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CLAW DECOMPOSITION OF PRODUCT GRAPHS

P. Chithra Devi' and J. Paulraj Joseph®

Abstract: A decomposition of a graph G is afamily of edge-disjoint subgraphs {G|, G,.... ,G,}
such that E(G) = E(G,) U E(G,) U ... U E(Gy). If each G; is isomorphic to H for some
subgraph H of G, then the decomposition is called a H-decomposition of G. A star with
three edges is called a claw. In this paper, we give necessary and sufficient condition for
the decomposition of cartesian product of standard graphs into claws. Also, we give a
sufficient condition for the claw decomposition of lexicographic product of standard
graphs.

AMS Subject Classification: 05C70

Keywords: Decomposition, claw decomposition, cartesian product, lexicographic product

1. INTRODUCTION

Let G = (V, E) be a simple undirected graph without loops or multiple edges. A path on
n vertices is denoted by P,, cycle on n vertices is denoted by C, and complete graph
on n vertices is denoted by K,. The neighbourhood of a vertex v in G is the set N(v)
consisting of all vertices that are adjacent to v. |[N(v)| is called the degree of v and is
denoted by d(v). A complete bipartite graph with partite sets V, and V,, where
|Vi| = r and |V,| = s, is denoted by K, . The graph K| , is called a star and is denoted by
S,. The vertex of degree r in the star S, is called the central vertex of the star. Claw is
a star with three edges. The complement of a graph G is denoted by G. kG denotes the
union of k copies of G. The join G + H of two graphs G and H consists of G U H and
all edges joining each vertex of G to all the vertices of H. Terms not defined here are
used in the sense of [5].

A decomposition of a graph G is a family of edge-disjoint subgraphs {G,, G,,... ,G;}
such that E(G) = E(G)) v E(G,) L...u E(Gy). If each G; is isomorphic to H for some
subgraph H of G, then the decomposition is called a H-decomposition of G. If H has
at least three edges, then the problem of deciding if a graph G has a H-decomposition
is NP-complete [2]. In 1975, Sumiyasu Yamamoto et al., [6] gave necessary and
sufficient condition for the S,-decomposition of complete graphs and complete bipartite
graphs. In 1996, C. Lin and T. W. Shyu [4] presented a necessary and sufficient
condition for decomposing K, into stars Skl, Skz,..., Sy In 2004, H. L. Fu et al., [3]
decomposed a complete graph into cartesian product of two complete graphs K, and
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K.. In 2012, Darryn E. Bryant et al., [1] gave necessary and sufficient condition for
the existence of k-star factorizations of any power K' Yq where ¢ is prime and the products
C, x C,x ... x C, of kcycles of arbitrary length. In 2013, Tay-Woei Shyu [7] gave
necessary and sufficient condition for the decomposition of complete graph into C;’s
and S;’s. In this paper, we give necessary and sufficient condition for the decomposition
of cartesian product of standard graphs into claws. Also, we give a sufficient condition
for the claw decomposition of lexicographic product of standard graphs.

2. BUILDING BLOCKS

In this section, we collect certain lemmas and results which are used in the subsequent
sections. These are the building blocks in the construction of the main theorems.

Definition 2.1: The corona of two graphs G and H, is the graph G o H formed
from one copy of G and |V(G)| copies of H where the i"™ vertex of G is adjacent to
every vertex in the i" copy of H.

Definition 2.2: The Cartesian product of two graphs G and H is a graph, denoted
by G x H, whose vertex set is V(G) x V(H). Two vertices (g, k) and (g’, k') are adjacent
precisely if g = g’ and hh" € E(H), or gg" € E(G) and h = h'. Thus,

V(G x H) = {(g, h)lg € V(G) and h € V(H)},
E(Vx H)={(g, h)(g', ' )lg = " and hh' e E(H), or
¢g' € E(G)and h = I'}.

[
Theorem 2.3: [6] A complete graph, K; with [ points and [Ej lines can be

decomposed into a union of line disjoint [;j /c claws, K, ., with c lines each if and
only if

l
(1) [—] is an integral multiple of c, and
c

(2) 1> 2c.

Theorem 2.4: [6] A complete bigraph, K,, ,, with m and »n points and mn lines can

be decomposed into union of mn/c line disjoint [;j / ¢ claws, K, ., with c lines each if

and only if m and n satisfy one of the following three conditions:

(1) n=0 (mod c) when m < ¢
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(2) m=0 (mod c) when n < ¢

(3) mn=0 (mod c) when m > c and n > c.

