CLAW DECOMPOSITION OF PRODUCT GRAPHS

P. Chithra Devi¹ and J. Paulraj Joseph²

Abstract: A decomposition of a graph *G* is a family of edge-disjoint subgraphs $\{G_1, G_2, \dots, G_k\}$ such that $E(G) = E(G_1) \cup E(G_2) \cup \dots \cup E(G_k)$. If each G_i is isomorphic to *H* for some subgraph *H* of *G*, then the decomposition is called a *H*-decomposition of *G*. A star with three edges is called a claw. In this paper, we give necessary and sufficient condition for the decomposition of cartesian product of standard graphs into claws. Also, we give a sufficient condition for the claw decomposition of lexicographic product of standard graphs.

AMS Subject Classification: 05C70

Keywords: Decomposition, claw decomposition, cartesian product, lexicographic product

1. INTRODUCTION

Let G = (V, E) be a simple undirected graph without loops or multiple edges. A path on n vertices is denoted by P_n , cycle on *n* vertices is denoted by C_n and complete graph on *n* vertices is denoted by K_n . The *neighbourhood* of a vertex *v* in *G* is the set N(v)consisting of all vertices that are adjacent to *v*. |N(v)| is called the degree of *v* and is denoted by d(v). A complete bipartite graph with partite sets V_1 and V_2 , where $|V_1| = r$ and $|V_2| = s$, is denoted by $K_{r, s}$. The graph $K_{1, r}$ is called a star and is denoted by S_r . The vertex of degree *r* in the star S_r is called the central vertex of the star. Claw is a star with three edges. The complement of a graph *G* is denoted by \overline{G} . *kG* denotes the union of *k* copies of *G*. The join G + H of two graphs *G* and *H* consists of $G \cup H$ and all edges joining each vertex of *G* to all the vertices of *H*. Terms not defined here are used in the sense of [5].

A decomposition of a graph G is a family of edge-disjoint subgraphs $\{G_1, G_2, ..., G_k\}$ such that $E(G) = E(G_1) \cup E(G_2) \cup ... \cup E(G_k)$. If each G_i is isomorphic to H for some subgraph H of G, then the decomposition is called a H-decomposition of G. If H has at least three edges, then the problem of deciding if a graph G has a H-decomposition is NP-complete [2]. In 1975, Sumiyasu Yamamoto et al., [6] gave necessary and sufficient condition for the S_k -decomposition of complete graphs and complete bipartite graphs. In 1996, C. Lin and T. W. Shyu [4] presented a necessary and sufficient condition for decomposing K_n into stars $S_{k_1}, S_{k_2}, ..., S_{k_t}$. In 2004, H. L. Fu et al., [3] decomposed a complete graph into cartesian product of two complete graphs K_r and K_c . In 2012, Darryn E. Bryant et al., [1] gave necessary and sufficient condition for the existence of k-star factorizations of any power K_q^s where q is prime and the products $C_{r_1} \times C_{r_2} \times ... \times C_{r_k}$ of k cycles of arbitrary length. In 2013, Tay-Woei Shyu [7] gave necessary and sufficient condition for the decomposition of complete graph into C_l 's and S_k 's. In this paper, we give necessary and sufficient condition for the decomposition of cartesian product of standard graphs into claws. Also, we give a sufficient condition for the claw decomposition of lexicographic product of standard graphs.

2. BUILDING BLOCKS

In this section, we collect certain lemmas and results which are used in the subsequent sections. These are the building blocks in the construction of the main theorems.

Definition 2.1: The corona of two graphs G and H, is the graph G o H formed from one copy of G and |V(G)| copies of H where the i^{th} vertex of G is adjacent to every vertex in the i^{th} copy of H.

Definition 2.2: The Cartesian product of two graphs G and H is a graph, denoted by $G \times H$, whose vertex set is $V(G) \times V(H)$. Two vertices (g, h) and (g', h') are adjacent precisely if g = g' and $hh'' \in E(H)$, or $gg'' \in E(G)$ and h = h'. Thus,

$$V(G \times H) = \{(g, h)/g \in V(G) \text{ and } h \in V(H)\},\$$

 $E(V \times H) = \{(g, h)(g', h')/g = g' \text{ and } hh' \in E(H), \text{ or}\$
 $gg' \in E(G) \text{ and } h = h'\}.$

Theorem 2.3: [6] A complete graph, K_1 with l points and $\left(\frac{l}{2}\right)$ lines can be decomposed into a union of line disjoint $\left(\frac{l}{2}\right)/c$ claws, $K_{1,c}$, with c lines each if and only if

(1) $\left(\frac{l}{c}\right)$ is an integral multiple of c, and (2) $l \ge 2c$.

Theorem 2.4: [6] A complete bigraph, $K_{m,n}$, with *m* and *n* points and *mn* lines can be decomposed into union of *mn/c* line disjoint $\left(\frac{l}{2}\right)/c$ claws, $K_{1,c}$, with *c* lines each if and only if *m* and *n* satisfy one of the following three conditions:

(1) $n \equiv 0 \pmod{c}$ when m < c

- (2) $m \equiv 0 \pmod{c}$ when n < c
- (3) $mn \equiv 0 \pmod{c}$ when $m \ge c$ and $n \ge c$.

Lemma 2.5: The graph C_n o \overline{K}_2 is claw decomposable for all n.

Proof: Let $V(C_n) = \{v_1, v_2, \dots, v_n\}$ and let u_i and w_i be the pendant vertices at v_i .

Then $\langle \{u_i, w_i, v_i, v_{i+1}\} \rangle \cong K_{1,3}$ for all $1 \le i \le n-1$

and $\langle \{u_n, w_n, v_n, v_1\} \rangle \cong K_{1,3}$.

Thus
$$E(C_n \circ \overline{K}_2) = \underbrace{E(K_{1,3}) \cup ... \cup E(K_{1,3})}_{n \text{ times}}$$

Hence C_n o \overline{K}_2 is claw decomposable.

