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Abstract. We study the least squares estimator for the drift parameter of
the non-ergodic fractional Ornstein–Uhlebbeck process of the second kind.

Via Malliavin calculus, we analyze the consistency and the asymptotic dis-
tribution of this estimator.

1. Introduction

The purpose of this paper is to analyze the least squares estimator (LSE in the
sequel) for the drift parameter of the fractional Ornstein–Uhlenbeck process of the
second kind. Let us first describe this stochastic process. It has been introduced
in [12] and its definition is related to the Lamperti transform of the fractional
Brownian motion. Actually, there are two ways to define the fractional Ornstein–
Uhlenbeck process (fOU). The first natural definition is to define it as the solution
to the Langevin equation

dXt = −αXtdt+ dBt (1.1)

with some initial condition X0 ∈ R, where (Bt)t≥0 is a fractional Brownian motion
with Hurst parameter H ∈ (0, 1). The process is called ergodic if α > 0 and non-
ergodic when α < 0. The second way to introduce the fOU is via the Lamperti
transform of the fractional Brownian motion, that is,

Xt = e−αtBaα,t (1.2)

where aα,t =
H
α e

αt
H for every t ≥ 0. In the case H = 1

2 these two definitions lead
to the same process, but this is not true in the fractional case. Indeed, it has been
proven in [7], that the Gaussian processes given by (1.1) and (1.2) have different
behavior when H ̸= 1

2 .
Therefore, in [12] the authors called the process (1.1) as the fractional Ornstein–

Uhlenbeck of the first kind and the process given by (1.2) as the fractional Ornstein–
Uhlenbeck of the second kind. Our paper will focus on the second definition of the
fOU process.

Received 2016-9-8; Communicated by the editors.

2010 Mathematics Subject Classification. Primary 60H15, 60H07; Secondary 60G35.
Key words and phrases. Fractional Brownian motion, parameter estimation, Malliavin calcu-
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The fractional Ornstein–Uhlenbeck of the second kind can be also defined as
the solution to some Langevin type stochastic equation, that is, the process (1.2)
coincides (see [12]) with the solution to

dXα
t = −αXα

t dt+ dY α
t

with initial condition Xα
0 = Ba0 , where the noise Y α is given by the formula

Y α
t :=

∫ t

0
e−αtdBaα,s for every t ≥ 0.

The above considerations lead us to the study of the process (Xt)t≥0 defined
by {

dXt = θXtdt+ dY
(1)
t , t ≥ 0

X0 = 0,
(1.3)

where

Y
(1)
t :=

∫ t

0

e−sdBas with a0,t := at = He
t
H , (1.4)

{Bt, t ≥ 0} being a fractional Brownian motion of Hurst index H ∈ ( 12 , 1).

When H = 1
2 , the process Y

(1)
t =

∫ t

0
e−tdBas is a standard Brownian motion,

by Lévy’s characterization theorem. Therefore, the process X given by (1.3) is a
standard Ornstein–Uhlenbeck process.

Our purpose is to estimate the parameter θ from the continuous observations of
the process (Xt)t≥0 given by (1.3). We will restrict to the non-ergodic case θ > 0
since the ergodic case (θ > 0) has been treated in [2].

While the statistical inference of Itô type diffusions has a long history, the
statistical analysis for equations driven by fractional Brownian motion (fBm) is
obviously more recent. The development of stochastic calculus with respect to the
fBm allowed to study such models. We will recall several approaches to estimate
the parameters in fractional models but we mention that the below list is not
exhaustive:

• The MLE approach in [13], [26] or [29]. In general the techniques used
to construct maximum likelihood estimators (MLE) for the drift parame-
ter are based on Girsanov transforms for fractional Brownian motion and
depend on the properties of the deterministic fractional operators (deter-
mined by the Hurst parameter) related to the fBm. In general, the MLE
is not easily computable.

• A pseudo-MLE approach based on the discretization of the equation (1.3)
in [6], [28]. This approach allows to simulate better the estimator obtained.
Some numerical results are presented in [6] and [28] as well.

• A least squares approach has been proposed in [11]. The study of the
asymptotic properties of the estimator is based on certain criteria formu-
lated in terms of the Malliavin calculus (see [22]). See also [8] for a related
least squares estimator.

• Other type of estimators, such as minimum L1-norm estimator, contrast
estimators etc, can be found in the monograph [27].