Lemma 2.5: The graph C, o K, is claw decomposable for all n.

Proof: Let V(C,) = {v, v,,...v,} and let u; and w; be the pendant vertices at v;.
Then < {u;, w;, v;, v; 1} >= K sforall 1 <i<n-1

and < {u,, w,, v,, v} >= K3

Thus E(C,0K,)= E(K,;)U..UEK,;).

n times

Hence C, o K, is claw decomposable. O
Lemma 2.6: If n is even and n = O(mod 3), then K, x C, is claw decomposable.
Proof: Let V(K,) = {x;, x,} and let V (C,)= {y;, ¥2s---» Vp,}-
Then V(K, x C,) = {(x;, y)li=1,2and 1 <j <n}.
Rename (x,, yj) =V and (x,, yj) =u; forall 1 <j<n.
Now, < {vy, vy, v, u} >=K;,

<{uyp, w, 1, uy, v,} >= K3,

<{U; 11, Vi Viy Vit > = K5 foralli € {2,4,..,n-2} and

<{up ;s w4, vy} >= K5 foralli e {1,3,...,n-3}

Thus E(K, x C,) = E(K5)V...0UE(K ;).

n times

Hence K, x C, is claw decomposable. W
Lemma 2.7: K, o K| is claw decomposable if and only if n> 3 and n # 1(mod 3).

Proof: Let V (K,) = {v,, v5,..., v,} and let u; be the pendant vertex at v; for all
1<i<n.

Suppose that n > 3 and n # 1(mod 3).
Case (i): n = 2(mod 3).
NOW, < {Vs, Vgseees Vn} > = Kn—4’

<{vy vgp vy u;} >= K 5 forall 5<i<n,
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< A{vis vo, vy ug} > —{v1y} = K 5,

< A{vi va, vy, uzt > —{vin} = K5,

<{uy, vy, vy, Vs, Vgooos v, } > —E (< {vs, Vg, v, } >) = Ky, 5 and
<Auy, vy, V3, Vs, Vgouorr v} > —E(< {vs, vg,o0, v} >) 2 K, .

Thus E(K, 0 Cy) = E(K, 4) VE(K,,)U..UEK,3) U EK,, ») U EK,, 2.

(n=2) times

Since n = 2(mod 3), n — 4 = 1(mod 3). Hence by Theorem 2.3, K,_, is claw
decomposable. Also, K, , is claw decomposable.

Hence K, o K, is claw decomposable.

Case (ii): n = O(mod 3).

Then < {v}, Voo, v, _, Uy, Ugyeees U, 1} > =K, _; 0 K| and
<{vi Var Vit > =E< v, vose, v, 1} >) + {0, } 2 K,

Thus  E(K, 0 K)) =E(K,_ ;0K =EK,,).

Since n = O(mod 3), n — 1 = 2(mod 3). Hence by Case (i), K, _; o K, is claw
decomposable. Also, K, is claw decomposable.

Hence K, o K, is claw decomposable.

Conversely, suppose that K, o K| is claw decomposable.

Then |E(K, o K,)| = 0 (mod 3). That is, ”(”2_1) +n= 0 (mod 3) which implies
n(n+1)
2 =0 (mod 3) and thus n = O(mod 3) or n =2 (mod 3). Hence n # 1(mod 3). Also,

K; o K, is not claw decomposable. Thus n > 3.
Hence n > 3 and n # 1(mod 3). O

Lemma 2.8: The graph K, x K, is claw decomposable if and only if n > 3 and
n =0 (mod 3).

Proof: Let V(K,) = {x, x,} and let V(C,) = {y, ¥3sees» Vp,}-
Then V(K, x C,) = {(x;, y)i=1,2and 1 <j <n}.

Rename (x,, yj) =v; and (x,, yj) =u; forall 1 <j<n.
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Now, <AV}, Vaseur, v, Uy, Usyeon, Uy} > —E(< {uy, Uy,..., u,} >) =K, 0K,
and <Auy, upyoe, u,} >=K,,.

Thus E(G) = E(K,, o K;) U E(K,).

Suppose that n > 3 and n = 0 (mod 3).

Then by Lemma 2.7, K, o K| is claw decomposable. Also, by Theorem 2.3, K, is
claw decomposable.