Lemma 2.6: If *n* is even and $n \equiv 0 \pmod{3}$, then $K_2 \times C_n$ is claw decomposable. Proof: Let $V(K_2) = \{x_1, x_2\}$ and let $V(C_n) = \{y_1, y_2, ..., y_n\}$. Then $V(K_2 \times C_n) = \{(x_i, y_j)/i = 1, 2 \text{ and } 1 \le j \le n\}$. Rename $(x_1, y_j) = v_j$ and $(x_2, y_j) = u_j$ for all $1 \le j \le n$. Now, $< \{v_1, v_2, v_n, u_1\} > \cong K_{1,3}$, $< \{u_1, u_{n-1}, u_n, v_n\} > \cong K_{1,3}$, $< \{u_{i+1}, v_i, v_{i+1}, v_{i+2}\} > \cong K_{1,3}$ for all $i \in \{2, 4, ..., n-2\}$ and $< \{u_i, u_{i+1}, u_{i+2}, v_{i+1}\} > \cong K_{1,3}$ for all $i \in \{1, 3, ..., n-3\}$.

Thus

$$\mathbf{E}(K_2 \times C_n) = \underbrace{E(K_{1,3}) \cup \dots \cup E(K_{1,3})}_{n \text{ times}}.$$

Hence $K_2 \times C_n$ is claw decomposable.

Lemma 2.7: $K_n \circ K_1$ is claw decomposable if and only if n > 3 and $n \neq 1 \pmod{3}$. **Proof:** Let $V(K_n) = \{v_1, v_2, ..., v_n\}$ and let u_i be the pendant vertex at v_i for all $1 \le i \le n$.

Suppose that n > 3 and $n \neq 1 \pmod{3}$.

- *Case (i):* $n \equiv 2 \pmod{3}$.
- Now, $\langle v_5, v_6, ..., v_n \rangle \ge K_{n-4},$ $\langle v_3, v_4, v_i, u_i \rangle \ge K_{1,3}$ for all $5 \le i \le n$,

$$< \{v_1, v_2, v_4, u_4\} > -\{v_1v_2\} \cong K_{1,3},$$

$$< \{v_1, v_3, v_4, u_3\} > -\{v_1v_4\} \cong K_{1,3},$$

$$< \{u_1, v_1, v_2, v_5, v_6, \dots, v_n\} > -E \ (<\{v_5, v_6, \dots, v_n\} >) \cong K_{1,n-2} \text{ and }$$

$$< \{u_2, v_2, v_3, v_5, v_6, \dots, v_n\} > -E(<\{v_5, v_6, \dots, v_n\} >) \cong K_{1,n-2}.$$

Thus $E(K_2 \circ C_1) = E(K_{n-4}) \cup \underbrace{E(K_{1,3}) \cup \dots \cup E(K_{1,3})}_{(n-2) \text{ times}} \cup E(K_{1,n-2}) \cup E(K_{1,n-2}).$

Since $n \equiv 2 \pmod{3}$, $n - 4 \equiv 1 \pmod{3}$. Hence by Theorem 2.3, K_{n-4} is claw decomposable. Also, $K_{1,n-2}$ is claw decomposable.

Hence K_n o K_1 is claw decomposable.

Case (ii): $n \equiv 0 \pmod{3}$.

Then $\langle \{v_1, v_2, ..., v_{n-1}, u_1, u_2, ..., u_{n-1}\} \rangle \cong K_{n-1} \circ K_1$ and $\langle \{v_1, v_2, ..., v_n\} \rangle -E(\langle \{v_1, v_2, ..., v_{n-1}\} \rangle) + \{u_n v_n\} \cong K_{1,n}$.

Thus $E(K_n \circ K_1) = E(K_{n-1} \circ K_1) = E(K_{1,n}).$

Since $n \equiv 0 \pmod{3}$, $n - 1 \equiv 2 \pmod{3}$. Hence by Case (i), K_{n-1} o K_1 is claw decomposable. Also, $K_{1,n}$ is claw decomposable.

Hence K_n o K_1 is claw decomposable.

Conversely, suppose that K_n o K_1 is claw decomposable.

Then $|E(K_n \circ K_1)| \equiv 0 \pmod{3}$. That is, $\frac{n(n-1)}{2} + n \equiv 0 \pmod{3}$ which implies

 $\frac{n(n+1)}{2} \equiv 0 \pmod{3} \text{ and thus } n \equiv 0 \pmod{3} \text{ or } n \equiv 2 \pmod{3}. \text{ Hence } n \neq 1 \pmod{3}. \text{ Also,}$

 K_3 o K_1 is not claw decomposable. Thus n > 3.

Hence n > 3 and $n \neq 1 \pmod{3}$.

Lemma 2.8: The graph $K_2 \times K_n$ is claw decomposable if and only if n > 3 and $n \equiv 0 \pmod{3}$.

Proof: Let $V(K_2) = \{x_1, x_2\}$ and let $V(C_n) = \{y_1, y_2, ..., y_n\}$.

Then $V(K_2 \times C_n) = \{(x_i, y_i) | i = 1, 2 \text{ and } 1 \le j \le n\}.$

Rename $(x_1, y_i) = v_i$ and $(x_2, y_i) = u_i$ for all $1 \le j \le n$.

Now,
$$< \{v_1, v_2, ..., v_n, u_1, u_2, ..., u_n\} > -E(< \{u_1, u_2, ..., u_n\} >) \cong K_n \circ K_1$$

and $< \{u_1, u_2, ..., u_n\} > \cong K_n$.

Thus $E(G) = E(K_n \circ K_1) \cup E(K_n)$.

Suppose that n > 3 and $n \equiv 0 \pmod{3}$.

