ABSOLUTE BANACH SUMMABILITY OF FOURIER SERIES

U.K. Misra, M. Misra \& K. Rauto

Abstract

A result on Banach Summability is established

1. DEFINITION

Let $\left\{s_{n}\right\}$ be the sequence of partial sums of the series $\sum u_{n}$. Then the sequence $\left\{t_{k}(n)\right\}_{k=1}^{\infty}$ defined by

$$
\begin{equation*}
t_{k}(n)=\frac{1}{k} \sum_{v=0}^{k-1} s_{n+v}, k \in N \tag{1.1}
\end{equation*}
$$

is said to be the k-th element of the Banach transformed sequence. If

$$
\begin{equation*}
\lim _{k \rightarrow \infty} t_{k}(n)=s, \text { a finite number } \tag{1.2}
\end{equation*}
$$

uniformly for all $\mathrm{n} \in \mathrm{N}$, then $\sum u_{n}$ is said to be Banach summable to s [1].
Further, if

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|t_{k}(n)-t_{k+1}(n)\right|<\infty, \tag{1.3}
\end{equation*}
$$

uniformly for all $\mathrm{n} \in \mathrm{N}$, then the series $\sum u_{n}$ is said to be absolutely Banach summable or simply $|B|$-summable.

2. INTRODUCTION

Let $\sum_{n=0}^{\infty} A_{n}(x)$ be the Fourier series of a 2π-periodic function $\mathrm{f}(\mathrm{t})$ which is L integrable on $(-\pi, \pi)$. Then

$$
\begin{equation*}
A_{n}(x)=\frac{2}{\pi} \int_{0}^{\pi} \phi(t) \cos n t d t, \mathrm{n}=0,1,2, \ldots \tag{2.1}
\end{equation*}
$$

Dealing with Cesàro summability Bosanquet[2] established the following theorem:

Theorem. A: If $\phi(t) \in B V(0, \pi)$, then the Fourier series of $\mathrm{f}(\mathrm{t})$ is summable $|C, \delta|$ at the point $\mathrm{t}=\mathrm{x}$ for $\delta>0$.

Later, in 1961, Pati [4] showed that $\phi(t) \log \frac{k}{t} \in B V$ does not ensure absolute harmonic summability of Fourier series. He proved

Theorem.B: There exists a function $\mathrm{f}(\mathrm{t})$ of class-L such that $\phi(t) \log \frac{k}{t}$ is a function of bounded variation, but its Fourier series, at $\mathrm{t}=\mathrm{x}$, is not summable $\left|N, \frac{1}{n+1}\right|$.

In 1997, Misra and Misra [3] proved the following theorem.
Theorem. C: If $\phi(t) \in B V(0, \pi)$, then the Fourier series $\sum A_{n}(x)$ of $\mathrm{f}(\mathrm{t})$ is $|B|$-summable.

In the present paper we prove an analogue theorem for $|B|$-summability of Fourier series.

3. MAIN RESULT

Theorem. If $\phi(t) \log \frac{k}{t} \in B V(0, \pi)$, then the Fourier series $\sum A_{n}(x)$ of $f(t)$ is $|B|$-summables.

4. REQUIRED LEMMAS

Lemma-1[3]: The series $\sum u_{n}$ is $|B|$-summable if and only if

$$
\sum_{k=1}^{\infty} \frac{1}{k(k+1)}\left|\sum_{v=1}^{k} v u_{n+v}\right|<\infty, \text { uniformaly for all } \mathrm{n} \in \mathrm{~N}
$$

Lemma-2[5]: $\int_{0}^{t} \frac{\cos n u}{\log \frac{k}{u}} d u=\left(\log \frac{k}{t}\right)^{-1}+0\left(\frac{1}{n(\log n)^{2}}\right)$.