• The statistical inference for the fOU of the second kind has been recently
developed in the papers [2] or [3] in the ergodic case. The case of non-
ergodic fOU process of the first kind can be found in [5].
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We aim is to bring a new contribution to the statistical inference for fractional
diffusions by estimating the drift parameter of a non-ergodic fOU process of the
second kind. As in [11] or [2], we propose a least squares estimator. Although
the formulation of the problem appears rather similar to the one studied in [2],
the proofs and the results are quite different. There are several points that make
our approach different: first, the behavior of the solution to (1.3) in the non-
ergodic case is not the same as in the ergodic case, the covariance and the memory
properties of these processes being significantly different; second, in contrast to [2],
we use a LSE based on a pathwise integral with respect to the noise and this makes
in principle our estimator easier to be simulated; a third significant difference is the
behavior or the estimator. While in [2], the estimator is asymptotically normal,
in our case we prove that the limit distribution of the LSE is a standard Cauchy
distribution.

We structured our paper as follows. In Section 2 we analyze some properties of
the fOU process of the second kind. In Section 3 we construct the least squares
estimator for the parameter of this process. We also give the asymptotic proper-
ties of the estimator, consistency and asymptotic distribution, by using Malliavin
calculus. Section 4 (the Appendix) contains the basic elements on fractional Brow-
nian motion and Malliavin calculus.

2. Properties of the Orstein–Uhlenbeck Process
of the Second Kind

In this paragraph we extend the results in [12], [2] by giving new properties of
the non-ergodic fOU process of the second kind. These properties will be needed
in the next section in order to analyze the behavior of the LSE. Let us first note
that the unique solution to (1.3) can be written as

Xt = eθt
∫ t

0

e−θsdY (1)
s (2.1)

for every t ≥ 0, θ > 0 and H > 1
2 (see [12] or [2]), where Y (1) is given by (1.4).

In order to make the analysis of this process easier, we will express the Wiener
integral with respect to the process Y (1) as a Wiener integral with respect the
fractional Brownian motion B.

Proposition 2.1. Consider the process (ζt)t≥0 given by

ζt =

∫ t

0

e−θsdY (1)
s , t ≥ 0. (2.2)

Then for every t ≥ 0 we have

ζt = H(θ+1)H

∫ at

a0

s−(θ+1)HdBs (2.3)

where the integral
∫ at

a0
s−(θ+1)HdBs, is understood as a Young integral.
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Proof. Using the change of variables formula (4.4), we can write for every t ≥ 0

ζt =

∫ t

0

e−θse−sdBas

= Bate
−(θ+1)s −Ba0 +

∫ t

0

(θ + 1)Base
−(θ+1)sds

= Bate
−(θ+1)s −Ba0 + (θ + 1)H1+(θ+1)H

∫ at

a0

Bxx
−(θ+1)H−1dx

where we used the change of variables as = x in the last integral above. By
integrating by parts, we obtain

ζt = Bate
−(θ+1)s −Ba0 + (θ + 1)H1+(θ+1)H

×

[
Bat

a
−(θ+1)H
t

−(θ + 1)H
+Ba0

H−(θ+1)H

(θ + 1)H
+

∫ at

a0

x−(θ+1)H

(θ + 1)H
dBx

]

= H(θ+1)H

∫ at

a0

x−(θ+1)HdBx·

□

Recall that the covariance of the increments of the noise Y (1) satisfies (see [12,
Proposition 3.5])

E[(Y
(1)
t − Y (1)

s )(Y (1)
u − Y (1)

v )] =

∫ t

s

∫ u

v

rH(r, z)drdz, t > s, u > v, (2.4)

where

rH(r, z) = H2H−1(2H − 1)e−( 1
H −1)(r−z)|1− e−(r−z)/H |2H−2.

Note that the kernel rH is symmetric.

The following lemma will be needed to prove the consistency of the least square
estimator.

Lemma 2.2. Suppose H ∈ ( 12 , 1) and let ζ be given by (2.2). Then

(i) For all ε ∈ (0,H) the process ζ admits a modification with (H − ε)-Hölder
continuous paths, still denoted ζ in the sequel.

(ii) As t→ ∞

ζt → ζ∞ := H(θ+1)H

∫ ∞

a0

t−(θ+1)HdBt almost surely and in L2(Ω).

Proof. We first prove the point i.. In order to apply the Kolmogorov continuity
criterium, we need to evaluate the mean square of the increment

ζt − ζs =

∫ t

s

e−θrdY (1)
r

with 0 ≤ s ≤ t. This is a Gaussian random variable and we will use the formula
(4.8) in order to compute its L2 norm. The covariance of the process Y (1) can be
obtained from thecformula (2.4).
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We have for every 0 ≤ s ≤ t,

E[(ζt − ζs)
2]

= E

(∫ t

s

e−θrdY (1)
r

)2

= H2H−1(2H − 1)

∫ t

s

∫ t

s

e−θve−θue−( 1
H −1)(u−v)|1− e−(u−v)/H |2H−2dudv

= 2H2H−1(2H − 1)

∫ t

s

∫ u

s

e−(θ+1)(u+v)e
u
H e

v
H |e u

H − e
v
H |2H−2dvdu

≤ 2H2H−1(2H − 1)

∫ t

s

e
u
H du

∫ u

s

e
v
H (e

u
H − e

v
H )2H−2dv

= H2H |e t
H − e

s
H |2H .