Then by Lemma 2.7, $K_n \circ K_1$ is claw decomposable. Also, by Theorem 2.3, K_n is claw decomposable.

Hence K_2 o K_n is claw decomposable.

Conversely, suppose that $K_2 \times K_n$ is claw decomposable.

Then $|E(K_2 \times K_n)| \equiv 0 \pmod{3}$. That is, $2 \cdot \frac{n(n-1)}{2} + 1 \cdot n \equiv 0 \pmod{3}$ which implies $n^2 \equiv 0 \pmod{3}$ and hence $n \equiv 0 \pmod{3}$. Also, $K_2 \times K_3$ is not claw decomposable. Thus n > 3. Hence n > 3 and $n \equiv 0 \pmod{3}$.

Lemma 2.9: The graph $K_2 \times K_n$ together with a pendant vertex attached to each vertex of one copy of K_n is claw decomposable if and only if $n \neq 1 \pmod{3}$.

Proof: Let G be the graph $K_2 \times K_n$ together with a pendant vertex attached to the each vertex of one copy of K_n .

Let $V(K_2) = \{x_1, x_2\}$ and let $V(K_n) = \{y_1, y_2, ..., y_n\}$. Then $V(K_2 \times K_n) = \{(x_i, y_j)/i = 1, 2 \text{ and } 1 \le j \le n\}$. Rename $(x_1, y_j) = v_j$ and $(x_2, y_j) = u_j$ for all $1 \le j \le n$. Let w_j be the pendant vertex at v_j in G for all $1 \le j \le n$. Now, $\langle \{u_1, u_2, ..., u_n, v_1, v_2, ..., v_n\} > -E(\langle \{v_1, v_2, ..., v_n\} \rangle) \cong K_n \circ K_1$ and $\langle \{v_1, v_2, ..., v_n, w_1, w_2, ..., w_n\} \rangle \cong K_n \circ K_1$. Thus $E(G) = E(K_n \circ K_1) \cup E(K_n \circ K_1)$. Suppose that $n \ne 1 \pmod{3}$. Then by Lemma 2.7, $K_n \circ K_1$ is claw decomposable. Hence G is claw decomposable. Conversely, suppose that G is claw decomposable.

Then $|E(G)| \equiv 0 \pmod{3}$. That is, $2 \cdot \frac{n(n-1)}{2} + 1 \cdot n + n \equiv 0 \pmod{3}$ which implies

 $n(n + 1) \equiv 0 \pmod{3}$ and thus $n \equiv 0 \pmod{3}$ or $n \equiv 2 \pmod{3}$.

Hence $n \neq 1 \pmod{3}$.

3. CLAW DECOMPOSITION OF CARTESIAN PRODUCT OF GRAPHS

In this section, we give necessary and sufficient condition for the decomposition of cartesian product of some standard graphs into claws.

Theorem 3.1: If G_1 and G_2 are *H*-decomposable, then $G_1 \times G_2$ is *H*-decomposable.

Proof: Let $V(G_1) = \{v_1, v_2, ..., v_k\}$ and $V(G_2) = \{u_1, u_2, ..., u_n\}$.

Then $V(G_1 \times G_2) = \{(v_i, u_j)/1 \le i \le k, 1 \le j \le n\}.$

Rename $(v_i, u_j) = v_{ij}$; $1 \le i \le k$, $1 \le j \le n$.

Now, $\langle v_{1i}, v_{2i}, ..., v_{ki} \rangle \geq G_1$ for all $1 \leq j \leq n$ and

 $< \{u_{i1}, u_{i2}, ..., u_{in}\} > \cong G_2 \text{ for all } 1 \le i \le k.$

Thus, $E(G_1 \times G_2) = \underbrace{E(G_1) \cup ... \cup E(G_1)}_{n \text{ times}} \cup \underbrace{E(G_2) \cup ... \cup E(G_2)}_{k \text{ times}}.$

Since G_1 and G_2 are *H*-decomposable, $G_1 \times G_2$ is *H*-decomposable.

Corollary 3.2: If $m, n \equiv 0 \pmod{3}$, then $K_{1,m} \times K_{1,n}$ is claw decomposable.

Corollary 3.3: If $m \equiv 0 \pmod{3}$ and $n \neq 2 \pmod{3}$ then $K_{1,m} \times K_n$ is claw decomposable.

Proof: It follows from Theorems 2.3 and 3.1.

Corollary 3.4: If $rs \equiv 0 \pmod{3}$ and $n \equiv 2 \pmod{3}$, then $K_{r,s} \times K_n$ is claw decomposable.

Proof: It follows from Theorems 2.3, 2.4 and 3.1.

Corollary 3.5: If $rs \equiv 0 \pmod{3}$ and $n \equiv 0 \pmod{3}$, then $K_{r,s} \times K_{1,n}$ is $K_{1,3}$ -decomposable.

Proof: It follows from Theorems 2.4 and 3.1.

Remark 3.6: $P_n \circ K_1$ and $C_n \circ K_1$ are not claw decomposable for any values of *n*. **Remark 3.7:** If $G = P_m \circ K_1$, then $G \circ C_n$ is not claw decomposable.

Theorem 3.8: Let $G_1 = P_m \circ K_1$. If G_2 and $G_2 \circ K_1$ are claw decomposable, then $G_1 \times G_2$ is claw decomposable.

Proof: Let $V(G_1) = \{u_1, u_2, ..., u_m, w_1, w_2, ..., w_m\}$ where w_i is the pendant edge at u_i for all $1 \le i \le m$, $u_1 u_2 ... u_m$ is the *m*-path in *G* and $V(G_2) = \{v_1, v_2, ..., v_n\}$.