Hence K, o K, is claw decomposable.

Conversely, suppose that K, x K, is claw decomposable.

Then |E(K, x K,)| = 0 (mod 3). That is, 2.@+1.n5 0 (mod 3) which implies

=0 (mod 3) and hence n = 0 (mod 3). Also, K, x K5 is not claw decomposable. Thus

n > 3. Hence n > 3 and n = 0 (mod 3).

Lemma 2.9: The graph K, x K, together with a pendant vertex attached to each
vertex of one copy of K, is claw decomposable if and only if n # 1(mod 3).

Proof: Let G be the graph K, x K, together with a pendant vertex attached to the
each vertex of one copy of K,,.

Let V(K,) = {x}, x,} and let V(K,) = {y, Y2,-.., Y}

Then V(K, X K,) = {(x;, yp)/i=1,2and 1 <j < n}.

Rename (x,, yj) =V and (x,, yj) = U; forall1 <j<n.

Let w; be the pendant vertex at v; in G for all 1 <j <n.

Now, < {uy, Upye.e, Uy, Vi, Voseoos V,,} > —=E(< {Vy, Vo,..., v, } >) = K, 0 K|
and < {v}, Vppeors Vp, Wi, Wopeo, w,} > =K, 0 K.

Thus E(G) = E(K,, 0 K|) U E(K,, 0 K)).

Suppose that n # 1 (mod 3).

Then by Lemma 2.7, K, o K, is claw decomposable.

Hence G is claw decomposable.

Conversely, suppose that G is claw decomposable.

Then |E(G)| = 0 (mod 3). That is, 2.

+1.n+n=0(mod 3) which implies

n(n—1)
2

n(n + 1) =0 (mod 3) and thus n = 0 (mod 3) or n = 2(mod 3).
Hence n # 1(mod 3). 0
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3. CLAW DECOMPOSITION OF CARTESIAN PRODUCT OF GRAPHS

In this section, we give necessary and sufficient condition for the decomposition of
cartesian product of some standard graphs into claws.

Theorem 3.1: If G, and G, are H-decomposable, then G, x G, is H-decomposable.
Proof: Let V(G)) = {v}, vy,..., v} and V(G,) = {u;, uy,..., u,}.

Then V(G x Gy) = {(v, u)/[1 <i<k, 1 <j<n}

Rename (v;, uj) =V 1<i<k 1<j<n.

Now, < {vy;, vy, vy} >= G, forall 1 <j<n and

<A{u;p, upyeoes Uy} >= Gy foral 1 <i <k

Thus, E(G, x G,) = E(G,)U...UE(G,) UE(G,)U...U E(G,).

n times k times

Since G, and G, are H-decomposable, G, x G, is H-decomposable. U
Corollary 3.2: If m, n = 0 (mod 3), then K, ,, X K|, is claw decomposable.

Corollary 3.3: If m = 0 (mod 3) and n # 2 (mod 3) then K, , x K, is claw
decomposable.

Proof: It follows from Theorems 2.3 and 3.1.

Corollary 3.4: If rs = 0 (mod 3) and n = 2 (mod 3), then K,  x K, is claw
decomposable.

Proof: It follows from Theorems 2.3, 2.4 and 3.1.

Corollary 3.5: If rs = 0 (mod 3) and n = 0 (mod 3), then K,  x K, , is K| ;
-decomposable.

Proof: It follows from Theorems 2.4 and 3.1. U
Remark 3.6: P, o K, and C, o K, are not claw decomposable for any values of n.
Remark 3.7: If G = P,, 0 K, then G o C,, is not claw decomposable.

Theorem 3.8: Let G, = P,, o K. If G, and G, o K, are claw decomposable, then
G, x G, is claw decomposable.

Proof: Let V(G,) = {u,, uy,..., Uy, Wy, Wy,...,w,,} where w; is the pendant edge at u;
forall 1 £i<m, uju,... u,, is the m-path in G and V (G,) = {v, v,,..., v,,}.

Then V(G x Gy) = {(u;, v), (w;, v)/1 <i<m, 1 <j<n}.
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Rename (u;, v;) = uj; and (w;, v) = wj; forall | <i<m, and 1 <j<n.