Then by using the mean value theorem, we can easily see that for every 0 ≤ s ≤
t ≤ T

E[(ζt − ζs)
2] ≤ e2T |t− s|2H .

By applying the Kolmogorov–Centsov theorem to the centered Gaussian process
ζ we deduce item i. of the conclusion.

Concerning the second point ii., we first notice that the Wiener integral

ζ∞ = H(θ+1)H

∫ ∞

a0

s−(θ+1)HdBs

is well defined as a random variable in L2(Ω). In fact, by (4.7)

Eζ2∞ = H2(θ+1)H+1(2H − 1)

∫ ∞

a0

∫ ∞

a0

t−(θ+1)Hs−(θ+1)H |s− t|2H−2dsdt

= H2H+1(2H − 1)

∫ 1

0

∫ 1

0

x(θ+1)H−2y(θ+1)H−2

∣∣∣∣ 1x − 1

y

∣∣∣∣2H−2

dxdy

= H2H+1(2H − 1)

∫ 1

0

∫ 1

0

x(θ−1)Hy(θ−1)H |x− y|2H−2dxdy

=
(2H − 1)H2H

θ
β(1 + (θ − 1)H, 2H − 1) <∞

with β denotes the classical Beta function. Note that the parameters of the berta
function are strictly positive for H ∈ ( 12 , 1). Moreover, ζt converges to ζ∞ in
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L2(Ω). Indeed,

E[(ζt − ζ∞)2]

= H(2H − 1)H2(θ+1)H

∫ ∞

at

∫ ∞

at

r−(θ+1)Hs−(θ+1)H |r − s|2H−2dsdr

= H(2H − 1)H2He−2θt

∫ 1

0

∫ 1

0

x(θ−1)Hy(θ−1)H |x− y|2H−2dxdy

=
(2H − 1)H2H

θ
β(1 + (θ − 1)H, 2H − 1)e−2θt

→ 0 as t→ ∞.

Now, let us show that ζt → ζ∞ almost surely as t → ∞. By using Borel–Cantelli
lemma, it is sufficient to prove that, for any ε > 0∑

n≥0

P

(
sup

n≤t≤n+1

∣∣∣∣∫ ∞

t

e−θsdY (1)
s

∣∣∣∣ > ε

)
<∞.

For this purpose, let 1
2 < α < 1. As in the proof of Theorem 4 in [1], we can write

for every t > 0∫ ∞

t

e−θsdY (1)
s = β−1

α

∫ ∞

t

e−θsdY (1)
s

(∫ s

t

(s− r)−α(r − t)α−1dr

)
with β−1

α =
∫ s

t
(s− r)−α(r − t)α−1dr = β(α, 1− α).

By Fubini’s theorem, we have (see e.g. [18])∫ ∞

t

e−θsdY (1)
s = β−1

α

∫ ∞

t

(r − t)α−1dr

(∫ ∞

r

(s− r)−αe−θsdY (1)
s

)
.

Cauchy–Schwartz’s inequality implies that,∣∣∣∣∫ ∞

t

e−θsdY (1)
s

∣∣∣∣2
≤ β−2

α

(∫ ∞

t

(r − t)2(α−1)e−θ(r−t)dr

)
×

(∫ ∞

t

e−θ(r−t)dr

∣∣∣∣∫ ∞

r

(s− r)−αe−θseθ(r−t)dY (1)
s

∣∣∣∣2
)

=
β−2
α Γ(2α− 1)

θ2α−1
e−2θt

∫ ∞

t

e−θ(r−t)dr

∣∣∣∣∫ ∞

r

(s− r)−αe−θ(s−r)dY (1)
s

∣∣∣∣2 .
Thus,

sup
n≤t≤n+1

∣∣∣∣∫ ∞

t

e−θsdY (1)
s

∣∣∣∣2
≤ β−2

α Γ(2α− 1)

θ2α−1
e−2θneθ

∫ ∞

n

e−θ(r−n)dr

∣∣∣∣∫ ∞

r

(s− r)−αe−θ(s−r)dY (1)
s

∣∣∣∣2 .
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On the other hand,

E

(∣∣∣∣∫ ∞

r

(s− r)−αe−θ(s−r)dY (1)
s

∣∣∣∣2
)

= H2H−1(2H − 1)

∫ ∞

r

∫ ∞

r

(u− r)−αe−θ(u−r)(v − r)−α

e−θ(v−r)e−( 1
H −1)(u−v)|1− e−(u−v)/H |2H−2dudv

= H2H−1(2H − 1)

∫ ∞

0

∫ ∞

0

u−αe−θuv−αe−θv

e−( 1
H −1)(u−v)|1− e−(u−v)/H |2H−2dudv

= 2H2H−1(2H − 1)

∫ ∞

0

u−αe−θudu∫ u

0

v−αe−θve−( 1
H −1)(u−v)(1− e−(u−v)/H)2H−2dv

≤ 2H2H−1(2H − 1)

∫ ∞

0

u−αe−θudu

∫ u

0

v−αdv

=
2H2H−1(2H − 1)Γ(2− 2α)

(1− α)θ2−2α
<∞.