Then $V(G_1 \times G_2) = \{(u_i, v_i), (w_i, v_i)/1 \le i \le m, 1 \le j \le n\}.$

Rename $(u_i, v_j) = u_{ji}$ and $(w_i, v_j) = w_{ji}$ for all $1 \le i \le m$, and $1 \le j \le n$. Now, $< \{u_{1j}, u_{2j}, ..., u_{nj}, w_{1j}, w_{2j}, ..., w_{nj}\} > - E(<\{u_{1j}, u_{2j}, ..., u_{nj}\} >)$ $\cong G_2 \circ K_1$ for all $1 \le j \le m$, $< \{u_{1j}, u_{2j}, ..., u_{nj}, u_1(j+1), u_2(j+1), ..., u_n(j+1)\}$ $> - E(<\{u_{1(j+1)}, u_{2(j+1)}, ..., u_{n(j+1)}\} >) \cong G_2 \circ K_1$ for all $1 \le j \le m - 1$

and $\langle \{u_{1m}, u_{2m}, ..., u_{nm}\} \rangle \cong G_2.$

Thus
$$E(G_1 \times G_2) = \underbrace{E(G_2 \circ K_1 \cup ... \cup E(G_2 \circ K_1))}_{(2m-1) \text{ times}} \cup E(G_2)$$
.

By assumption, G_2 and G_2 o K_1 are claw decomposable.

Hence $G_1 \times G_2$ is claw decomposable.

Corollary 3.9: If $G = P_m \circ K_1$ and $n \equiv 0 \pmod{3}$, then $G \times K_n$ is claw decomposable.

Proof: Since $n \equiv 0 \pmod{3}$, by Theorem 2.3, K_n is claw decomposable. Also, by Lemma 2.7, $K_n \circ K_1$ is claw decomposable. Hence the result follows from above theorem.

Remark 3.10: If $G = P_m$ o K_1 , then $G \times K_{1,n}$ is not claw decomposable.

Proof: Suppose not. Then let $S = \{S_1, S_2, ..., S_k\}$ be a claw decomposition of $G \times K_{1,n}$. Let $V(G) = \{u_1, u_2, ..., u_m, w_1, w_2, ..., w_m\}$ where w_i is the pendant edge at u_i for all $1 \le i \le m$ and $u_1u_2...u_m$ is the *m*-path in *G*.

Let $V(K_{1,n}) = \{v_0, v_1, \dots, v_n\}$ where $d(v_0) = n$. Then $V(G \times K_{1,n}) = \{(u_i, v_j), (w_i, v_j)/1 \le i \le m, 0 \le j \le n\}.$

Rename $(u_i, v_i) = u_{ii}$ and $(w_i, v_i) = w_{ii}$ for all $1 \le i \le m$, $0 \le j \le n$.

Now, $w_{11}u_{11} \in E(G \times K_{1,n})$ and hence must be in some member of *S*, say S_1 . Since $d(u_{11}) = 3$ and $d(w_{11}) = 2$, $u_{11}u_{12} \in S_1$. Similarly, $w_{1i}u_{1i}$ and $u_{1i}u_{1(i+1)}$ will be in the same member of *S*, say S_i for all $1 \le i \le m - 1$.

Then in $G \times K_{1,n} - U_{i=1}^n E(S_i)$, $d(u_{1n}) = 2$ and $d(w_{1n}) = 2$. Thus $w_{1n} u_{1n} \notin S$, a contradiction.

Hence $G \times K_{1,n}$ is not claw decomposable.

Theorem 3.11: If $n \equiv 0 \pmod{3}$, then $P_k \times K_n$ is claw decomposable for all values of *k*.

Proof: Let $V(K_n) = \{v_1, v_2, ..., v_n\}$ and $V(P_k) = \{u_1, u_2, ..., u_k\}$ where $P_k = u_1 u_2 ... u_k$. Then $V(P_k \times K_n) = \{(u_i, v_i)/1 \le i \le k, 1 \le j \le n\}.$ Rename $(u_i, v_j) = v_{ii}$ for all $1 \le i \le k, 1 \le j \le n$. Assume that $n \equiv 0 \pmod{3}$. Now, $\langle v_{1i}, v_{2i}, \dots, v_{ni}, v_{1(i+1)}, v_{2(i+1)}, \dots, v_{n(i+1)} \rangle$ $> - E(< \{v_{1(j+1)}, v_{2(j+1)}, \dots, v_{n(j+1)}\} >) \cong K_n \text{ o } K_1 \text{ for all } 1 \le j \le k - 1$ and $\langle \{v_{1k}, v_{2k}, ..., v_{nk}\} \rangle \cong K_n$. Thus $E(G) = \underbrace{E(K_n \circ K_1 \cup ... \cup E(K_n \circ K_1))}_{(k-1) \text{ times}} \cup E(K_n).$

Since $n \equiv 0 \pmod{3}$, by Lemma 2.7, $K_n \circ K_1$ is claw decomposable. Also, by Theorem 2.3, K_n is claw decomposable.

Hence $P_k \times K_n$ is claw decomposable.

Conjecture 3.12: The graph $P_k \times K_n$ is claw decomposable if and only if $n \equiv 0 \pmod{3}$.

Theorem 3.13: If $n \neq 1 \pmod{3}$, then $C_k \times K_n$ is claw decomposable.

Proof: Let $V(K_n) = \{v_1, v_2, ..., v_n\}$ and $V(C_k) = \{u_1, u_2, ..., u_k\}$.

Then $V(C_k \times K_n) = \{(u_i, v_i)/1 \le i \le k, 1 \le j \le n\}.$

Rename $(u_i, v_j) = v_{ii}$ for all $1 \le i \le k, 1 \le j \le n$.

Assume that $n \neq 1 \pmod{3}$.