5. PROOF OF THE THEOREM

For the series $\sum A_{n}(x)$, by Lemma-1, we have

$$
\begin{aligned}
& \sum_{r=1}^{\infty}\left|t_{r}(n)-t_{r+1}(n)\right|=\sum_{r=1}^{\infty} \frac{1}{r(r+1)}\left|\sum_{v=1}^{r} v A_{n+v}(x)\right| \\
& \quad=\frac{2}{\pi} \sum_{r=1}^{\infty} \frac{1}{r(r+1)}\left|\sum_{v=1}^{r} v \int_{0}^{\pi} \phi(t) \cos (n+v) t d t\right|
\end{aligned}
$$

Now

$$
\int_{0}^{\pi} \phi(t) \cos (n+v) t d t=\int_{0}^{\pi} h(t) \frac{\cos (n+v) t}{\log \frac{k}{t}} d t
$$

where $h(t)=\phi(t) \log \frac{k}{t}$

$$
=\left[h(t) \int_{0}^{t} \frac{\cos (n+v) u}{\log \frac{k}{u}} d u\right]_{0}^{\pi}-\int_{0}^{\pi}\left\{d h(t) \int_{0}^{t} \frac{\cos (n+v)}{\log \frac{k}{u}} \cdot d u\right\}
$$

$$
\begin{aligned}
& =0\left(\frac{1}{(n+v)(\log (n+v))^{2}}\right) \\
& \quad-\int_{0}^{\pi} d h(t)\left[\left(\log \frac{k}{t}\right)^{-1} \frac{\sin (n+v) t}{n+v}+0\left(\frac{1}{(n+v)(\log (n+v))^{2}}\right)\right] \\
& =0\left(\frac{1}{(n+v)(\log (n+v))^{2}}\right)-\int_{0}^{\pi} d h(t)\left\{\left(\log \frac{k}{t}\right)^{-1} \frac{\sin (n+v) t}{n+v}\right\}
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \left.\sum_{r=1}^{\infty}\left|t_{r}(n)-t_{r+1}(n)\right|=\frac{2}{\pi} \sum_{r=1}^{\infty} \frac{1}{r(r+1)} \right\rvert\, \sum_{v=1}^{r} v\left[0\left(\frac{1}{(n+v)(\log (n+v))^{2}}\right)\right. \\
& \left.\quad-\int_{0}^{\pi} d h(t)\left\{\left(\log \frac{k}{t}\right)^{-1} \frac{\sin (n+v) t}{n+v}\right\}\right] \\
& \left.\quad \leq \frac{A}{\pi}\left|\sum_{r=1}^{\infty} \frac{1}{r(r+1)}\right| \sum_{v=1}^{r} \frac{v}{(n+v)(\log (n+v))^{2}} \right\rvert\, \\
& \left.\quad+\sum_{r=1}^{\infty} \frac{1}{r(r+1)} \left\lvert\, \sum_{v=1}^{r} \int_{0}^{\pi} d h(t)\left\{\left(\log \frac{k}{t}\right)^{-1} \frac{\sin (n+v) t}{n+v}\right\}\right.\right] \\
& \quad=\frac{A}{\pi}\left[S_{1}+S_{2}\right], \text { say. }
\end{aligned}
$$

Now

$$
\begin{aligned}
S_{1} & =\sum_{r=1}^{\infty} \frac{1}{r(r+1)} \sum_{v=1}^{r} \frac{v}{(n+v)(\log (n+v))^{2}} \\
& =\sum_{v=1}^{\infty} \frac{v}{(n+v)(\log (n+v))^{2}} \sum_{r=v}^{\infty} \frac{1}{r(r+1)}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{v=1}^{\infty} \frac{v}{(n+v)(\log (n+v))^{2}} \cdot 0\left(\frac{1}{v}\right) \\
& =0(1) \sum_{v=1}^{\infty} \frac{1}{(n+v)(\log (n+v))^{2}}
\end{aligned}
$$