Now, < {ulj, Unjsenes Upjs W, wzj,...,wnj} > - E(< {ulj, Upjsens unj} >)

=G,o0K,forall 1 <j<m,

< {ulj, Unjseees Upjs w G+ 1), u,G+ 1),., u,G+ 1)}

> — E(<{uy 11y Un(je1ysees Unjay) >) =G0 K forall 1 <j<m—1
and < {Uy,, Uppees Upp) > = Gy

Thus E(G, x G,) = E(G,0K, U...uU E(G,0K,)U E(G,).

(2m-1) times

By assumption, G, and G, o K, are claw decomposable.
Hence G, x G, is claw decomposable. W
Corollary 3.9: If G = P,, 0 K, and n =0 (mod 3), then G x K,, is claw decomposable.

Proof: Since n = 0 (mod 3), by Theorem 2.3, K, is claw decomposable. Also, by
Lemma 2.7, K, o K, is claw decomposable. Hence the result follows from above
theorem. U

Remark 3.10: If G = P,, o K|, then G x K|, is not claw decomposable.

Proof: Suppose not. Then let § = {S,, S,...., S;} be a claw decomposition of
G x Ky . Let V(G) = {uy, uy,..., u,,, wy, wy,...,w,,} where w; is the pendant edge at u; for
all 1 <i<m and uu,....u,, is the m-path in G.

Let V(Kl,n) = {vy, V|»...,v,} Where d(vy) = n.
Then V(G x Ky ,) = {(u;, v)), W, v)/1 <i<m, 0<j<n}.
Rename (u;, v;) = u;; and (w;, v,) = w;; forall 1 <i<m, 0<j<n.

Now, wyu;; € E(G x K, ,) and hence must be in some member of S, say §,. Since
d(uyy) =3 and d(wyy) = 2, uyuy, € Sy. Similarly, wy; u,; and uy; uy; ,,) will be in the same
member of S, say S; forall 1 <i<m - 1.

Then in G x K, -U'_,E(S)), d(u,,) = 2 and d(w,,) = 2. Thus wy, u;, ¢ S, a
contradiction.

Hence G x K, is not claw decomposable. U

Theorem 3.11: If n = 0 (mod 3), then P, x K, is claw decomposable for all values
of k.
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Proof: Let V(K,) = {v, v,,..., v,} and V(P}) = {u,, u,,..., u;} where P, = u u,...u,.
Then V(P x K,) = {(u;, v)/[1 i<k, 1 <j<n}.
Rename (u;, v)) = v; forall 1 <i<k, 1<j<n.
Assume that n = 0 (mod 3).
Now, < {vlj, Vojsees Vjs Vi(j 41y V2(j +1)++> V(s )
> — E(< A{Vi(j 41y Vag+1)ses V+ny) 2) =K, 0 K forall 1 <j<k-1
and < {vip Vopoeerr Vi) > = K,

Thus E(G) = E(K,0K, U...0E(K,0K,)UE(K,).

(k—1) times

Since n = 0 (mod 3), by Lemma 2.7, K, o K, is claw decomposable. Also, by
Theorem 2.3, K|, is claw decomposable.

Hence P, x K, is claw decomposable. W

Conjecture 3.12: The graph P, x K, is claw decomposable if and only if
n =0 (mod 3).

Theorem 3.13: If n # 1(mod 3), then C;, x K,, is claw decomposable.
Proof: Let V(K,) = {v,, v5,..., v,} and V(C}) = {u,, uy,..., u;}.
Then V(Cy x K,)) = {(u;, v)/1 <i<k 1<j<n}
Rename (u;, v)) = v; forall 1 <i<k, 1<j<n.
Assume that n # 1(mod 3).
Now, < {Vij VajseeesViis Vigi a1y Va(i 41)pee+s Vi 1)}
> —E(< {Vi( 41 Vagi 41y Vi 1D} >) = K, 0 K forall 1 <i<k-1
and < (Vi Vapoeeos Viro Vs Valoeeos Vi) > — E(< {v Vopoees V11 >) =K, 0 K.

Thus E(G) = E(K,0K,U...UE(K,0K,)

k times

Since n # 1(mod 3), by Lemma 2.7, K, o K, is claw decomposable.
Hence C;, x K|, is claw decomposable. W

Conjecture 3.14: The graph C, x K, is claw decomposable if and only if
n # 1(mod 3).
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Theorem 3.15: The graph K, X K, , is claw decomposable if and only if 2mn + m
+ n = 0(mod 3).