Now, $\langle v_{1i}, v_{2i}, ..., v_{ni}, v_{1(i+1)}, v_{2(i+1)}, ..., v_{n(i+1)} \rangle$

>
$$-E(<\{v_{1(i+1)}, v_{2(i+1)}, \dots, v_n(i+1)\}>) \cong K_n \text{ o } K_1 \text{ for all } 1 \le i \le k-1$$

and
$$\langle \{v_{1k}, v_{2k}, ..., v_{nk}, v_{11}, v_{21}, ..., v_{n1}\} \rangle - E(\langle \{v_{11}, v_{21}, ..., v_{n1}\} \rangle) \cong K_n \circ K_1$$

Thus $E(G) = \underbrace{E(K_n \circ K_1 \cup ... \cup E(K_n \circ K_1))}_{k \text{ times}}$

Since $n \neq 1 \pmod{3}$, by Lemma 2.7, $K_n \circ K_1$ is claw decomposable.

Hence $C_k \times K_n$ is claw decomposable.

Conjecture 3.14: The graph $C_k \times K_n$ is claw decomposable if and only if $n \neq 1 \pmod{3}$.

Theorem 3.15: The graph $K_{1,m} \times K_{1,n}$ is claw decomposable if and only if $2mn + m + n \equiv 0 \pmod{3}$.

Proof: Let $V(K_{1,m}) = \{u_0, u_1, ..., u_m\}$ and $V(K_{1,n}) = \{v_0, v_1, ..., v_n\}$ where $d(u_0) = m$ and $d(v_0) = n$.

Then $V(K_{1,m} \times K_{1,n}) = \{(u_i, v_i)/0 \le i \le m, 0 \le j \le n\}.$

Rename $(u_i, v_j) = v_{ji}$ for all $0 \le i \le m$ and $0 \le j \le n$.

Suppose that $2mn + m + n \equiv 0 \pmod{3}$.

Case (i): $m \equiv 0 \pmod{3}$.

Since $2mn + m + n \equiv 0 \pmod{3}$, $n \equiv 0 \pmod{3}$. Thus both $K_{1,m}$ and $K_{1,n}$ are claw decomposable. Hence by Theorem 3.1, $K_{1,m} \times K_{1,n}$ is claw decomposable.

Case (ii): $m \equiv 1 \pmod{3}$.

Then $2mn + m + n \equiv 1 \pmod{3}$ for all values of n, a contradiction.

Hence this case does not arise.

Case (iii): $m \equiv 2 \pmod{3}$.

If $n \equiv 0 \pmod{3}$, then $2mn + m + n \equiv 2 \pmod{3}$, a contradiction.

If $n \equiv 1 \pmod{3}$, then $2mn + m + n \equiv 1 \pmod{3}$, a contradiction.

Thus $n \equiv 2 \pmod{3}$.

Now, $\langle v_{0j}, v_{1j}, ..., v_{nj} \rangle \rangle + \langle v_{0j}, v_{00} \rangle \cong K_{1,n+1}$ for all $1 \le j \le m$,

 $< \{v_{i0}, v_{i1}, \dots, v_{i(m-2)}\} > \cong K_{1,(m-2)}$ for all $1 \le i \le n$ and

 $< \{v_{00}, v_{10}, ..., v_{n0}, v_{1(m-1)}, v_{2(m-1)}, ..., v_{n(m-1)}, v_{1m}, v_{2m}, ..., v_{nm}\} > \cong G'$

where G' is the graph obtained by identifying one pendant vertex of each copy of $K_{1,3}$ in $nK_{1,3}$.

Thus
$$E(K_{1,m} \times K_{1,n}) = \underbrace{E(K_{1,(n+1)}) \cup \ldots \cup E(K_{1,(n+1)})}_{m \text{ times}} \cup$$

$$\underbrace{E(K_{1,(m-2)})\cup\ldots\cup E(K_{1,(m-2)})}_{m \text{ times}}\cup E(G').$$

Since *n*, $m \equiv 2 \pmod{3}$, $K_{1,(n+1)}$ and $K_{1,(m-2)}$ areclaw decomposable.

Hence $K_{1,m} - K_{1,n}$ is claw decomposable.

Conversely, suppose that $K_{1,m} \times K_{1,n}$ is claw decomposable.

Then $|E(K_{1,m} \times K_{1,n})| \equiv 0 \pmod{3}$.

That is, $(m + 1) n + (n + 1) m \equiv 0 \pmod{3}$.

That is, $2mn + m + n \equiv 0 \pmod{3}$.

Remark 3.16. $K_2 \times C_5$ is not claw decomposable.

Theorem 3.17: Let *n* be even and $n \equiv 0 \pmod{3}$ and $m \equiv 1 \pmod{3}$. Then $K_{1,m} \times C_n$ is claw decomposable.

Proof: Let $V(K_{1,m}) = \{u_0, u_1, ..., u_m\}$ where $d(u_0) = m$ and

 $V(C_n) = \{v_1, v_2, \dots, v_n\}.$

Then $V(K_{1,m} \times C_n) = \{(u_i, v_j)/0 \le i \le m, 1 \le j \le n\}.$

Rename $(u_i, v_j) = v_{ii}; 0 \le i \le m, 1 \le j \le n$.

Assume that *n* is even, $n \equiv 0 \pmod{3}$ and $m \equiv 1 \pmod{3}$.

Claim: $G_2 = K_{1,3} \times C_n - E(C_n)$ where $E(C_n)$ denotes the edges of the cycle C_n corresponding to the central vertex is claw decomposable if *n* is even and $n \equiv 0 \pmod{3}$.

