
International Journal of Control Theory and Applications183

Frequency Estimation of Seismic Signal Using Eigen 
Vector Method

V. Gopi Tilaka and S. Koteswara Raoa

aCorresponding author, Department of ECE, K L University, Green Fields, Guntur DT, AP, 522502, India. Email: gopitilak7@gmail.com 
bDepartment of ECE, K L University, Green Fields, Guntur DT, AP, 522502, India. Email: rao.sk9@gmail.com 

Abstract: Earthquake data recorded over multiple traces, each trace of signal model contains complex exponentials 
in noise. The noise in seismic signal is ground roll noise. The estimation of power spectrum using non-parametric 
methods has some limitations and they need to go for Eigen decomposition methods. Estimation of frequencies 
where peaks occur in spectrum is frequency estimation method which is one of the parametric estimation methods. 
It uses Eigen decomposition of signal that follows the separation of noise and complex exponentials is formulated 
as a generalized Eigen value decomposition assuming the noise is white noise with uniformly distributed 
amplitudes.
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Introduction1.	
A phenomenon having certain behaviour and attributes and the information about those parameters can be 
conveyed as a function that is known as a signal. In real world, signal is any quantity showing fluctuations in 
time or fluctuations in space. A signal is useful in analysing different aspects like the position of a physical 
system which carry some data between observers and between supplementary possibilities.

Signals representation in mathematical form are known as deterministic signals [8] and based upon the 
characteristics and properties of signals, mathematically represented signals are again divided into different types. 
The random systems which can process signal without any priori information and produce required outputs need 
spectral estimation.

Earthquake [1, 7] is a physical phenomenon that occurs in different layers of earth. The occurrence of 
earthquake follows both natural and artificial reasons. Naturally, they happen due to geological movement of 
tectonic plates and artificially by the explosions in underground layers due to volcano and man-made explosions. 
Earthquake origin is determined by the seismic data of that earthquake recorded from at least three diverse receiver 
positions [5, 7]. The time span of earthquake is very small that lasts up to some seconds only.
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1.1.	 Seismic Waves
Energy evolved from earthquake illuminates isotropically all over the surroundings [7]. The energy illumination is 
studied in form of waves known as seismic waves. Seismic waves characterization and analysis gives the details 
about different layers of earth. Body waves and surface waves are two types of seismic waves, P-waves and 
S-waves comes under category of body waves [1]. Body waves having low magnitude and propagate with high 
velocity. P waves are first seismic waves to be recorded in seismogram so named as primary waves as they can 
propagate through solid and underground water bodies. P waves travel longitudinally in propagation of energy 
and S waves travel in transverse manner. S waves cannot propagate through fluid medium and are shown to be 
following waves of P waves. P waves travel 60 times faster than S waves.

Surface waves are classified into two ways based on the names of scientists who realized them mathematically 
which are Rayleigh waves and Love waves. Love waves originate from horizontally polarized S waves, where 
first surface waves are love waves which also exist in the sub surface layers. Love waves travel left and right in 
direction of propagation where Rayleigh waves travel along up and down ways. Rayleigh waves are also named 
as ground roll noise. Surface waves disturb and shown to be noise in seismic signal.

1.2.	 Seismic Signal Processing
Seismic signal processing follows so many techniques to characterize the type of earthquake and also predicts the 
happening of earthquake based on previous data available. Seismic data recorded from seismograph that records 
relevant data about earthquake and other disturbances that occur randomly due to natural and man- made reasons. 
The noise is of coherent or non-coherent in nature. Signal processing algorithms analyses the characteristics of 
seismic signal and that allows for prediction of earthquakes in future. Statistical estimation [5,7] of signal follows 
power spectral estimation and frequency or harmonic estimation.

Parametric and non-parametric methods follows power density spectrum of seismic signal which improves 
the rejection of side lobes and increases main lobe width in smart antenna systems [10]. Statistical estimation 
methods provide better results for estimation of direction of arrival in smart antenna systems [13,10]. The 
frequency estimation of multiple sinusoidal signals is equates to liner prediction algorithms like maximum 
likelihood estimation [14]. The parameters in frequency estimation are frequencies of signal. A band pass filter 
gives better resolution on pre-processed seismic signal.

Eigen Vector Decomposition2.	
Eigen vector decomposition [2, 9] is one of the frequency estimation methods to estimate the signal by 
dividing the received signal into signal of interest and noise signal subspaces [6,11]. The received signal is the 
combination of signal of interest plus noise with amplitudes of complex exponentials. In many applications 
sinusoidal or harmonic model is more appropriate for signals of interest that are complex exponentials contained 
in white noise. The signals of complex frequencies are observed in array processing, the formant frequencies 
in speech processing, moving targets in radars and spatially propagating signals. Eigen decomposition method 
implies other applications over signal and image processing. In the applications of sky wave estimation [12], 
Eigen decomposition plays major role on estimating delays in sky wave propagation. The prediction of signal 
characteristics can also implemented using Eigen decomposition [15].