Proof: Let V(K ) = {ug, uy,...,u,} and V(K ,) = {vy, vy,...,v,} where d(u,) = m and
d(vy) = n.

Then V(K ,, x K, ,,) = {(u;, v)/0 <i<m, 0 <j<n}.
Rename (u;, v)) = v; forall 0 <i<mand 0 <j<n.
Suppose that 2mn + m + n = 0 (mod 3).

Case (i): m =0 (mod 3).

Since 2mn + m + n = 0 (mod 3), n = 0 (mod 3). Thus both K, , and K, are claw
decomposable. Hence by Theorem 3.1, K, ,, x K, is claw decomposable.

Case (ii): m = 1 (mod 3).
Then 2mn + m + n = 1(mod 3) for all values of n, a contradiction.
Hence this case does not arise.
Case (iii): m = 2 (mod 3).
If n = 0 (mod 3), then 2mn + m + n = 2( mod 3), a contradiction.
If n =1 (mod 3), then 2mn + m + n = 1(mod 3), a contradiction.
Thus n = 2 (mod 3).
Now, < {vgj VijseosVyit >+ {vgvoo} = Ky, 4 forall 1 <j<m,
< {Vigs VitseesVigm 2y} > Z Ky oy forall 1 <i <nand
< {005 V105 +5Vn0s Vigm -1y Vam —1y0+++sVa(m —1y> Vims Vamsees Vam} > = G
where G’ is the graph obtained by identifying one pendant vertex of each copy of K ;

in nk ;.

Thus E(Kl’m X Kl’n) = E(KL(M))U...uE(KL(M))u

m times

EK,, ,)Y...0EKK, ) VEG").

m times

Since n, m = 2(mod 3), K, , .1, and K| (,, ;) areclaw decomposable.

Also, G' is claw decomposable.
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Hence K, ,, — K, is claw decomposable.

Conversely, suppose that K, ,, X K, is claw decomposable.

Then |E(K|,, x K| )| = 0 (mod 3).

Thatis, m+ 1)n+ (n+ 1) m =0 (mod 3).

That is, 2mn + m + n = 0 (mod 3). 0
Remark 3.16. K, x Cs is not claw decomposable.

Theorem 3.17: Let n be even and n = 0 (mod 3) and m = 1(mod 3). Then K, , x C,

is claw decomposable.

Proof: Let V(K ,) = {ug, uy,..., u,,} where d(u,) = m and
V(C,) = {vy, Vayeers 1, ).

Then V(K ,, x C,) = {(u;, v)/0<i<m, 1 <j<n}

Rename (y;, vj) =V 0<i<m 1<j<n.

Assume that n is even, n = 0 (mod 3) and m = 1(mod 3).

Claim: G, = K| 3 x C, — E(C,) where E(C,) denotes the edges of the cycle C,

corresponding to the central vertex is claw decomposable if 7 is even and n = O(mod 3).

Then G' = K, 3 X C, = {vioV(i 11y0» VigVu/l Si<n <1}
Now, < {v,, vii» Vo Vip} > = K5 forall 1 <i<3,
<{Vig» Vit» Vi i3} > <= K30 € {2,4,..,n},
<A{Vij Viis1yp Visayp Vil > =Kzforall 1 <j<3andie {2,4,..,n-2}.
Thus E(G") = E(K,3) U E(K,3) U E(K,3) U E(K;)V..VE(K ;)V
e
E(K ;)V...0UE(K ;).

Hence G’ is claw decomposable if n is even and n = 0 (mod 3).

Since m=1(mod 3), m=3t+1;¢t € Z.

Thus E(K,,, X C,) = E(K, x C,) U E(G')U...UE(G").

t times
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By the Claim and Lemma 2.6, G'? and K, x C, are claw decomposable.
Hence K, ,, x C, is claw decomposable. W

Theorem 3.18: K,, x K, is claw decomposable if and only if n = 0 (mod 3) or
mn + m+ n = 1(mod 3).

Proof: Let V(K ) = {ug, uy,..., u,,} where d(uy) = m and V(K,) = {v}, vp,...,v, }.
Then V(K\,m x K,) = {(u;, v)/0 <i<m, 1 <j<n}.

Rename (u;, v)) = v; forall 0 <i<m, 1 <j<n.

Suppose that n = 0 (mod 3) or mn + m + n = 1(mod 3).

Case (i): n = 0 (mod 3)

Subcase 1: m = 0 (mod 3)

Then K, is claw decomposable. Also, since n =0 (mod 3), by Theorem 2.3, K, is
claw decomposable.