Then $G' = K_{1,3} \times C_n - \{v_{i0}v_{(i+1)0}, v_{10}v_{n0}/1 \le i \le n \le 1\}.$

Now, $\langle v_{ni}, v_{1i}, v_{2i}, v_{10} \rangle \ge K_{1,3}$ for all $1 \le i \le 3$,

 $< \{v_{i0}, v_{i1}, v_{i2}, v_{i3}\} > < = K_{1,3}; i \in \{2, 4, ..., n\},\$

 $< \{v_{ij}, v_{(i+1)j}, v_{(i+2)j}, v_{(i+1)0}\} > \cong K_{1,3} \text{ for all } 1 \le j \le 3 \text{ and } i \in \{2, 4, ..., n-2\}.$

Thus $E(G') = E(K_{1,3}) \cup E(K_{1,3}) \cup E(K_{1,3}) \cup \underbrace{E(K_{1,3}) \cup \dots \cup E(K_{1,3})}_{\binom{n}{2} \text{ times}} \cup$

$$\underbrace{E(K_{1,3})\cup\ldots\cup E(K_{1,3})}_{3\left(\frac{n-2}{2}\right) times}.$$

Hence G' is claw decomposable if n is even and $n \equiv 0 \pmod{3}$. Since $m \equiv 1 \pmod{3}$, m = 3t + 1; $t \in Z$.

Thus $E(K_{1,m} \times C_n) = E(K_2 \times C_n) \cup \underbrace{E(G') \cup ... \cup E(G')}_{t \text{ times}}$.

By the Claim and Lemma 2.6, G'^2 and $K_2 \times C_n$ are claw decomposable.

Hence $K_{1,m} \times C_n$ is claw decomposable.

Theorem 3.18: K_1 , $\times K_n$ is claw decomposable if and only if $n \equiv 0 \pmod{3}$ or $mn + m + n \equiv 1 \pmod{3}$.

Proof: Let $V(K_{1,m}) = \{u_0, u_1, ..., u_m\}$ where $d(u_0) = m$ and $V(K_n) = \{v_1, v_2, ..., v_n\}$.

Then $V(K_1, m \times K_n) = \{(u_i, v_i)/0 \le i \le m, 1 \le j \le n\}.$

Rename $(u_i, v_j) = v_{ji}$ for all $0 \le i \le m, 1 \le j \le n$.

Suppose that $n \equiv 0 \pmod{3}$ or $mn + m + n \equiv 1 \pmod{3}$.

Case (i): $n \equiv 0 \pmod{3}$

Subcase 1: $m \equiv 0 \pmod{3}$

Then $K_{1,m}$ is claw decomposable. Also, since $n \equiv 0 \pmod{3}$, by Theorem 2.3, K_n is claw decomposable.

Hence by Theorem 3.1, $K_{1,m} \times K_n$ is claw decomposable.

Subcase 2: $m \equiv 1 \pmod{3}$

Now, $\langle \{v_{1j}, v_{2j}, \dots, v_{nj}\} \rangle \langle = Kn \text{ for all } 0 \text{ d} \text{''} \text{ j} \text{ d} \text{''} \text{ m} \text{''} 1,$ $\langle \{v_{10}, v_{11}, \dots, v_{1(m''1)}\} \rangle \langle = K1, \text{m} \text{''} 1 \text{ for all } 1 \text{ d} \text{''} \text{ i} \text{ d} \text{''} \text{ n} \text{ and}$ $\langle \{v_{10}, v_{20}, \dots, v_{n0}, v_{1m}, v_{2m}, \dots, v_{nm}\} \rangle - E(\langle \{v_{10}, v_{20}, \dots, v_{n0}\} \rangle) \cong K_n \circ K_1.$

Thus $E(K_{1,m} \times K_n) = \underbrace{E(K_n) \cup ... \cup E(K_n)}_{n \text{ times}} \cup$

$$\underbrace{E(K_{1,m-1})\cup\ldots\cup E(K_{1,m-1})}_{n \text{ times}}\cup E(K_n o K_1).$$

By Lemma 2.7, $K_n \circ K_1$ is claw decomposable. Since $n \equiv 0 \pmod{3}$, by Theorem 2.3, K_n is claw decomposable. Since $m \equiv 1 \pmod{3}$, $K_{1,m-1}$ is claw decomposable.

Hence $K_{1,m} \times K_n$ is claw decomposable.

Subcase 3: $m \equiv 2 \pmod{3}$ Now, $\langle \{v_{1j}, v_{2j}, ..., v_{nj}\} \rangle \cong K_n$ for all $0 \le j \le m - 2$, $\langle \{v_{i0}, v_{i1}, ..., v_{i(m-2)}\} \rangle \cong K_{1,m-2}$ for all $1 \le i \le n$, $< \{v_{10}, v_{20}, \dots, v_{n0}, v_{1(m-1)}, v_{2(m-1)}, \dots, v_{n(m-1)}\}$ > - E(< { $v_{10}, v_{20}, \dots, v_{n0}$ } >) $\cong K_n \circ K_1$ and

 $<\{v_{10},\,v_{20},\ldots,\,v_{n0},\,v_{1m},\,v_{2m},\ldots,\,v_{nm}\}>-E(<\{v_{10},\,v_{20},\ldots,v_{n0}\}>)\cong K_n \; \text{o} \; K_1.$

Thus
$$E(K_{1,m} \times K_n) = \underbrace{E(K_n) \cup \dots \cup E(K_n)}_{(m-1) \text{ times}} \cup$$

$$\underbrace{E(K_{1,m-2})\cup\ldots\cup E(K_{1,m-2})}_{(m-1) \text{ times}} \cup E(K_n o K_1) \cup E(K_n o K_1).$$

Since $n \equiv 0 \pmod{3}$, by Theorem 2.3, K_n is claw decomposable. Since $m \equiv 2 \pmod{3}$, $K_{1,m-2}$ is claw decomposable. Also by Lemma 2.7, $K_n \circ K_1$ is claw decomposable.

Hence $K_{1,m} \times K_n$ is claw decomposable.

Case (ii): $mn + m + n \equiv 1 \pmod{3}$

Subcase 1:
$$m \equiv 0 \pmod{3}$$

Since $mn + m + n \equiv 1 \pmod{3}$, $n \equiv 1 \pmod{3}$. Thus by Theorem 2.3, K_n is claw decomposable. Also, $K_{1,m}$ is claw decomposable. Hence by Theorem 3.1, $K_{1,m} \times K_n$ is claw decomposable.