Complex conjugate pair (sinusoids) made up by complex exponentials for real signals and for complex 
signals, they may occur at single frequency. Frequencies of signals are the parameter of interest for complex 
exponentials in noise. The frequencies at which peaks occur in spectrum are the frequency estimates. Non-
parametric methods are appropriate for complex exponential signals because they do not consider underlying 
process. All-pole model [3] or maximum entropy method is considered for spectral estimation.
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This method follows the vector properties of signal. For an array of seismic sensors, which records multiple 
traces of seismic signals, where the amplitude of signal in white noise varies in complex exponential nature. 
One of the trace is considered such that it has time window length K and the count of complex exponentials 
is D. The auto correlation of noise is product variance of white noise and identity matrix. The eigenvalues are 
equal to powers of complex exponentials of signal. The consideration is that the time interval length is always 
greater than count of complex exponentials. The range up to complex exponentials is taken as signal and other 
than those are noise.

The eigenvalue decomposition technique includes these subsequent steps as follows:

1.	 Define the raw seismic signal in form of autocorrelation matrix of sum of eigenvectors of signal and 
noise in time window length K.

2.	 Define autocorrelation matrices of signal and noise based on condition between time window length 
and number of complex exponentials.

3.	 Apply a finite impulse response band pass filter to Eigen decomposed signal that gives better resolution 
about occurrence of peaks in the spectrum.

Flow chart

MATHEMATICAL MODELLING3.	
The signal model of ‘d’ complex exponentials in noise is
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i nf

d

d( ) ( )= +
=

Â a wp2

1

D
	 (1)



V. Gopi Tilak and S. Koteswara Rao

International Journal of Control Theory and Applications 186

The normalized, discrete-time frequency of the dth component is

	 fd
d

d s= =
w

p2
F /F 	 (2)

The frequency of discrete time is denoted by wd in radians, the dth complex exponential actual frequency is 
denoted by Fd, and sampling frequency Fs. In the condition of real signals, the complex exponentials can result 
either independently or in pairs of complex conjugates. In general, possibly to estimate the frequencies and also 
the amplitudes of these signals. The phase of each complex exponential is contained in the amplitude, that is

	 µd = | µd | e
jjd	 (3)

where, the phases jd are uncorrelated random variables uniformly distribute over [0, 2p]. The magnitude | µd | 
and frequency fp are deterministic quantities. Take into account, the harmonic process’s spectrum contains 
impulses set which has a steady background level at the white noise’s power s2

w = E{| w(n) |2}. The line spectrum 
is generally considered as complex exponentials power spectrum.

Making use of matrix techniques on the basis of a few intervals of length K, the formation of vector is 
useful to describe the signal model over this time interval which consists of the sample delays of signal.

Time window of signal from (1) for its present and future K - 1 values represented as

	 x(n) = [x(n) x(n + 1) … x(n + K - 1)]T	 (4)

The signal model complex exponentials included in noise for length K time interval vector is

	 x n v f e n s n nd d
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White noise with time window, w(n) = [w(n)w(n + 1) … w(n + K - 1)]T.

	 v( f ) = [1ej2pf … ej2p(K - 1) f ]T	 (6)

v( f ) is frequency vector of time interval. The differentiation between signal s(n), combination of noise 
content w(n) and complex exponentials respectively.

From (5), time window vector model contains noise with which includes complex exponentials sum. The 
representation of signal and noise autocorrelation matrices and its sum as autocorrelation matrix of this model as

	 Rx =	E{x(n) xh(n)} = Rs + Rw	 (7)
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where,

	 V = [v( f1)v( f2) … v( fd)]	 (8)

Equation (6) is frequency vectors of time window is a column matrix of a K ¥ D matrix of complex 
exponentials
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The complex exponentials power is represented as diagonal matrix in (9) and the white noise autocorrelation 
matrix is

	 Rw = s2
wI	 (10)

For D < K it is rank deficient as opposed to Rs, full rank of w. In practice, the assumption is that the number 
of complex exponentials D always less than length of time window K.