Hence by Theorem 3.1, K, ,, x K, is claw decomposable.
Subcase 2: m = 1(mod 3)
Now, <{vlj,v2j,...,vnj} ><“=Knforall0d”jd’ m“1,
< {vi0, vil, . . ., vilm”1)} > <*=K1,m”1 for all 1 d” i d” n and
< {V10s Vagreess Vs Vi Vam---sVam) > — E(< V10> Vagseees Vio} >) = K, 0 K.

Thus EK,,, x K,) = E(K,)U..UEK,)U

ntimes

EKK,, )v..UEK,

ntimes

m—1 ,m—l) UE(KnOKl) .

By Lemma 2.7, K, o K, is claw decomposable. Since n = 0 (mod 3), by Theorem
2.3, K, is claw decomposable. Since m = 1(mod 3), K, _; is claw decomposable.

Hence K ,, x K, is claw decomposable.
Subcase 3: m = 2(mod 3)
Now, < {vlj, Vajaeess an} >=K, forall0<j<m-2,

< {Vigs Vitsees Vigm 2y} > = Ky, o forall 1 <i<n,
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< {V10> Vaps+++s Vo Vit -1 V2(m -1)>+++» Va(m —1)}
> — E(< {vyg, Vago-ees Vyo) >) = K, 0 K| and
< {V10s Vagreess Vs Vims Vams Vam) > — E(< {Vigs Vagse--sVio} >) = K, 0 K.

Thus EK,,, x K,) = E(K,)U..UEK,)U

(m-1) times

EK,, ,)U..UEK,, ,)UEK,0K,)U E(K,oK,).

(m—1) times

,m=2

Since n = 0 (mod 3), by Theorem 2.3, K, is claw decomposable. Since m = 2(mod 3),
K,  is claw decomposable. Also by Lemma 2.7, K, o K, is claw decomposable.

Hence K ,, x K, is claw decomposable.
Case (ii): mn + m + n = 1(mod 3)
Subcase 1: m = 0 (mod 3)

Since mn + m + n = 1(mod 3), n = 1(mod 3). Thus by Theorem 2.3, K,, is claw
decomposable. Also, K ,, is claw decomposable. Hence by Theorem 3.1, K, ,, x K, is
claw decomposable.

Subcase 2: m = 1(mod 3)

Since mn + m + n = 1(mod 3), n = 0 (mod 3). This case is already dealt in Subcase
2 of Case (i).

Subcase 3: m = 2(mod 3)

If m = 2(mod 3), then mn + m + n = 2(mod 3) for all values of n, a contradiction.
Hence this case does not arise.

Hence in all the cases, K, ,, X K,, is claw decomposable.

Conversely, suppose that K, ,, X K, is claw decomposable.

Then |E(K,,, x K,)| = 0 (mod 3). Thus, (m+1)

”(”2_ D+ = 0 (nod 3). which

implies g[mn +m+n—1] =0 (mod 3) and hence n=0 (mod 3) or mn + m + n = 1(mod 3).
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4. CLAW DECOMPOSITION OF LEXICOGRAPHIC
PRODUCT OF GRAPHS

In this section, we give sufficient condition for the lexicographic product of any graph

G with K, K, K, ,and K, x K, to be claw decomposable.

n?’

Definition 4.1: The lexicographic product of two graphs G and H is a graph,
denoted by G * H, whose vertex set is V(G) x V(H). Two vertices (g, h) and (g', ' ) are
adjacent precisely if gg' € E(G), or g = g’ and hh' € E(H).

The other way of viewing G * H is by replacing each vertex in G by a copy of H
and two vertices in G are adjacent if and only if there exists a complete bipartite
subgraph with the corresponding vertices of H as partite sets in G * H.

Theorem 4.2: Let G be any non trivial graph. If n = 0 (mod 3), then G * K, is claw

decomposable.

Proof: Assume that n a” O(mod 3).
Let V(G) = {vy, v5,...,v;} and V(I?n) = {uy, uy,..., u,}.
Then V(G*I?n) ={(v, up/l <i<kand 1<j<n}

Rename (Vi’ uj) = Vs 1<i<kand 1<j<n.

Now, for each vy, € E(G), < {Vy;, Vojoeess Vyis Vijs VojoreesVyj} > = Ky .