Combining this with the fact that
∫∞
n
e−θ(r−n)dr = 1

θ , we obtain

E

(
sup

n≤t≤n+1

∣∣∣∣∫ ∞

t

e−θsdY (1)
s

∣∣∣∣2
)

≤ 2β−2
α Γ(2α− 1)Γ(2− 2α)eθ

1− α
e−2θn.

Consequently ∑
n≥0

P

(
sup

n≤t≤n+1

∣∣∣∣∫ ∞

t

e−θsdY (1)
s

∣∣∣∣ > ε

)

≤ ε−2E

(
sup

n≤t≤n+1

∣∣∣∣∫ ∞

t

e−θsdY (1)
s

∣∣∣∣2
)

≤ ε−2C
′′
(H, θ, α)

∑
n≥0

e−2θn <∞

and the conclusion follows. □

3. Asymptotic Behavior of the Least Squares Estimator

We will construct and analyze the behavior of the LSE for the drift parameter
θ in (1.3). The least squares estimator is usually obtained by minimizing the

function θ →
∫ t

0
|Ẋs − θXs|2ds. We will obtain the following form of the LSE

θ̂t =

∫ t

0
XsδXs∫ t

0
X2

sds
(3.1)

where the stochastic integral is interpreted as a pathwise (Young) integral.
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Notice that in [2] or [11] the authors interpreted the stochastic integral in the
nominated of (3.1) as a Skorohod integral with respect to the fractional Brownian
motion (as defined in our appendix). We consider a pathwise integral in (3.1),
whose simulation is easier since it can be defined as a limit of Riemann sums. We
prove that the least squares estimator θ̂t given by (3.1) is strongly consistent and
we find its limit distribution as t→ ∞.

By replacing in (3.1) X given by (1.3), we can write the LSE θ̂t as follows

θ̂t = θ +

∫ t

0
XsdY

(1)
s∫ t

0
X2

sds

and by (2.1),

θ̂t − θ =

∫ t

0
eθsζsdY

(1)
s∫ t

0
e2θsζ2sds

(3.2)

where ζt is defined by (2.2).

3.1. Strong consistency of the least squares estimator. We will analyze
separately the nominator and the denominator in the right hand side of (3.2). The
following result gives the almost sure convergence of the denominator of (3.2).

Lemma 3.1. Let H > 1
2 , then, almost surely

e−2θt

∫ t

0

X2
sds = e−2θt

∫ t

0

e2θsζ2sds −→
t→∞

ζ2∞
2θ

with ζ∞ defined in Lemma 2.2 and ζt given by (2.2).

Proof. Recall from proof of Lemma 2.2 that ξ∞ is a well-defined Gaussian random
variable with

E[ζ∞]2 =
(2H − 1)H2H

θ
β(1 + (θ − 1)H, 2H − 1) <∞.

Hence ζ∞ ∼ N (0, (2H−1)H2H

θ β(1 + (θ − 1)H, 2H − 1)), and this implies that

P (ζ∞ = 0) = 0. (3.3)

The continuity of ζ and point ii. in Lemma 2.2 imply that, for every t > 0∫ t

0

e2θsζ2sds ≥
∫ t

t
2

e2θsζ2sds ≥
t

2
eθt( inf

t
2≤s≤t

ζ2s ) almost surely

and

lim
t→∞

( inf
t
2≤s≤t

ζ2s ) = ζ2∞ almost surely.

We deduce that

lim
t→∞

∫ t

0

e2θsζ2sds = ∞ almost surely.

Hence, we can use l’Hôpital’s rule to conclude that

lim
t→∞

∫ t

0
e2θsζ2sds

e2θt
= lim

t→∞

ζ2t
2θ

=
ζ2∞
2θ

almost surely. □
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The following theorem gives the strong consistency of the LSE θ̂t (3.1).

Theorem 3.2. Assume H ∈ ( 12 , 1) and let θ̂t be given by (3.1) for every t ≥ 0.
Then

θ̂t → θ almost surely ast→ ∞.

Proof. Using the chain rule (4.4), we can express the integral with respect to Y (1)

from (3.2) as ∫ t

0

eθsζsdY
(1)
s =

1

2
e2θtζ2t − θ

∫ t

0

e2θsζ2sds.