Subcase 2: $m \equiv 1 \pmod{3}$

Since $mn + m + n \equiv 1 \pmod{3}$, $n \equiv 0 \pmod{3}$. This case is already dealt in Subcase 2 of Case (*i*).

Subcase 3: $m \equiv 2 \pmod{3}$

If $m \equiv 2 \pmod{3}$, then $mn + m + n \equiv 2 \pmod{3}$ for all values of *n*, a contradiction. Hence this case does not arise.

Hence in all the cases, $K_{1,m} \times K_n$ is claw decomposable.

Conversely, suppose that $K_{1,m} \times K_n$ is claw decomposable.

Then $|E(K_{1,m} \times K_n)| \equiv 0 \pmod{3}$. Thus, $(m+1)\frac{n(n-1)}{2} + mn \equiv 0 \pmod{3}$. which

implies $\frac{n}{2}[mn + m + n - 1] \equiv 0 \pmod{3}$ and hence $n \equiv 0 \pmod{3}$ or $mn + m + n \equiv 1 \pmod{3}$.

4. CLAW DECOMPOSITION OF LEXICOGRAPHIC PRODUCT OF GRAPHS

In this section, we give sufficient condition for the lexicographic product of any graph G with \overline{K}_n , K_n , $K_{m,n}$ and $K_2 \times K_n$ to be claw decomposable.

Definition 4.1: The lexicographic product of two graphs G and H is a graph, denoted by G * H, whose vertex set is $V(G) \times V(H)$. Two vertices (g, h) and (g', h') are adjacent precisely if $gg' \in E(G)$, or g = g' and $hh' \in E(H)$.

The other way of viewing G * H is by replacing each vertex in G by a copy of H and two vertices in G are adjacent if and only if there exists a complete bipartite subgraph with the corresponding vertices of H as partite sets in G * H.

Theorem 4.2: Let G be any non trivial graph. If $n \equiv 0 \pmod{3}$, then $G * \overline{K}_n$ is claw decomposable.

Proof: Assume that n a" 0(mod 3).

Let
$$V(G) = \{v_1, v_2, ..., v_k\}$$
 and $V(K_n) = \{u_1, u_2, ..., u_n\}$.

Then $V(G * \overline{K}_n) = \{(v_i, u_i)/1 \le i \le k \text{ and } 1 \le j \le n\}.$

Rename $(v_i, u_j) = v_{ij}$; $1 \le i \le k$ and $1 \le j \le n$.

Now, for each $v_i v_j \in E(G)$, $\langle v_{1i}, v_{2i}, ..., v_{ni}, v_{1j}, v_{2j}, ..., v_{nj} \rangle \geq K_{n,n}$.

Thus, $E(G * \overline{K}_n) = \underbrace{E(K_{n,n}) \cup ... \cup E(K_{n,n})}_{|E(G)| \ times}$.

Since $n \equiv 0 \pmod{3}$, by Theorem 2.4, $K_{n,n}$ is claw decomposable.

Hence $G * \overline{K}_n$ is claw decomposable.

Theorem 4.3: Let G be any non trivial graph. If n > 3 and $n \equiv 0 \pmod{3}$, then $G * K_n$ is claw decomposable.

Proof: Assume that n > 3 and $n \equiv 0 \pmod{3}$. Let $V(G) = \{v_1, v_2, ..., v_k\}$ and $V(K_n) = \{u_1, u_2, ..., u_n\}$. Then $V(G * K_n) = \{(v_i, u_j)/1 \le i \le k \text{ and } 1 \le j \le n\}$. Rename $(v_i, u_j) = v_{ji}; 1 \le i \le k \text{ and } 1 \le j \le n$. Now, $< \{v_{1i}, v_{2i}, ..., v_{ni}\} > \cong K_n$ for all $1 \le i \le k$.

Also, for each $v_i v_i \in E(G)$,

$$< \{v_{1i}, v_{2i}, \dots, v_{ni}, v_{1j}, v_{2j}, \dots, v_{nj}\} > -E(< \{v_{1i}, v_{2i}, \dots, v_{ni}\} >)$$
$$-E(< \{v_{1j}, v_{2j}, \dots, v_{nj}\} >) \cong K_{n,n}.$$

Thus,
$$E(G * K_n) = \underbrace{E(K_n) \cup \ldots \cup E(K_n)}_{k \text{ times}} \cup \underbrace{E(K_{n,n}) \cup \ldots \cup E(K_{n,n})}_{|E(G)| \text{ times}}$$
.

Since $n \equiv 0 \pmod{3}$, by Theorem 2.3 and 2.4, K_n and $K_{n,n}$ are claw decomposable. Hence $G * K_n$ is claw decomposable.

Theorem 4.4: Let G be any non trivial graph. If $m \equiv 0 \pmod{3}$ and $n \equiv 0 \pmod{3}$, then $G * K_{m,n}$ is claw decomposable.

Proof: Assume that $m \equiv 0 \pmod{3}$ and $n \equiv 0 \pmod{3}$.

Let $V(G) = \{v_1, v_2, ..., v_k\}$ and $V(K_{m,n}) = \{u_1, u_2, ..., u_m, w_1, w_2, ..., w_n\}$ where $d(u_i) = n$ for all $1 \le i \le m$ and $d(w_i) = m$ for all $1 \le j \le n$.