Thus, E(G*K,) = E(K,,)u..UEK,,).

nn n,n

|E(G)|times
Since n = 0 (mod 3), by Theorem 2.4, K, , is claw decomposable.

Hence G*K, is claw decomposable. O

Theorem 4.3: Let G be any non trivial graph. If n > 3 and n = 0 (mod 3), then
G * K, is claw decomposable.

Proof: Assume that n > 3 and n = 0 (mod 3).

Let V(G) = {vy, vp,..., v} and V(K,) = {u,, uy,..., u,}.
Then V(G * K,) = {(v, up/l <i<kand 1 <j<n}.
Rename (v;, u;)) = v;; 1 <i<kand 1 <j<n.

Now, < {vj;, Vappeers Vi) > = K, forall 1 <i <k
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Also, for each vy € E(G),
< {V1is Vaiseeos Vi Vijs VajeeesViit > =E(< AWy Voo, vy} >)

— E(< {vyj vojoees Vi) >) 2 K,

Thus, EG * K,) = E(K,)U...UEK,)UEKK,, )U..UEK,,).

n.n

k times |E(G)| times

Since n = O(mod 3), by Theorem 2.3 and 2.4, K, and K|, are claw decomposable.
Hence G * K, is claw decomposable. U

Theorem 4.4: Let G be any non trivial graph. If m = 0 (mod 3) and n = 0 (mod 3),
then G * K, is claw decomposable.

Proof: Assume that m = 0 (mod 3) and n = 0 (mod 3).

Let V(G) = {vy, vp,...,vi} and V(K,, ) = {u), uy,..., u,, wy, wy,...,w,} where d(u,)
=n forall 1 SiSmandd(wj)szorall 1<j<n

Then V(G X K,,,,) = {(vj up), v w)/l i<k 1<j<m,1<1<n}.
Rename (v;, u;) = uj; and (v,w) =wj forall 1 <i<k, 1<j<m, 1<1<n.
Now for each vy € E(G),

< Uiy Unjpees Upis Wiis WoppeeesWygis Uy Unjeney Upyis Wijs Wojsew s Wi}

> — E(< {uy;, Upjyeees Upgiy Wijs Wojseees Wi} >)

- E< {ulj, Upjyees U

mjp Wij» WajsersWpit >) = Km + n, m + n and

<Ay Upjseees Uiy Wiy Wojoeooswyi} > = K, forall 1 <i <k,

Thus, E(G * K,,,) = E(K,,,)V..VEK, ,)VEK,,,,..)Y .0 EK

m,n m,n m+n,m+n )

k times |E(G)| times

Since m = 0(mod 3) and n =0 (mod 3), by Theorem 2.4, K, , and K, are claw

m+n,m +n
decomposable.
Hence G * K, , is claw decomposable.

Theorem 4.5: Let G be any non trivial graph. If n > 3 and n = 0 (mod 3), then
G * [K, x K,] is claw decomposable.

Proof: Assume that n > 3 and n = 0 (mod 3).
Let V(G) = {w,wy,...wi )}, VK, X K,) = {vy, Va,..., V,,, Uy, Us,..it,} and E(K, X K)

= {Vl'Vj, Ml'uj, Ml'vl'/l < l,] < n, i 6 =J}.
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Then V(G * [K, x K,]) = {(w;, v)), W, u)/[l <i<k, 1<j<n}.
Rename (w;, v)) = v; and (w;, u)) = u; forall 1 <id” k, 1 <j<n.
Now, < {Vij Vajperes Viis Upjs Ugjoeens Uy} > = Ky x K forall 1 <i<k.
Also, for each ww; € E(G),

< Vi Vajoeers Vi Uljs Ujseees Upis Vijs Vajseees Vo Utjs Unjoeees unj}

> — E(< {Vyjs Vojserens Vigjs Upjs Unjseeees Ui} >)

= E(< A{vyjs VojreesVijs Uy Unjoeees Ui} >) = Ky

Thus E(G * [KZ X Kn]) = E(K2 X Kn) V...V E(Kz X Kn) o E(K2n,2n) V..U E(K2n,2n)'

k times |E(G)| times

Since n > 3 and n = 0 (mod 3), by Lemma 2.8, K, x K,, is claw decomposable. Also,

by Theorem 2.4, K,,,,, is claw decomposable.

[7]

Hence G * [K, x K, ] is claw decomposable. W
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