Hence

θ̂t − θ = −θ + ζ2t

2e−2θt
∫ t

0
e2θsζ2sds

.

Now it suffices to apply Lemmas 2.2 and 3.1 to obtain the conclusion. □

3.2. Asymptotic distribution of the estimator LSE. This paragraph is de-

voted to the investigation of asymptotic distribution of the LSE θ̂t of θ. We start
with the following lemma where we express an Young type integral that appears
in the expression of the LSE as a Skorohod integral whose square mean can be
easier handled.

Lemma 3.3. Suppose that H > 1
2 . For every t ≥ 0, let ζt be given by (2.2) and

denote by

ζ
′

t =

∫ t

0

e(θ−1)sdBas = H−(θ−1)H

∫ at

a0

s(θ−1)HdBs. (3.4)

Then, for every t ≥ 0, we have∫ t

0

ζse
(θ−1)sdBas

= ζtζ
′

t −H2

∫ at

a0

s−(θ+1)H

(∫ as

a0

r(θ+1)HδBr

)
δBs

−H3(2H − 1)

∫ at

a0

s−(θ+1)H

(∫ s

a0

r(θ−1)H |s− r|2H−2dr

)
ds.

Proof. Recall that δB denotes the Skorohod integral with respect to the fractional
Brownian motion B (see the appendix). Using the alternative expression of ζt
obtained in Proposition 2.1 and using again the change of variables formula (4.4),
we will have for every t ≥ 0,

ζ
′

tζt = ζ
′

0ζ0 +H(θ+1)H

∫ t

0

e(θ−1)s

(∫ as

a0

r−(θ+1)HdBr

)
dBas

+H−(θ−1)H

∫ t

0

e−(θ+1)s

(∫ as

a0

r(θ−1)HdBr

)
dBas
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and then

H(θ+1)H

∫ t

0

e(θ−1)s

(∫ as

a0

r−(θ+1)HdBr

)
dBas

= ζ
′

tζt −H−(θ−1)H

∫ t

0

e−(θ+1)s

(∫ as

a0

r(θ−1)HdBr

)
dBas

=

∫ t

0

e−(θ+1)sdBas

∫ t

0

e(θ−1)rdBar

−H−(θ−1)H

∫ t

0

e−(θ+1)s

(∫ as

a0

r(θ−1)HdBr

)
dBas . (3.5)

We want now to change the differentials dB by δB in the last line above. Con-
cerning the integral

∫ as

a0
r(θ−1)HdBr, this change can be done without problems,

since the integrand is non-random, due to the remark (4.6). On the other hand,
to replace dBs by δBs, we need to use the relation (4.5). We will obtain∫ t

0

e−(θ+1)s

(∫ as

a0

r(θ−1)HdBr

)
dBas

= H(θ+1)H

∫ at

a0

s−(θ+1)H

(∫ s

a0

r(θ−1)HdBr

)
dBs

= H(θ+1)H

∫ at

a0

s−(θ+1)H

(∫ s

a0

r(θ−1)HδBr

)
δBs

+H(2H − 1)H(θ+1)H

∫ at

a0

s−(θ+1)Hds

∫ s

a0

r(θ−1)H |s− r|2H−2dr. (3.6)

By (3.5) and (3.6), we finish the proof. □

We will denote by C(1) the Cauchy distribution with parameter 1. We will refer
to it as the standard Cauchy distribution. Recall that X,Y ∼ N (0, 1) are two
independent random variables, then X

Y follows a standard Cauchy distribution.

Theorem 3.4. Let H > 1
2 be fixed. Then, as t→ ∞

eθt(θ̂t − θ)
Law→ 2θH2(θ−1)HC(1).

In order to prove Theorem 3.4 we need the following two lemmas.

Lemma 3.5. Fix H > 1
2 . Let F be any σ{B} −mesurable random variable such

that

P (F <∞) = 1.

Then, as t→ ∞(
F, eθt

∫ at

a0

s(θ−1)HdBs

)
Law−→

(
F,

(2H − 1)H2θH

θ
β(1 + (θ − 1)H, 2H − 1)N

)
where N ∼ N (0, 1) is independent of B.
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Proof. We will use the approach from the proof of Lemma 7 in [10]. It is enough
to prove that for any d ≥ 1 , s1.....sd ∈ [0,∞), we shall prove that, as t→ ∞,

(
Bs1 , ..., Bsd , e

−θt

∫ at

a0

s(θ−1)HdBs

)
Law→

(
Bas1

, ..., Basd
, σN

)
, (3.7)

where σ = (2H−1)H2θH

θ β(1 + (θ − 1)H, 2H − 1). Because the left-hand side in the
previous convergence is a Gaussian vector, to get (3.7), it is sufficient to check the
convergence of its covariance matrix. Let us first compute the limiting variance of
e−θt

