching � and �, we see that 

the solution is again of the form 

� � �� � ��, � � 2��, � � �� � �� 

Conversely, we can easily verify that for any��, �� � 1, these formulas yield a 
Pythagorean Triple. 

REFERENCES 

[1] Apostol T.M., "Introduction to Analytic Number Theory", Spinger International Student 
Edition, Narosa Publishing House (1989) 

[2] Burton D.M. "Elementary Number Theory", Tata McGraw-Hill Edition, Sixth Edition (2006) 

[3] Hardy G.H., Wright E.M. "An Introduction to the Theory of Numbers" Oxford Science 
Publications, Fifth Edition (1979) 

[4] Kumundury R, Romero C., "Number Theory with Computer Application" Prentice hall (1998) 

[5] Mapa S.K. "Higher Algebra", Milinda De for Levant Books, Sixth Revised Edition (2004) 

Rajesh Kumar  
Research Scholar Deptt. of Mathematics, 
V.K.S. University, Ara (Bihar) 