< ∞, uniformly in n .
Next

$$
\begin{aligned}
S_{2} & =\sum_{r=1}^{\infty} \frac{1}{r(r+1)}\left|\sum_{v=1}^{r} v \int_{0}^{\pi} d h(t)\left(\log \frac{k}{t}\right)^{-1} \frac{\sin (n+v) t}{n+v}\right| \\
& =\sum_{r=1}^{\infty} \frac{1}{r(r+1)}\left|\sum_{v=1}^{r} v\left(\log \frac{k}{t}\right)^{-1} \frac{\sin (n+v) t}{n+v}\right|, \\
& =\left(\sum_{r=1}^{\tau}+\sum_{r>\tau}^{\infty}\right) \frac{1}{r(r+1)}\left|\sum_{v=1}^{r} v \log \left(\frac{k}{t}\right)^{-1} \frac{\sin (n+v) \quad t}{n+v}\right|, \\
& =S_{21}+S_{22}, \text { say. }
\end{aligned}
$$

Now

$$
\begin{aligned}
S_{21} & =\sum_{v=1}^{\tau} \frac{1}{r(r+1)}\left|\sum_{v=1}^{r} v\left(\log \frac{k}{t}\right)^{-1} \frac{\sin (n+v) t}{n+v}\right| \\
& =(\log \tau)^{-1} \sum_{r=1}^{\tau} \frac{1}{r(r+1)} \sum_{v=1}^{r}\left(\frac{v}{n+v}\right) \\
& =(\log \tau)^{-1} \log \tau \\
& =0(1)
\end{aligned}
$$

Finally,

$$
\begin{aligned}
S_{22} & =\sum_{r>\tau} \frac{1}{r(r+1)}\left|\sum_{v=1}^{r} v\left(\log \frac{k}{t}\right)^{-1} \frac{\sin (n+v) t}{(n+v)}\right| \\
& =(\log \tau)^{-1} \sum_{r>\tau} \frac{1}{r(r+1)}\left|\sum_{v=1}^{r}\left(\frac{v}{n+v}\right) \sin (n+v) t\right| \\
& =(\log \tau)^{-1} \sum_{r>\tau} \frac{1}{r(r+1)}\left(\frac{v}{n+v}\right)\left|\sum_{v=1}^{r} \sin (n+v) t\right| \\
& =(\log \tau)^{-1} \sum_{r>\tau} \frac{1}{(r+1)(n+v)} 0(\tau) \\
& =0(\tau)(\log \tau)^{-1} \sum_{r>\tau} \frac{1}{(r+1)(n+v)} \\
& =0(\tau)(\log \tau)^{-1} 0(\tau)^{-1} \\
& =0(1)
\end{aligned}
$$

Thus

$$
\sum_{r=1}^{\infty}\left|t_{r}(n)-t_{r+1}(n)\right|<\infty,
$$

uniformly in n .
This proves the theorem.

REFERENCES

[1] Banach S. "Theorie dès Operations Lineaires", Monografic Matematyezne, 1, Warsaw (1932).
[2] Bosanquet, L.S. "The absolute Cesaro Summability of Fourier Series", Proc. London Maths Soc. (2), 1936, p.517-528.
[3] Misra, U.K and M. Misra: "Absolute Banach Summability of Fourier Series", Acta Ciencia Indica, Vol. XXVII M, No. 4 (2001) p.495-497.
[4] Pati, T: The non-absolute Summability of a Fourier Series by Nörlund method, Journal of Indian Mathematical Society, 25, 197-214, (1961).
[5] Rath, S: Ph.D. Thesis Berhampur University, 1997.

U. K. Misra

Department of Mathematics
Berhampur University Berhampur-760007, Ganjam, Orissa

M. Misra

Principal Govt. Junior College Malkangiri, Orissa

K. Rauto
Department of Mathematics
SBP Mahavidyalaya, Samantia Palli
Ganjam, Orissa

This document was created with the Win2PDF "print to PDF" printer available at http://www.win2pdf.com

This version of Win2PDF 10 is for evaluation and non-commercial use only.
This page will not be added after purchasing Win2PDF.
http://www.win2pdf.com/purchase/