∫ at

a0
s(θ−1)HdBs as t→ ∞. By (4.7),

E

[(
e−θt

∫ at

a0

s(θ−1)HdBs

)2
]

= H(2H − 1)e−2θt

∫ at

a0

∫ at

a0

v(θ−1)Hu(θ−1)H |u− v|2H−2dvdu

= H(2H − 1)H2θH

∫ 1

e
−t
H

∫ 1

e
−t
H

a(θ−1)Hb(θ−1)H |a− b|2H−2dadb

→ (2H − 1)H2θH

θ
β(1 + (θ − 1)H, 2H − 1) as t→ ∞.

Hence, to finish the proof it remains to check that, for all fixed s ≥ 0,

lim
t→∞

E

(
Bs × e−θt

∫ at

a0

v(θ−1)HdBv

)
= 0.

Indeed, for 0 < s < t,

E

(
Bs × e−θt

∫ at

a0

v(θ−1)HdBv

)
= H(2H − 1)e−θt

∫ at

a0

v(θ−1)Hdv

∫ s

0

|u− v|2H−2du

≤ H(2H − 1)e−θt

∫ s

0

v(θ−1)Hdv

∫ s

0

|u− v|2H−2du

+H(2H − 1)e−θt

∫ at

s

v(θ−1)Hdv

∫ s

0

(v − u)2H−2du

:= I1t + I2t .

We will prove that the two summands above converges to zero as t → ∞. It is
easy to see that

lim
t→∞

I1t = 0.

Concerning the term I2t , we can express it as follows

I2t = H(2H − 1)e−θt

∫ at

s

v(θ−1)Hdv

∫ s

0

(v − u)2H−2du

= H(2H − 1)e−θt

∫ at

s

v(θ−1)H(v2H−1 − (v − s)2H−1)dv.
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Since 1 − (1 − s
v )

2H−1 = O(1/v) as v −→ ∞, there exist two positive constants

v0 > s, c > 0 such that for every v ≥ v0 we have v2H−1 − (v − s)2H−1 ≤ cv2H−2.
Thus, for large t, we can write

I2t ≤ H(2H − 1)

(
e−θt

∫ v0

s

v(θ−1)H(v2H−1 − (v − s)2H−1)dv

+ce−θt

∫ at

v0

vθH+H−2dv

)
→ 0 as t→ ∞

because H < 1. Then, the conclusion follows. □

Lemma 3.6. Let H > 1
2 . Then, as t→ ∞

e−θt

∫ at

a0

s−(θ+1)H

(∫ s

a0

r(θ−1)HδBr

)
δBs → 0 in L2(Ω), (3.8)

and

e−θt

∫ at

a0

s−(θ+1)Hds

∫ s

a0

r(θ−1)H |s− r|2H−2dr → 0. (3.9)

Proof. Let us prove the convergence (3.8). By setting

Us = s−(θ+1)H

∫ s

a0

r(θ−1)HδBr

we can write

−θt
∫ at

a0

s−(θ+1)H

(∫ s

a0

r(θ−1)HδBr

)
δBs =

∫ t

0

UsδBs

and the Malliavin derivative of the integrand U is

DrUs = s−(θ+1)Hr(θ−1)H1[a0,s](r).

By using (4.3) we can bound the L2 norm of the Skorohod integral as follows

E

(
e−θt

∫ at

a0

UsδBs

)2

= e−2θtE

[(∫ at

a0

UsδBs

)2
]

≤ cHe
−2θt

(∫ at

a0

∫ s

a0

s−(θ+1)r(θ−1)drds

)2H

=
cH
θ
e−2θt

(∫ at

a0

s−(θ+1)(sθ − a0
θ)ds

)2H

≤ cH ln(H)2H

θH2H
t2He−2θt = c(θ,H)t2He−2θt →t→∞ 0.
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Then we proved the convergence (17). Regarding the convergence (3.9), we have

e−θt

∫ at

a0

s−(θ+1)Hds

∫ s

a0

r(θ−1)H |s− r|2H−2dr

≤ e−θt

∫ at

a0

s−(θ+1)Hds

∫ s

0

r(θ−1)H(s− r)2H−2dr

= β(1 + (θ − 1)H, 2H − 1)e−θt

∫ at

a0

1

s
ds→ 0 as t→ ∞.