Then $V(G \times K_{m,n}) = \{(v_i, u_j), (v_i, w_l)/1 \le i \le k, 1 \le j \le m, 1 \le l \le n\}.$

Rename $(v_i, u_j) = u_{ji}$ and $(v_i, w_l) = w_{li}$ for all $1 \le i \le k, 1 \le j \le m, 1 \le l \le n$. Now for each $v_i v_i \in E(G)$,

$$< \{u_{1i}, u_{2i}, ..., u_{mi}, w_{1i}, w_{2i}, ..., w_{ni}, u_{1j}, u_{2j}, ..., u_{mj}, w_{1j}, w_{2j}, ..., w_{nj}\}$$

 $> - E(< \{u_{1i}, u_{2i}, ..., u_{mi}, w_{1i}, w_{2i}, ..., w_{ni}\} >)$

 $-E(<\{u_{1j}, u_{2j}, ..., u_{mj}, w_{1j}, w_{2j}, ..., w_{nj}\}>) \cong Km + n, m + n$ and

 $\langle \{u_{1i}, u_{2i}, ..., u_{mi}, w_{1i}, w_{2i}, ..., w_{ni}\} \rangle \cong K_{m,n} \text{ for all } 1 \le i \le k.$

Thus,
$$E(G * K_{m,n}) = \underbrace{E(K_{m,n}) \cup \ldots \cup E(K_{m,n})}_{k \text{ times}} \cup \underbrace{E(K_{m+n,m+n}) \cup \ldots \cup E(K_{m+n,m+n})}_{|E(G)| \text{ times}}$$

Since $m \equiv 0 \pmod{3}$ and $n \equiv 0 \pmod{3}$, by Theorem 2.4, $K_{m,n}$ and $K_{m+n,m+n}$ are claw decomposable.

Hence $G * K_{m,n}$ is claw decomposable.

Theorem 4.5: Let G be any non trivial graph. If n > 3 and $n \equiv 0 \pmod{3}$, then $G * [K_2 \times K_n]$ is claw decomposable.

Proof: Assume that n > 3 and $n \equiv 0 \pmod{3}$.

Let $V(G) = \{w_1, w_2, ..., w_k\}, V(K_2 \times K_n) = \{v_1, v_2, ..., v_n, u_1, u_2, ..., u_n\}$ and $E(K_2 \times K_n) = \{v_i v_j, u_i u_j, u_i v_i / 1 \le i, j \le n, i \in i\}$.

Then $V(G * [K_2 \times K_n]) = \{(w_i, v_j), (w_i, u_j)/1 \le i \le k, 1 \le j \le n\}.$ Rename $(w_i, v_j) = v_{ji}$ and $(w_i, u_j) = u_{ji}$ for all $1 \le i \ d'' \ k, 1 \le j \le n$. Now, $< \{v_{1i}, v_{2i}, ..., v_{ni}, u_{1i}, u_{2i}, ..., u_{ni}\} > \cong K_2 \times K_n$ for all $1 \le i \le k$. Also, for each $w_i w_j \in E(G)$,

 $< \{v_{1i}, v_{2i}, ..., v_{ni}, u_{1i}, u_{2i}, ..., u_{ni}, v_{1j}, v_{2j}, ..., v_{nj}, u_{1j}, u_{2j}, ..., u_{nj}\}$

 $> - E(< \{v_{1i}, v_{2i}, ..., v_{ni}, u_{1i}, u_{2i}, ..., u_{ni}\} >)$

 $-E(<\{v_{1j}, v_{2j}, ..., v_{nj}, u_{1j}, u_{2j}, ..., u_{nj}\} >) \cong K_{2n,2n}.$

Thus
$$E(G * [K_2 \times K_n]) = \underbrace{E(K_2 \times K_n) \cup ... \cup E(K_2 \times K_n)}_{k \text{ times}} \cup \underbrace{E(K_{2n,2n}) \cup ... \cup E(K_{2n,2n})}_{|E(G)| \text{ times}}$$

Since n > 3 and $n \equiv 0 \pmod{3}$, by Lemma 2.8, $K_2 \times K_n$ is claw decomposable. Also, by Theorem 2.4, $K_{2n,2n}$ is claw decomposable.

Hence $G * [K_2 \times K_n]$ is claw decomposable.

REFERENCES

- [1] Darryn E. Bryant, Saad I. El-Zanati and Charles Vanden Eynden, "Star Factorizations of Graph Products", *Journal of Graph Theory*, **36:** pp. 59-66, (2001).
- [2] D. Dor and M. Tarsi, "Graph Decomposition is NP-complete: a Complete Proof of Holyers Conjecture", *SIAM J. Comput.* **26**, pp. 1166-1187, (1997).
- [3] H. L. Fu, F. K. Hwang, M. Jimbo, Y.Mutoh, C. L. Shiue, "Decomposing Complete Graphs into K_r× K_c's", *Journal of Statistical Planning and Interference*, **119**, pp. 225-236, (2004).
- [4] C. Lin and T. W. Shyu, A Necessary and Sufficient Condition for the Star Decomposition of Complete Graphs", *Journal of Graph Theory*, 23: pp. 361-364, (1996).
- [5] Richard Hammack, Wilfried Imrich and Sandi Klavzar, Handbook of product graphs, CRC Press, Boca Raton, (2011).
- [6] Sumiyasu Yamamoto, Hideto Ikeda, Shinsei Shige-eda, Kazuhiko Ushio and Noboru Hamada, On Claw-decomposition of Complete Graphs and Complete Bigraphs, *Hiroshima Math.* J,5, pp. 33-42,(1975).
- [7] Tay-Woei Shyu, Decomposition of Complete Graphs into Cycles and Stars, *Graphs and Combinatorics*, **29**: pp. 301-313, (2013).

P. Chithra Devi¹ and J. Paulraj Joseph²

Department of Mathematics Manonmaniam Sundaranar University Tirunelveli - 627 012, Tamil Nadu, India. *E-mails:*¹chithradevi095@gmail.com, ²jpaulraj"2003@yahoo.co.in

This document was created with the Win2PDF "print to PDF" printer available at http://www.win2pdf.com

This version of Win2PDF 10 is for evaluation and non-commercial use only.

This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com/purchase/