The Eigen decomposition of autocorrelation matrix is

	 R Q QH H
K

k k k k
k

q q= =
=

Â l L
1

	 (11)

where, l1 ≥ l2 ≥ L ≥ lk are descending eigen values of lk, their corresponding eigenvectors are qk, the diagonal 
matrix of descending Eigen values is L, the eigenvectors due to signals is sum of time windowed signal power 
and noise.

	 lk = K | µd |
2 + s2

w  for k £ D	 (12)

The noise given by remaining eigenvalues as

	 lk = s2
w  for k > D	 (13)

The complex exponentials of the signal correspond by P largest eigenvalues and the noise corresponded 
by remaining eigenvalues having equal variance. Thus the autocorrelation matrix can be portioned into spaces 
of eigenvectors of signal and noise as

	 Rx =	
k

d

k k d
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where,

	 Qs = [q1  q2  ...  qd]    Qw = [qd + 1  ...  qK]	 (15) 

The eigenvectors of signals represented in columns of matrices respectively, from (12) Ls is D ¥ D diagonal 
matrix consists signal eigenvalues. The signal and noise eigenvectors helps to span the time window signal 
vector from (5) which is K-dimensional signal subspace. The property of Hermitian symmetry of autocorrelation 
represents orthogonality of signal and noise subspaces.

The band pass filter with finite impulse response, The response of band pass filtered de-trended raw seismic 
signal which is Eigen decomposed is

	 y i h n i n
n

d x( ) ( ) ( )= -
=
Â

0

M
R 	 (16)

Simulation and Results4.	
Step 1: Representation of complex exponential noisy signal in form of Monte-Carlo runs with respect to 
Eigen decomposition method. Figure 1 shows the power spectral density of complex exponential signal shows 
that peaks occur at 0.2, 0.3 and 0.5 radians that shows code is functioning well. The number of Monte-Carlo 
runs is 10.



V. Gopi Tilak and S. Koteswara Rao

International Journal of Control Theory and Applications 188

Step 2: Average of Monte Carlo spectrum using Eigen vector by normalizing spectrum with total number of 
samples which shows peaks of single normalized signal in Figure 2 taking as reference for explaining Eigen 
decomposition for further results.

Step 3: The seismic signals used in this paper are attained from MATLAB file present in [5], Book_Seismic_
Data.mat through a geophone array in southern United States. This reference data is recorded from the man-
made seismic waves to idealistically represent the real-time earthquake scenario. Here source is observed to 
be a high explosive material filled in about 100 feet below the earth surface by making holes. There are 33 
traces, each divided individually into 1500 samples with sampling interval of 0.002 s. To analyse this spectrum 
one of the traces is considered among the supplied traces. In Figure 3, trace 5 of the seismic signal data is 
shown.

Step 4: Figure 4 shows the de-trended raw seismic signal which is observed from bias of raw seismic signal. 
De-trending makes the signal to get rid of small fluctuations by taking the mean of the signal.

Step 5: The prescribed Eigen vector algorithm is applied on the de-trended seismic signal and the power spectrum 
density achieved out of it is represented in Figure 5. From this figure, the maximum peak is determined to be 
at 0.08594p normalized frequency. The sampling frequency is calculated by using the sampling interval 0.002s 
as,

	 fs =	1/0.002 = 500 Hz

	 w =	 2pf
fs

 = 0.08594p

	 =	 2
500
pf

	 =	 2p
fs

f  = 0. 08594p

where, ‘f’ is the frequency of the signal and it is given by,

	 Tonal Frequency f =	 500
2

0 08594¥ .

	 =	250 ¥ 0.08594

	 =	25 ¥ 0.8594

	 =	21.485 Hz

Step 6: The frequency range of earthquake signal varies between 15 to 60 Hz. Figure 6 shows the frequency 
spectrum of finite impulse response of a band pass filter of order 8.

Step 7: Figure 7 shows the convolved output of de-trended raw seismic signal with Fir response of ban pass 
filter.

Step 8: Applying fast Fourier transform to obtain spectrum of band pass filtered raw seismic signal and taking 
normalization over frequency which gives better analysis about the signal, represented in Figure 8.

Step 9: The power spectral density of band pass filtered, Eigen decomposed seismic signal specifies the occurrence 
of peak shown in Figure 9. The maximum peak is obtained at 0.08398p. By repeating the process like step 5, 
the frequency of the signal is 20.995 Hz.
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	 Figure 3: Raw seismic signal	 Figure 4: De-trended seismic signal
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CONCLUSION5.	
The maximum resolution can be obtained by spectral estimation method and eigenvector. This method attains 
good response by separating complex exponentials in noise from seismic signal by separating them with their 
respective subspaces. The band pass filtered eigenvector decomposed signal gives better resolution over peaks 
occurrence at complex exponentials. This Eigen decomposition method provides easier way for other frequency 
estimation techniques in order to attain better resolution.
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