This finishes the proof. □

Proof of Theorem 3.4. . Using the expression (3.2) of the estimator θ̂t, we can
write

eθt(θ̂t − θ) =
eθt
∫ t

0
e(θ−1)sζsdBas∫ t

0
e2θsζ2sds

with ζs from (2.2). We will use Lemma 3.3 in order to give an alternative form of
the denominator. We have by Lemma 3.3 with ζ ′t given by (3.4)

eθt(θ̂t − θ) =
ζtζ∞

e−2θt
∫ t

0
e2θsζ2sds

× ζ ′T
ζ∞

−H2
e−θt

∫ at

a0
s−(θ+1)HδBs

∫ as

a0
r(θ−1)HδBr

e−2θt
∫ t

0
e2θsζ2sds

−H3(2H − 1)
e−θt

∫ at

a0
s−(θ+1)Hds

∫ s

a0
r(θ−1)H |s− r|2H−2dr

e−2θt
∫ t

0
e2θsζ2sds

:= Aθ
t ×Bθ

t − Cθ
t −Dθ

t .

By Lemma 3.1, we obtain that

Aθ
t −→ 2θ almost surely as t −→ ∞

and according the Lemma 3.5 we deduce,

Bθ
t

Law→ (2H − 1)H2θH

θ
β(1 + (θ − 1)H, 2H − 1)

N

ζ∞
as t −→ ∞.

Moreover,

(2H − 1)H2θH

θ
β(1 + (θ − 1)H, 2H − 1)

N

ζ∞

Law
= H2(θ−1)HC(1),

because
θζ∞

(2H − 1)H2Hβ(1 + (θ − 1)H, 2H − 1)
∼ N (0, 1)

and N ∼ N (0, 1) are independent. Thus by Slutsky’s theorem, we conclude that

Aθ
t ×Bθ

t
Law→ 2θH2(θ−1)HC(1) as t −→ ∞.

On the other hand, it follows from Lemma 5 that

Cθ
t

Prob−→ 0 as t −→ ∞,
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and

Dθ
t −→ 0 almost surely as t −→ ∞.

Finally, by combining the previous convergences, the proof of Theorem 3.4 is
done. □

Remark 3.7. Note that Theorem 3.4 shows that the convergence in distribution of
the estimator (3.1) is very fast, at an exponential rate.

4. Appendix: Fractional Brownian Motion and Malliavin Calculus

In this section we describe some basic facts on the stochastic calculus with
respect to a fractional Brownian motion. For more a complete presentation on the
subject, see [21] and [1].

The fractional Brownian motion {Bt, t ≥ 0} with Hurst parameter H ∈ (0, 1),
is defined as a centered Gaussian process starting from zero with covariance

RH(t, s) = E(BtBs) =
1

2

(
t2H + s2H − |t− s|2H

)
.

We assume that B is defined on a complete probability space (Ω,F , P ) such that
F is the sigma-field generated by B. By Kolmogorov’s continuity criterion and
the fact

E (Bt −Bs)
2
= |s− t|2H ; s, t ≥ 0,

we deduce that B admits a version which has Hölder continuous paths of any
order γ < H.

Fix a time interval [0, T ]. We denote byH the canonical Hilbert space associated
to the fractional Brownian motion B. That is, H is the closure of the linear span
E generated by the indicator functions 1[0,t], t ∈ [0, T ] with respect to the scalar
product

⟨1[0,t], 1[0,s]⟩ = RH(t, s).

The application φ ∈ E −→ B(φ) is an isometry from E to the Gaussian space
generated by B and it can be extended to H. If H ∈ ( 12 , 1) the elements of H may
not be functions but distributions of negative order (see [23]).

Therefore, it is of interest to know significant subspaces of functions contained
in it. Let |H| be the set of measurable functions φ on [0, T ] such that

∥φ∥2|H| := H(2H − 1)

∫ T

0

∫ T

0

|φ(u)||φ(v)||u− v|2H−2dudv <∞.

Note that, if φ, ψ ∈ |H|,

E(B(φ)B(ψ)) = H(2H − 1)

∫ T

0

∫ T

0

φ(u)ψ(v)|u− v|2H−2dudv.

It follows actually from [23] that the space |H| is a Banach space for the norm
∥.∥|H| and it is included in H. In fact,

L2([0, T ]) ⊂ L
1
H ([0, T ]) ⊂ |H| ⊂ H. (4.1)
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Let C∞
b (Rn,R) be the class of infinitely differentiable functions f : Rn −→ R

such that f and all its partial derivatives are bounded. We denote by S the class
of smooth cylindrical random variables F of the form

F = f(B(φ1), ..., B(φn)), (4.2)

where n ≥ 1, f ∈ C∞
b (Rn,R) and φ1, ..., φn ∈ H. The derivative operator D of a

smooth cylindrical random variable F of the form (4.2) is defined as the H-valued
random variable

DF =
n∑

i=1

∂f

∂xi
(B(φ1), ..., B(φn))φi.

In this way the derivative DF is an element of L2(Ω;H). We denote by D1,2 the
closure of S with respect to the norm defined by

∥F∥21,2 = E(F 2) +E(∥DF∥2H).

The divergence operator δ is the adjoint of the derivative operator D. Con-
cretely, a random variable u ∈ L2(Ω;H) belongs to the domain of the divergence
operator Domδ if

E |⟨DF, u⟩H| ≤ cu∥F∥L2(Ω)

for every F ∈ S, where cu is a constant which depends only on u. In this case δ(u)
is given by the duality relationship

E(Fδ(u)) = E ⟨DF, u⟩H
for any F ∈ D1,2. We will make use of the notation

δ(u) =

∫ T

0

usδBs, u ∈ Domδ.

In particular, for h ∈ H, B(h) = δ(h) =
∫ T

0
hsδBs.

Assume that H ∈ ( 12 , 1). If u ∈ D1,2(|H|), u belongs to Domδ and we have (see
[21, page 292])

E(|δ(u)|2) ≤ cH

(
∥E(u)∥2|H| +E

(
∥Du∥2|H|⊗|H|

))
,

where the constant cH depends only on H. As a consequence, applying (4.1) we
obtain that

E(|δ(u)|2) ≤ cH

(
∥E(u)∥2

L
1
H ([0,T ])

+E

(
∥Du∥2

L
1
H ([0,T ]2)

))
. (4.3)

For every n ≥ 1, let Hn be the nth Wiener chaos of B, that is, the closed linear
subspace of L2(Ω) generated by the random variables {Hn(B(h)), h ∈ H, ∥h∥H =
1} where Hn is the nth Hermite polynomial. The mapping In(h

⊗n) = n!Hn(B(h))
provides a linear isometry between the symmetric tensor product H⊙n (equipped
with the modified norm ∥.∥H⊙n = 1√

n!
∥.∥H⊗n) and Hn. For every f, g ∈ H⊙n the

following product formula holds

E (In(f)In(g)) = n!⟨f, g⟩H⊗n .
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Finally, It is well-known that L2(Ω) can be decomposed into the infinite orthogonal
sum of the spaces Hn. That is, any square integrable random variable F ∈ L2(Ω)
admits the following chaotic expansion

F = E(F ) +

∞∑
n=1

In(fn),

where the fn ∈ H⊙n are uniquely determined by F .
Fix T > 0. Let f, g : [0, T ] −→ R be Hölder continuous functions of orders

α ∈ (0, 1) and β ∈ (0, 1) respectively with α+ β > 1. Young [30] proved that the

Riemann–Stieltjes integral (so-called Young integral)
∫ T

0
fsdgs exists. Moreover,

if α = β ∈ ( 12 , 1) and ϕ : R2 −→ R is a function of class C1, the integrals∫ .

0
∂ϕ
∂f (fu, gu)dfu and

∫ .

0
∂ϕ
∂g (fu, gu)dgu exist in the Young sense and the following

formula holds:

ϕ(ft, gt) = ϕ(f0, g0) +

∫ t

0

∂ϕ

∂f
(fu, gu)dfu +

∫ t

0

∂ϕ

∂g
(fu, gu)dgu, 0 ≤ t ≤ T. (4.4)

As a consequence, if H ∈ ( 12 , 1) and (ut, t ∈ [0, T ]) is a process with Hölder

paths of order α ∈ (1 − H, 1), the integral
∫ T

0
usdBs is well-defined as a Young

integral. Suppose moreover that for any t ∈ [0, T ], ut ∈ D1,2, and

P

(∫ T

0

∫ T

0

|Dsut||t− s|2H−2dsdt <∞

)
= 1.

Then, by [1], u ∈ Domδ and for every t ∈ [0, T ],∫ t

0

usdBs =

∫ t

0

usδBs +H(2H − 1)

∫ t

0

∫ t

0

Dsur|s− r|2H−2drds. (4.5)

In particular, when φ is a non-random Hölder continuous function of order α ∈
(1−H, 1), we obtain ∫ T

0

φsdBs =

∫ T

0

φsδBs = B(φ). (4.6)

In addition, for all φ, ψ ∈ |H|,

E

(∫ T

0

φsdBs

∫ T

0

ψsdBs

)
= H(2H − 1)

∫ T

0

∫ T

0

φuψv|u− v|2H−2dudv. (4.7)

Note that the above formula holds to any Gaussian process, i.e., if Y is a
centered Gaussian process with covariance R in L1([0, T ]2), then (see e.g. [15])

E

(∫ T

0

φsdYs

∫ T

0

ψsdYs

)
=

∫ T

0

∫ T

0

φuψv
∂2R

∂u∂v
dudv (4.8)

if φ,ψ are such that
∫ T

0

∫ T

0

∣∣∣φuψv
∂2R
∂u∂v

∣∣∣ dudv <∞.
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